
1

Using UML as Visual Programming Language

Hans-Josef Köhler, Ulrich Nickel, Jörg Niere, and Albert Zündorf

Department of Computer Science, University of Paderborn,
Warburger Str. 100, D-33098 Paderborn, Germany;
e-mail: [hjk|duke|nierej|zuendorf]@uni-paderborn.de

Abstract: This paper proposes to use UML class diagrams and UML behavior diagrams likecollabora-

tion diagrams, activity diagrams, message sequence charts, and state-chartsas a visual programming

language. We describe a code generator that generates a (Java) implementation of an application from

its UML specification. Thereby, we define a formal semantics for these UML diagrams and we define

how different (kinds of) diagrams are combined to a complete executable specification.

Generally, generating code from UML behavior diagrams is not well understood. Frequently, the

semantics of a UML behavior diagram depends on the topic and the aspect that is modeled and on the

designer that created it. In addition, UML behavior diagrams usually model only example scenarios and

do not describe all possible cases and possible exceptions.

We overcome these problems by restricting the UML notation to a subset of the language that has a pre-

cise semantics. In addition, we define which kind of diagram should be used for which purpose and how

the different kinds of diagrams are integrated to a consistent overall view.

1 Introduction

UML focuses on early phases of the sofware life-cycle like object-oriented analysis and object-oriented
design, cf. [BRJ99]. Thus, UML behavior diagrams usually model typical scenarios describing the desired
functionality, only. Our work focuses on the design and implementation phase. We are looking for execut-
able specifications. In [JZ98] we first proposed to combine UML class-diagrams, UML activity-diagrams,
and UML collaboration-diagrams to so-calledstory-diagrams. Story-diagrams do not just show scenarios
but specify the over-all behavior. Story-diagrams have a precise operational semantics that allow their auto-
matic translation to an object-oriented programming language like Java or C++. [ZSW98] proposes story
driven modeling as a systematic approach to use UML- and story-diagrams for the development of an
object-oriented application. Based on this work, in [FNTZ98] we first described the Fujaba environment
that allows the editing of story-diagrams and provides a code generator translating story-diagrams to Java
code that implements the specified structure and behavior of an application.

So far, story-diagrams are especially suited for the specification of complex application specific object-
structures and their evolution over time. However, story-diagrams lack means for the specification of reac-
tive objects and concurrent executions. Concurrent execution and reactive behavior is a typical application
domain for state-charts. State-charts, however, abstract from the concrete states of coordinated objects, by
definition. State-charts do not deal with application specific object-structures, appropriately. Thus, this
paper proposes to combine state-charts and story diagrams to form an executable specification language that
allows to specify reactive behavior as well as complex application specific object-structures.

Chapter2 introduces the simulation of a simple production process as a running example for this paper.
Chapter3 discusses the translation of class-diagrams to Java code as a basis for the translation of behavior
diagrams. Chapter4 desribes a table-driven approach to the implementation of state-charts that enables a
straight-forward translation of state-charts to Java code. This enables us to combine state-charts and story-
diagrams in chapter5 yielding a complete yet executable specification language and a code generator for its
translation to Java. Chapter6 summarize our work and out-lines current and future work.

2

2 Running Example

This paper uses the simulation of a simple production process as running example. This production process
models a factory with various manufacturing places and with shuttles transporting goods from one manu-
facturing place to another. The example stems from the ISILEIT project funded by the German National
Science Foundation (DFG). The goal of the project is the development of a formal and analysable specifi-
cation language for manufacturing processes. In addition, a code generator shall provide automatic code
generation for driving the constituent parts of a manufacturing process, namly shuttles, robots, assembly
lines, etc. Note, In a modular factory all these constituents have local control. We plan to model the manu-
facturing process up-front and to simulate its functionality in order to validate if everything works correctly
and than to generate the software that runs the constituents of the manufacturing process. Overall, more fle-
xible processes adjusting to market demands more quickly will be achieved.

Figure 1 shows a scenario of a sample factory. The factory is modeled as a flat building without levels and
pillars in it. The floor is layered with rectangle shaped fields allowing to address certain positions in the buil-
ding and serving as a matrix. The factory contains certain kinds of production places. A production place is
e.g. an assembly line, where goods arrive and are loaded on shuttles, or a storage, where goods can be stored.
In Figure 1 there are three shuttles moving across the floor transporting goods from the assembly line at the
top of the figure to the storage at its bottom right side, autonomously.

