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ABSTRACT
The development of dependable software systems is a costly un-
dertaking. Fault tolerance techniques as well as self-repair capa-
bilities usually result in additional system complexity which can
even spoil the intended improvement with respect to dependabil-
ity. We therefore present a pattern-based approach for the design
of service-based systems which enables self-managing capabilities
by reusing proven fault tolerance techniques in form ofFault Toler-
ance Patterns. The pattern specification consists of a service-based
architectural designanddeployment restrictionsin form of UML
deployment diagrams for the different architectural services. The
architectural design is reused when designing the system architec-
ture. The deployment restrictions are employed to determine valid
deployment scenarios for an application. During run-time the same
restrictions are at first used to automatically map additional ser-
vices on suitable nodes. If node crashes are detected, we secondly
employ the restrictions to guide the self-repair of the system in such
a way that only suitable repair decisions are made.

1. INTRODUCTION
Software plays a dominant role in today’s high-integrity systems
[2] like critical infrastructure (telephone system) or safety-critical
systems (car). Dependability and its attributes availability, reliabil-
ity, safety, and security [5] are key goals in developing these high-
integrity systems. Fault tolerance techniques are widely employed
to develop dependable systems as they allow, if correctly applied,
to improve availability and reliability (cf. [1, 9]).

Today’s high-integrity systems are distributed systems and as
such are subject to additional problems like partial failures, net-
work failures, etc. But distributed systems also provide means
for enhancing the dependability as they allow for redundancy and
healing by redeployment of software to working nodes. As a con-
sequence, the software is not bound to a specific computation re-
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source but may be executed on different nodes in the system over
time. Service-based architectures [14] (as extended component-
based systems) cope with the complexity and dynamics of these
systems. They offer infrastructure services which support the
lookup and use of services by clients, which do not know the exact
location of services in the network and therefore are not affected
by changing the location during redeployment. Therefore, service-
oriented architectures are an ideal architecture for such distributed,
high-integrity systems and as such targeted by our approach.

In [11, 12, 13], we developed a UML based approach to model
service-based systems which also supports the later deployment of
the services. Deployment rules and a run-time environment permit
to realize systems with partially configurable reliability and avail-
ability attributes for redundant services. Deployment decisions are
made online looking for appropriate nodes which satisfy the re-
quirements stated in the deployment rules. Additionally, the auto-
matic self-management detects crashed services and then employs
the specified deployment rules to restart them on a node with appro-
priate characteristics. In those previous works, deployment restric-
tions concerning redundancy properties have not been addressed.
In contrast to these scenarios, the deployment of systems, which
employ fault-tolerant techniques, require a deployment mapping,
which maps the different services taking into account the assump-
tions of a fault tolerance technique such as, for example, placement
on distinct nodes with different hardware.

The presented approach addresses this problem by offering
reusablefault tolerance patterns which include besides the archi-
tectural design (as presented in [10]) also deployment restrictions
for all the architectural services of the patterns which make such
assumptions explicit. These fault tolerance patterns are specified in
a graphical way using UML component and deployment diagrams
to improve the readability.

The architectural design is reused each time the pattern is em-
ployed during the architectural design. Any valid deployment sce-
nario for the architecture has to respect the deployment restrictions
of all employed patterns. The deployment restrictions are further
employed for the automatic self-management at run-time. If a new
service has to be added, the deployment restrictions are used to au-
tomatically find a suitable mapping of the new service to nodes.
The restrictions also guide the self-repair of the system when node
crashes are detected. Only suitable repair decisions are made which
respect the constraints implied by the restrictions.

The outlined approach results in an automatic self-management
capability for pattern-based designs. An error-prone textual and
manual specification of deployment restrictions concerning redun-
dancy for each service is rendered unnecessary, as all required in-
formation results from the embedding of the patterns into the UML
model. The deployment restrictions are subsequently satisfied dur-
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Figure 1: Structure of the triple modular redundancy template

ing runtime by an execution framework. Thus, the automatic self-
management will satisfy all deployment constraints stemming from
the roles the service plays in the deployment patterns.

We first describe in Section 2 the concepts for fault tolerance
patterns. Then, we outline how the deployment restrictions can be
used to compute suitable deployment mappings for a given static
architecture in Section 3. In Section 4, these concepts are further
extended to also cover the online addition of new services and the
self-repair in case of node crashes. Finally, related work is dis-
cussed in Section 5 and we close the paper with a conclusion and
outlook on future work.