The basic behavior of a shuttle is specified in the state-chart shown in Figure 2. Initially, a shuttle is just
waiting. Then the shuttle is instructed to transport goods from a source place to a target place by sending it
an assign event. The shuttle reacts on such an event by switching from the waiting state to the active state
and by storing its source and target place, internally. The active state is a complex state with state go(source)

Figure 1 Simple factory example

Figure 2 State-chart of a shuttle

go (source)

fetch

go (target)

deliver

[else]

[else]

[reached]

[reached]

emergencyStop

reactivate
assign (source, target)

assign (source, target)

H*
active

halted

waiting

3

as its initial sub-state. In state go(source) the shuttle tries to go to the source place of its current order. It
finds his way autonomously using its own routing algorithm and avoiding colissions with other shuttles.
Once the shuttle reached its source place it fetches a good and switches to the go(target) state. When the
shuttle reaches its target place it delivers the transported good, turns back to the go(source) state, fetches
another good, goes to its target, and so on. The shuttle will worn-out this procedure until it "dies".

But our shuttles are reactive systems. Thus, a shuttle may be reassigned with a different instruction at any
time by just sending it another assign event. In case of an emergency stop, a shuttle is halted by an emer-
gencyStop event. In state halted the shuttle may be reactivated by sending it a reactivate event. When a shut-
tle is reactivated, it switches into the history state of the active state. The history state stores the last sub-
state of the shuttle before it switches into the halted state and recalls that state when the shuttle is reactivated.

Actually, our example specification is much more complex. We have downstripped the example conside-
rably to facilitate its understanding.

3 From Class Diagrams to Code

In this section we introduce the FUJABA code generator which generates Java code for classes, attributes,
method declarations, and associations. Figure 3 shows a screen-shot of the FUJABA environment
[FNTZ98] with the UML class-diagram for the production process simulator example. The class-diagram
is a straight forward design of the factory example. So there exist classes like Shuttle, Storage, Assembly-
Line, or Field. The classes Storage and AssemblyLine inherit from class Place.

The translation of class diagrams to an object-oriented programming language is straight-forward and pro-
vided by most current OO-CASE tools. Figure 4 shows a cut-out of the Java code that the Fujaba environ-
ment generated for class Shuttle and class Field of our example. The Fujaba generator translates UML
classes to Java classes, cf. line 3. Methods are translated into Java method declarations, cf. the go- and
assign-methods line 15 and 16. The method bodies are normally empty (but a designer may specify a body
using UML behavior diagrams see section 4 and 5). According to the Java Beans style guides, we translate
attributes to private Java attributes accessible via appropriate get- and set-methods, cf. line 5 to 10.

UML associations are usually bi-directional. Thus, we implement associations by pairs of references in the
respective classes. For multi-valued associations like the (reverse direction of the) target association we use
standard container classes provided by the java generic library [JGL99]. In order to guaranty the consistency
of the pairs of references that implement an association, the respective access methods for reference attri-
butes call each other. For example, the addToShuttles method in line 24 first checks if the shuttle still exists

Figure 3 The Fujaba environment showing the example class-diagram

4

in the container by calling thehasInShuttles method (cf. line 25). If theshuttle is unknown than it is added
to the container (line 26). Next, the methodsetTarget is called on the addedshuttle, passing thefield object
itself as parameter. This establishes the reverse reference. This implementation of associations is close to
the strategy of [Rhap].

The proposed generation of code for UML class diagrams provides the basis for the translation of behavior
diagrams.

4 Reactive Behavior via State-charts

State-charts can be used for many different purposes. They can model the behavior of a whole application
or just of a single method. State-charts may model all possible sequences of method invocations on a certain
object or they may model state dependent reaction of certain objects on the receiption on certain events.
Each of these uses leads to a totally different semantics of the given state-chart. In addition, the different
usages employ different state-chart language features. In order to generate code from a state-chart one must
clearly identify which part of an application and which behavioral aspect of this part is modeled by the pro-
vided state-chart.

In this paper we assume that state-charts are used to model the reaction of objects on events send to them.
Thus, state-charts are attached to (reactive) classes. We turn events into so-calledevent methods of the cor-
responding classes in order to provide an uniform and convinient way of invoking some service on an object.
The event methods build the public interface of the modeled class. Entry, exit, and do actions and actions
attached to transitions are implemented as so-calledaction methods of the modeled class. These methods
get private visibility since they are intended to be called (directly or indirectly) from the event methods,
only. Thus, a state-chart defines which action methods will be called as reaction on a(n event) method invo-
cation and depending on the object’s current state.1

Our approach is inspired by the state-design pattern, cf. [GHJV95], and by [AT98] and by the Rhapsody
case tool [HG96, Rhap]. However these approaches generate specific new classes for each state employed
in the state-chart. These specific classes possibly contain a huge amount of redundant and duplicated code.
[Doug98, chapter 6.2.3] uses a generic array based state-table. However, [Doug98] has some problems
dealing with complex nested states. (We will discuss this point at the end of this chapter.) Our approach
adapts the idea of [Doug98] but uses an object-oriented implemention of the state-table. Figure5 shows the
design of our state-table classes. Any reactive object like classShuttle of our running example becomes a

1. Action methods may call event methods on other reactive objects, thereby sending them events.

1: import java.util.*
2: import com.objectspace.jgl.*;
3: public class Shuttle{
4: private int powerState = 100;
5: private int getPowerState () {
6: return powerState;
7: } // getPowerState
8: private int setPowerState (int newState) {
9: return powerState = newstate;

10: } // setPowerState
11: private Field target;
12: public getTarget () { ... }
13: public setTarget () { ... }
14: ...
15: public void go () { ... }
16: public void assign (Place source,
17: Place target) { ... }
18: ... } // Shuttle

19: import java.util.*;
20: import com.objectspace.jgl.*;
21: public class Field {
22: private OrderedSet shuttles
23: = new OrderedSet ();
24: public void addToShuttles (Shuttle shuttle) {
25: if (!this.hasInShuttles (shuttle)){
26: this.shuttles.add (shuttle);
27: elem.setTarget (this);
28: } } // addToShuttles
29: public void removeFromShuttles (...) { ... }
30: public boolean hasInShuttles (Shuttle shuttle) {
31: return (this.shuttles.get(shuttle) != null));
32: } // hasInShuttles
33: public Enumeration elementsOfShuttles ()
34: { return this.levels.elements (); }
35: ...
36: } // Field

Figure 4 Java code for class Shuttle and Field

5

subclass of classFReactive.2 ClassFReactive provides a pointer to the current state of the reactive object
and an abstractinitStateChart method and ahandleOneEvent method and aninvoke method. TheinitSta-
teChart method is used to create the object’s state-table. Figure6 shows a cut-out of the runtime object
structure created by methodinitStateChart (as redefined in classShuttle). The runtime object-structure of
Figure6 represents (a cut-out of) the statechart shown in Figure2. There is a master state that contains the
first level nested stateswaiting, active, andhalted via subStates links. In turn the complex stateactive con-
tains the statesgo_source, fetch, etc. The transition objects show their firing event name. Each state has a
(hash-)table of out-goingtransitions qualified by event names, e.g. from statewaiting one reaches transition
t1 via key"assign". Each transition has an array of target states. Normally, this array contains only a single
entry, e.g. transitiont1 leads to stateactive. However, a state may have multiple outgoing transitions labeled
with the same event but distinct by mutal exclusive guard conditions, cf. statego_source of Figure2. Such
transitions are represented by a single transition object with multiple targets, see transitiont2. Note, transi-
tions connected to complex states are represented by a singleFTransition object that is connected to the cor-
respondingFComplexState objects, e.g. transitiont1 andt5.

As already discussed, sending an event to an reactive object is done by just calling the appropriate event
method. Each reactive object has its own event queue inherited from classFReactive, cf. Figure5. Event
methods just have to encapsulate the signaled event into anFEvent object and push this event object into
the event queue of the reactive object. For example, Figure7 shows the implementation of methodassign
of classShuttle. It just creates anFEvent object passing the event name as first parameter to the constructor
call (line3) and an object array containing the parameterssource andtarget as second parameter (line4).