2. FAULT TOLERANCE PATTERNS
A fault tolerance pattern represents the specification of a certain

fault tolerance technique. The specification consists of three parts.
The first one represents thestructure of the fault tolerance technique
in form of afault tolerance template[10] consisting of service roles
and their connections. Based on this structural specification, in the
second part,deployment restrictionsconcerning the different ele-
ments of the fault tolerance template are specified. The third part is
thebehaviorspecification of the fault tolerance technique. In this
paper, we focus only on structure and deployment restrictions.

Figure 1 shows thestructureof the triple modular redundancy
(TMR) [9] fault tolerance pattern. A triple modular redundancy
system uses three servicesService1. . . 3, which actually do the
work. The Voter compares the different results and chooses the
result which at least two of the services returned. TheMultiplier
triples the input values and propagates them to the three services.
Thus, a triple modular redundancy system can tolerate one mal-
functioning service. TheProvider and User services are not part
of the fault tolerance pattern but are added for the specification of
additional deployment constraints.

Unfortunately common-mode failures spoil the fault tolerance
enhancement of the TMR. For example, if two of these three ser-
vices are executed on the same node, crash failure independence
does not hold anymore for node failures and the usage of a TMR
becomes pointless. Thus, the servicesService1. . . 3 must be de-
ployed to distinct nodes. TheMultiplier and Voter as well as the
Provider and User services are single points of failure in a sim-
ple application of TMR. Our observation is, that if aUser service
fails, theVoter service is not needed anymore. Thus, in order to en-
hance the fault tolerance of the TMR setup, we propose to deploy
theProvider andMultiplier as well as theVoter andUser services to
the same node, i.e. both services do not crash fail independently of
each other.

These observations must be appropriately specified in order that
the actual deployment of the services satisfies these restrictions. A
deployment diagram is used for the specification of thesedeploy-

ment restrictionsfor the fault tolerance pattern. A graphical spec-
ification as a diagram typically provides better readability than a
textual representation.
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Figure 2: Deployment pattern of the triple modular redun-
dancy pattern

Figure 2 shows the deployment restrictions of the fault toler-
ance pattern of Figure 1. The following deployment restrictions
are specified: (1) that each service is deployed to exactly one node
(2) that each serviceService1. . . 3 is deployed on a different node,
(3) that the servicesUser andVoter as well as the servicesProvider
andMultiplier both have to be deployed on the same node, (5) that
Node3, Node4 andNode5 must have different CPU types.

The first restriction is visualized by the fact that each service is
the source of exactly one deployment arrow. This ensures on the
one hand that each service is mapped to a node and on the other
hand that no service is mapped to more than one node. The second
restriction is visualized by the deployment arrows of the services
pointing to different node symbols. This constraint guarantees that
Service1. . . 3 are executed on different nodes and, thus, are not af-
fected by common-mode failures. The third restriction is visual-
ized by the deployment arrows of the services pointing to the same
node symbol. This specifies that theVoter and theUser services
as well as theMultiplier and theProvider services do not crash in-
dependently. The fourth constraint is annotated in the graphic in a
textual way. It assures that the software services do not suffer from
failures that are specific to a certain CPU type.

After a short introduction to the system which is used to exem-
plify the approach, we show, in the next section, how the TMR fault
tolerance pattern is applied to this system and how the deployment
restrictions are used for an initial deployment of the services. In



���������	�

���
����������������
��� � ! 
��"���#�$� � �

�&%'�)(+*�,.-����/�

�0�1�2
43	�1��� � !
� ��56��7856�#�$� � �

� ��56��7856�#�$� � �

� ��56��7856�#�$� � �

�:9	(+;6���	�

< � �=
4> � ��� !
�:?A@CBD;E,GFHBI,E���J�

K 785L
�MN785.�$�POQ5E�"� ! OR��ST
�U � �1�V�$� � �

OQ�XW�
�U � �0�Y�$� � �

OQ��Z[
�U � �0�Y�$� � �

�:\Q�]�+*�,E^$��_`�

�:\R���+*a,E^$�)b	�

��\R����*�,E^$�+c	�

Figure 3: Service structure for shuttle position calculation

Section 4 the deployment reconfiguration based on the deployment
restrictions in the case of node failures is presented.