2. If this creates a multiple inheritance situation, we provide an interface version of classFReactive, too.

observers

event

targets

notransitions

event

Figure 5 Generic State-Chart Classes

FTransition

name : String
action : Method
guards : Method []

getTarget (event : FEvent) : FState
fire (event : FEvent) : void

current
1

FActivity

doAction : Method

enter (event : FEvent) : void

FReactive

initStateChart () : void
run () : void
handleOneEvent () : void
invoke (m : Method, args : Object []) : Object

subStates
parentn

1

inital
1

history

1

currentStates

n

FComplexState

getTransition (event : FEvent) : FTransition
leave (event : FEvent) : void
enter (event : FEvent) : void

FAndState

getTransition (event : FEvent) : FTransition
leave (event : FEvent) : void
enter (event : FEvent) : void

FState

name : String
entryAction : Method
exitAction : Method

getTransition (event : FEvent) : FTransition
leave (event : FEvent) : void
enter (event : FEvent) : void

eventQueue
{ordered}

n
1

FBroadcaster

handleOneEvent () : void

source

receiver

FEvent

name : String
args : Object []

Shuttle

initStateChart () : void
. . .

6

Finally, the event method calls methodaddToE-
ventQueue to append the new event object to the
reactive object’s event queue.

Note, in our example application (area) all
events are explicity targeted to their receivers.
(One actually calls a method on the receiving
object.) However, usually state-charts assume a
broad-cast mechanism distributing events to all
available reactive objects. To support this style
of event handling, our framework provides the

class FBroadCaster, cf. Figure6. In case of broadcast events, the application creates an implicit broadcaster
object. All reactive objects (interested in this kinds events) register themselfes at the broadcaster for the
events they are interested in. Broadcast events are created as usual and then pushed into the event queue of
the broadcaster. The broadcaster handles the received events by forwarding them to the event queues of the
reactive objects that registered their interest in this kind of events. Note, an application may employ its own
or additional broadcasters, e.g. in order to establish broadcasting of certain events for certain groups of reac-
tive objects. Such group events are just send to the group broadcaster object.

Our framework provides two different ways to consume events from the event queue of a reactive object.
First, the object may run in its own thread. Therefore, methodrun of classFReactive contains an event loop
listening to the event queue. If an event is available, methodrun invokes methodhandleOneEvent to con-
sume it. Methodrun waits for the return ofhandleOneEvent and then it seeks for the next event. Second, all
reactive objects may be controlled by a simulation environment. In this mode, the simulation environment
loops through the set of reactive objects and calls methodhandleOneEvent on them. The latter mode allows
a stepwise synchronous execution of the event handling for debugging purposes. Note, the two different
execution modes might consume events in different orders. However, in a well designed system all possible
event orders should yield the same overall result. Of course this is not easy to ensure. Our simulation mode
just allows to execute events one by one, in order to test their effects, first. Once single events work fine,
one can start looking for the concurrence problems.

Figure8 shows methodhandleOneEvent. MethodhandleOneEvent consumes events based on the state-
table approach. It first retrieves the event to be consumed from the event queue, cf. line3. In case on an
empty event queue line4 aborts the execution. In line5, handleOneEvent retrieves the current state object.

Figure 6 State-table for the state-chart of Figure2 (cut-out)

s1 : Shuttle

master : FComplexState

current

subStates subStatessubStates

...

subStates

transitions ["assign"]

targets [1]

transitions ["assign"]

transitions ["reactivate"]

transitions
["emergencyStop"]

transitions ["ready"]

targets [2] targets [1]

targets [1]

targets [1]

targets [1]

waiting : FState

active : FComplexState

go_source : FActivity

fetch : FActivity

halted : FState

t1 : FTransition

event = "assign"

t2 : FTransition

event = "timer"

t3 : FTransition

event = "reactivate"

t4 : FTransition

event = "assign"

t5 : FTransition

event = "emergencyStop"

initial

initial

1: public class Shuttle extends FReactive { ...
2: public void assign (Place source, Place target) {
3: FEvent event = new FEvent ("assign",
4: new Object [] {source, target})
5: this.addToEventQueue (event);
6: } // assign
7: ... } // Shuttle

Figure 7 Method assign of class Shuttle

7

(In the example of Figure6 shuttles1 would
retrievego(source) as its current state.) Next,
the current state object is queried for an outgo-
ing transition corresponding to the current
event. MethodgetTransition of classFState just
looks up the correspondingtransitions hash-
table. In case of a ready event3 statego(source)
would thus retrieve transitiont2. If the transiti-
ons table contains no entry for the current event
there might still be an appropriate transition lea-
ving a surrounding complex state. Therefore,
thegetTransition query visits its ancestor states
recursively (using method getParent ()). Thus,
in case of anassign or emergencyStop event
statego(source) would retrieve transitiont4 or
t5, respectively. If no appropriate event is
found,handleOneEvent terminates, cf. line7. 4