3. INITIAL DEPLOYMENT
The approach at hand is developed within the Special Research

Initiative 614 – Self-optimizing Concepts and Structures in Me-
chanical Engineering. As main application example, autonomously
driving shuttles1 are developed. These shuttles drive on tracks like
trains but they are powered by magnetic waves produced by stators
which are assembled between the tracks. One particular problem
is to reduce the energy consumption due to air resistance by co-
ordinating the autonomously operating shuttles in such a way that
they build convoys whenever possible. Such convoys are built on-
demand and require a small distance between the different shuttles
such that a high reduction of energy consumption is achieved. For
the distance coordination of the shuttles it is indispensable to know
their exact position. The position is calculated based on the sta-
tor waves that power the shuttles. As the position calculation is
that important, we decided to implement it by using the TMR pat-
tern. Thus, there are three services for the position calculation and
four additional services. One for the sensor that measure the sta-
tor waves, one that multiplies the sensor data and delivers it to the
calculation services, one voting service and one service that is re-
sponsible for the distance coordination. Figure 3 shows the struc-
ture of the implemented system after the application of the TMR
fault tolerance template. Note, that the services are annotated by
their respective role played in the fault tolerance template using a
stereotype.

In order to find a suitable deployment, we propose to transform
the graphically specified deployment restrictions to the constraint
language of a standard constraint solver like ILOG’s solver soft-
ware. Thus, a standard solver is used to find a deployment that
satisfies the deployment restrictions. For the constraint problem,
we use the boolean variablemi,j to denote whether servicei will
be deployed to nodej (mi,j = 1) or not (mi,j = 0).

As described in the previous section there are four restrictions
that have to be met by a correct deployment. These restrictions are
automatically transformed into constraints in the following way:

(a) each service has to be deployed to exactly one node. This
corresponds to restriction (1) within the previous section and is for-
malized as:

∀i :
∑

j

mi,j = 1 (1)

(b) services with deployment arrows leading to different nodes
must be executed on different nodes. In the above example this
corresponds to restriction (2) and means no two position calcula-

1http://nbp-www.upb.de/en

tions may be executed on the same node. This can be formalized
e.g. for the position calculation servicespc1 andpc2 as:

∀j : mpc1,j + mpc2,j ≤ 1 (2)

(c) services with deployment arrows leading to the same node
must be executed on the same node. Within the example this means
theVoter andDistanceCoordination services respectively theSensor
and theMultiplier services are deployed to the same host. This con-
straint is formalized e.g. for the servicessen andmul as:

∀j : mmul,j + msen,j = 0 ∨ (3)

mmul,j + msen,j = 2

(d) constraints that are annotated to the graphical constraint rep-
resentation can be used by replacing the node names by the match-
ing function. Here, the three nodes serving as hosts for the position
calculation must be of three different CPU types.

mpc1,j1 ∧mpc2,j2 ∧mpc3,j3 ⇒ (4)

j1.CPU 6= j2.CPU ∧ j1.CPU 6= j3.CPU ∧ j2.CPU 6= j3.CPU

As an example, we assume that there are six nodes that serve as
hosts for the services. An initial mapping obtained from the con-
straint solver, which is correct w.r.t. the above given restrictions, is
shown in Table 1 and graphically shown in Figure 4. ILOG’s solver
software returns an initial mapping for this rather small example al-
most immediately (0.004s) on an AMD Athlon 600 standard PC.

sen mul pc1 pc2 pc3 vot dc
avalon 1 1 0 0 0 0 0
gareth 0 0 0 0 0 0 0
taliesin 0 0 0 0 0 1 1
gorlois 0 0 1 0 0 0 0
uther 0 0 0 1 0 0 0
arthur 0 0 0 0 1 0 0

Table 1: Values of themi,j variables obtained from the con-
strained solver

4. DEPLOYMENT RECONFIGURATION
In self-managed systems, on the one hand new services may be

added during runtime. An additional service must be deployed to
the system according to the deployment restrictions.2 On the other
hand, during runtime nodes and the executed services may fail. The
application of a fault tolerance pattern provides the redundancy to
2Addition of new hardware instead does not result in redeployment
with respect to fault tolerance.