Line 8 asks the found transition for its target
state. Normally, this causes just a table lookup.
However, a guarded transition has to check the

different guards to determine a fulfilled one. Recall, the guard evaluation operations are attached to the
application specific classes, hereShuttle, since they might access private attributes and operations of the
application classes. Thus, classFTransition has an array ofMethod objects. During construction of the state-
table via methodinitStateChart, we obtain pointers to the guard evaluation methods, using package
java.lang.reflect, Java’s application programmer’s interface to its runtime type information, cf. [Flan97].
Such a method pointer may be executed via methodinvoke provided by classFReactive. (Methodinvoke
again relies on generic mechanisms provided byjava.lang.reflect.) MethodgetTarget gets the current event
as its parameter in order to provide access to the event’s argument array. In addition, the event knows its
receiver since theeventQueue association is bi-directional, cf. Figure5. This enablesgetTarget to invoke
the methods stored in its guards array one after the other on the event receiver until the first guard returns
true or it runs out of guards. If a guard succeeds, the corresponding target state is retrieved looking up the
targets table. Otherwise,getTarget returnsnull. In the later case, methodhandleOneEvent terminates in
line 9.

If a valid transition is found, we have to execute the exit operation of the state(s) we leave and the action
attached to the transition and the entry operation of the state(s) we enter. Line 11 to 15 traverse thegetParent
operation to climb up possible nested states until the actual source of the choosen transition is reached.
Line 13 calls methodleave at each nesting level. Methodleave invokes theexit operation stored in the cor-
responding attribute, if one is provided. Next, line16 calls methodfire on the transiton object. Methodfire
inspects the action attribute of the transition and invokes the stored method, if provided. Finally, line17
calls methodenter on the target state. Normally, method enter just invokes theentry method stored in the
corresponding attribute, if provided. However, the target state may be a complex nested state, again. In that
case, theenter method determines the inital state of the contained substates via theinital association and calls
its enter method, recursively. Eventually, a simple state is reached and methodenter stores this state as the
new current state in theactor object. Note, state-charts allow simple states to have a do activity. Such states
are represented usingFActivity objects. ClassFActivity overrides theenter method of classFState. In addi-
tion to the normal job, the overridenenter method invokes thedoAction stored in theFActivity object and on
termination of the doAction it raises a ready event in order to fire potential triggerless transitions of the cor-
responding reactive object.

3. Note, state go(source) of Figure2 has two outgoing triggerless transitions. Such triggerless transitions are fired by
an implicit ready event raised by their source state upon termination of its do activity.

4. Note, in case of an inheritance hierarchy for events, thetransitions hash-table of anFState object may contain a
given transition once for the event name shown in the corresponding state-chart and in addition one time for each
subkind of that event. (So far, our example application area employs very flat event hierarchies, only. However, for
more complex event hierarchies, we might have to redesign our transition retrieval approach.)

1: public class FReactive implements Runnable { ...
2: synchronized public void handleOneEvent () {
3: FEvent event = this.popFromEventQueue ();
4: if (event == null) { return; } // no event ==> abort
5: FState current = getCurrent ();
6: FTransition transition = current.getTransition (event);
7: if (transition == null) { return; } // no transition ==> abort
8: FState newState = transiton.getTarget (event);
9: if (newState == null) { return; } // no target ==> abort

10: FState parentState = current;
11: do {
12: current = parentState;
13: current.leave (event);
14: parentState = current.getParent ();
15: } while (current != transition.getSource ());
16: transition.fire (event);
17: newState.enter (event);
18: } // FReactive

Figure 8 Method handleOneEvent of class FReactive

8

Note, the described behavior of methodhandleOneEvent implements a so-called run-to-completion seman-
tics for our state-chart framework.

So far, we have discussed how our generic state-table implementation deals with events, nested states, guar-
ded transitions, and entry and exit actions. Some more effort is necessary to deal with the remaining state-
chart features. For example, in case of a history state methodleave of classFState has to store the former
state using the history association which must be visited by theenter method later on, cf. Figure5. In case
of an and-state the actor object just stores the and-state as its current state. The and-state in turn stores the
current states of all concurrent substates. MethodgetTransition, leave, andenter of classFAndState deal
with these multiple current states, appropriately. Deferred events require an additional event queue. In order
to allow multiple reactive objects of the same kind that live in a shared memory space (e.g. a large number
of shuttles in our simulation environment) to share a common state-table, we employ the Flyweight pattern
described in [GHJV95]. For details of these mechanisms please refer to [Köhl99].