gorlois uther arthur

garethavalon

CPU=80486

CPU=MPC555 CPU=PPC750 CPU=PPC750

CPU=SPARC5CPU=MPC565

taliesin

���������	�
����
�����
���� ��������������� � � ! ���"��#$���%��� & �'�'�)(*
+��,-��
+�'�
(�./��01
����%,*�2.3�

& ,��4.5���4,-��
�� � & ,��4.6���7,-��
+�'� & ,��7.6���4,*��
+�'�
��. 89��:$�)��
;��
+�'� ��.3<=��:$�)��
;��
+�'� �>.3?@��:A�B��
;��
+�'�

Figure 4: Example of a correct initial mapping

tolerate failures, but in order to tolerate additional failure restarting
of the failed services on working nodes is necessary. This repair is
subject to the deployment restrictions.

In order to reconfigure the deployment, we propose to use the
mentioned deployment constraints. As this reconfiguration is per-
formed during runtime, using the same constraint problem as in
the initial deployment is naive w.r.t. the performance of the con-
straint solving. A better approach is to shrink the constraint prob-
lem by reusing the current values of the deployment variablesmi,j

for those services not affected by the failure. Only the deployment
variables of the new or restarted services are still variable. If this
very restricted constraint problem is not solvable, we need to re-
lax some of the fixed variable values one after another in order to
come up with a correct deployment solution. If a solution is found,
which includes changed deployment variables, then service migra-
tion is necessary in order to fulfill the found deployment.

Additional Services
For example, during runtime aconvoy service, which is responsible
for the convoy management (i.e. it determines convoy speed and is
responsible for communicating this convoy speed to all shuttles),
may be added. In order to find a suitable deployment, the values of
the deployment variables for the old services are fixed, e.g. thepc1
service should remain ongorlois:

mpc1,j =

{
1 j = gorlois
0 else

(5)

For the new serviceconvoy, new deployment variablesmcon,j

are added to the constraint problem. After a run of the constraint
solver, the variables hold the node, on which the new service will
be deployed. In our example, the new service may be run on node
gareth.

Repair
Consider the case that in our examplegorlois fails and, thus, the
servicepc1 fails, too. The failed service must be restarted on a
new node in order that the system keeps the required redundancy
to tolerate an additional failure of thepc services. Selecting a node
for this restarted service means in terms of the formalization, that
the variablesmpc1,j are not fixed, whereas the other variables are
fixed to the values returned by the last invocation of the constraint
solver. To accommodate this, we add constraints concerning the
fixed values of the variables.

Sincegorlois is not working, we need to fix the mapping vari-
ables concerning this node to 0. This leads to the following addi-
tional constraints:

∀i : mi,gorlois = 0 (6)

sen mul pc1 pc2 pc3 vot dc
avalon 1 1 ? 0 0 0 0
gareth 0 0 ? 0 0 0 0
taliesin 0 0 ? 0 0 1 1
gorlois 0 0 0 0 0 0 0
uther 0 0 ? 1 0 0 0
arthur 0 0 ? 0 1 0 0

Table 2: Values of themi,j variables before repair

The values of themi,j variables are shown in Table 2. The con-
straint solver will then return a new deployment mapping for the
pc1 service. Concerning the initial mapping shown in Figure 4, the
servicepc1 can be restarted ongareth.

5. RELATED WORK
In [8] Sommer and Guidec present an approach for the specifica-

tion of resource constraints for software deployment. The resource
restrictions are used for the correct deployment of the software on
resource-constrained systems. The to-be-deployed software spec-
ifies its required resources using program language constructs and
the deployment software (theresource broker) determines whether
the requirements can be met on the deployment node. The resource
broker checks during the execution of the software, whether the
software adheres to this requirements. This approach is similar to
ours with respect to the specification of deployment restrictions.
Contrary, we provide means for the deployment restriction specifi-
cation on a more abstract level using UML deployment diagrams.
Additionally, we specifically tackle the deployment for fault toler-
ant systems, which is not in the focus of [8].

Nentwich et al. present in [7] a consistency framework for UML
models. The consistency checks are expressed in terms of first or-
der logic over sets which are built by XPath expressions on XMI
models. This approach could be used for checking the deployment
constraints, too. The deployment constraint checking rule must be
written in terms of XMI and XPath individually for each deploy-
ment constraint. We instead employ a graphical notation for the
specific case of deployment constraints. This eases the process of
specifying a deployment constraint, and improves the readability of
the deployment constraints.

The Distribution Constraint Language DCL [3] provides flexible
means for the specification of distribution constraints for compo-
nents in form of a visual language. Distribution constraints are
property based allocation expressions, e.g. never allocate a com-
ponent with the propertyPersonal Data = Yes to a hardware re-
source with the propertyWebData. Using DCL it is possible to
generate deployment specifications for components based on the
components properties, the network topology, and the distribution
constraints. Though in the paper the generated deployment specifi-
cation is erroneous with respect to network bandwidth and memory
space. Fault tolerance is addressed by the addition of replication
constraints, which guide the replication of components to several
hardware resources. Using a visual language for specifying the
distribution constraints is similar to our approach, whereas the ac-
tual graphical syntax differs. In its presented state, the generated
deployment specification is only a helpful device for the developer



during the design phase, because the deployment at runtime is not
supported and useless as long as the generated deployment speci-
fications are erroneous. Generic templates for specifying reusable
distribution constraints as supported by our approach are not possi-
ble.

Dearle et al.[4] also propose a declarative constraint-based de-
ployment language. Their approach is based on an Autonomic
Deployment and Management Engine (ADME). This engine is
responsible for deploying software components to computational
nodes in a way which satisfies the constraints specified for the com-
ponent. In case of changes (crashes etc.), this engine redeploys
the components according to the deployment constraints. During
this redeployment, the engine tries to keep the number of redeploy-
ments low. The textual constraint language allows constraints for
the deployment of components and the definition of connections
between components. According to the authors, writing constraints
is difficult. By our usage of a graphical language, which is an ex-
tension of UML deployment diagrams, we believe it is consider-
able easier to specify deployment constraints and understand them
than using a textual language. Our idea of specifying deployment
constraints for fault tolerance patterns makes it even easier to write
deployment constraints respective to just reuse them. Reusing de-
ployment constraints for common architectural patterns is already
envisaged by Dearle et al.

The DeSi environment [6] supports the assessment of deploy-
ment quality in terms of availability. It supports the automatic, con-
straint based deployment of components to hosts in a distributed
system. Several algorithms are described which try to compute
a good deployment with respect to availability of the whole sys-
tem. This approach also supports the specification of constraints
for components to be deployed to same/different hosts. The re-
sulting deployment is graphically shown in a proprietary diagram,
while the constraints are only specified using drop-down-lists in a
userinterface. We, in contrast to this approach, support the graph-
ical specification of constraints using the standard modeling lan-
guage UML. In addition, constraints are specified for a template
and, thus, can be reused in all applications of this template.

6. CONCLUSIONS AND FUTURE WORK
In today’s world, dependability of software is extremely impor-

tant. Fault tolerance techniques are broadly applied in order to en-
hance the dependability of software. As these techniques increase
the development complexity of software, an approach to add fault
tolerance to software systems is needed. This approach has to en-
sure that the system is correctly deployed, new software can be
added and in the case of a hardware crash the affected software is
redeployed to another hardware component.

We presented fault tolerance patterns as means to build and de-
ploy dependable systems. These fault tolerance patterns are a rep-
resentation of known fault tolerance techniques like triple modular
redundancy. Naive application of these fault tolerance techniques
does not take deployment issues into account and, thus, renders the
fault tolerance technique pointless. Therefore, we use deployment
restrictions to avoid bad deployments. Based on these deployment
restrictions an automatic initial deployment is created. During run-
time the same deployment restrictions support the deployment re-
configuration of new services or failed services as a self-repair of
the system. Tool support exists (1) for the specification of fault tol-
erance patterns and (2) the automatic transformation of the graphi-
cal deployment restrictions to constraints for the ILOG solver soft-
ware.

In the future, we will look into adding objective functions like
minimizing the communication distance between services or min-

imizing the individual host load. Therefore, the deployment will
not only satisfy the deployment constraints, but it will also provide
a better overall solution.

The shown example only uses restrictions concerning combined
deployment of services on same/different nodes and a very general
node type attribute inequality constraint. In [12] attributes are used
in a more wider way to further specify the characteristics of nodes.
A transformation of these attribute constraints to the input language
of a constraint solver is planned.
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