The proposed state-table based translation of state-charts allows to deal with complex state-charts and com-
plex state-chart features in an uniform and generic way. Following the state-table approach it is fairly simple
to generate the bodies of event methods and the state-table setup routine.5 The state-table approach avoids
the generation of special purpose state-classes with large amounts of code. Extending the generation of code
from class diagrams, the translation of state-charts covers the implementation of complex control-flow spe-
cifications for reactive objects.

Of course, the state-table approach causes some runtime overhead for table look-ups and the interpretative
style of event execution. In simple cases the current state of an object can be determined from the value of
its attributes or by inspecting the object’s neighbors. One might also use an extra (enumeration) attribute,
e.g.int myState, that stores the current state, explicitly. In this case the event method is often implemented
via aswitch-case statement of if-then-else-if chains (cf. [BRJ99] page 338). Such a switch-case implemen-
tation is basically restricted to the implementation of a finite state automata. More complex state-chart con-
cepts like nested states, and-states, history-states, etc. (cf. Figure2) cause serious problems for the switch-
case approach. For example, the code handling a transition that leaves a complex nested state is duplicated
for each elementary state. Each time one has to implement the execution of the exit operations of each
nesting level and then one has to call the transition action and the appropriate entry actions of the reached
(nested) state(s). If the state-chart contains an and-state, the object either needs to be able to be in more than
one state at a time or one has to flatten the and-state by building all possible combinations of the elementary
states of all and-state alternatives (and by introducing appropriate transitions). This might lead to a large
number of states and in turn to huge switch statements.

[Doug98, chapter 6.2.3] uses an array based state-table that is indexed by the current state (number) and the
current event (number). For each state and event the state-table stores which transition fires, i.e which new
state is reached and which actions are to be performed. However, the array based state-table solution of
[Doug98] still has problems dealing with complex nested states. The state-table stores elementary states
only. Thus, transitions leaving a nested state at a higher level (like the emergencyStop and assign transitions
in Figure2) have to be splitted into explicit transitions for each sub-state. More seriously, complex and-sta-
tes still require the building of all possible combinations of their sub-states.

Note, compared to [HG96, Rhap] we employ more than one event queue. This allows a more concurrent
handling of events using multiple threads. However, this probably changes the ’order’ in which events are
consumed and thus has semantic relevance. In addition the usual problems attached to concurrent executi-
ons, like race conditions and deadlocks, are raised. Of course, a sound specification should avoid such pro-
blems. Static checking for (recognizable yet frequently occuring) specification errors raising these problems
is the subject of our current work.

5 Combining Activity and Collaboration Diagrams

The previous chapter described the implementation of state-charts using table-driven event methods that
trigger the execution of certain action methods, where the latter do the actual work. For a complete high-
level visual programming language, appropriate means for the specification of these action methods are still

5. The code generator for state-charts is just under construction, cf. [Köhl99].

9

missing, in order to avoid that one has to deal with the nasty details of current textual programming langua-
ges. State-charts provide sophisticated means for the specification of (concurrent) control flows for reactive
objects. However, by purpose state-charts abstract from the complex application specific data structures that
build up the concrete states of a system. State-charts do not explicitly deal with values of attributes or with
links to other objects nor with the evolution and changes of this object-structures caused by the execution
of operations or action methods.

The specification of application specific object-structures is a well known application area for graph gram-
mars, cf. [Roz97]. Basically, a graph grammar rule allows the specification of changes to complex-object-
structures by a pair of before and after snapshots. The before snapshot specifies which part of the object-
structure should be changed and the after snapshot specifies how it should look like afterwards, without
caring how this changes are achieved. While graph grammars are appropriate for the specification of object-
structure modifications, they lack appropriate means for the specification of control flows. Even the well
known graph rewriting system Progress [SWZ95] provides only textual control structures.

To overcome these problems, we propose to combine state-charts and graph-rewriting rules. We use state-
charts (and activity diagrams) to specify complex control flows and graph rewriting rules to specify the
entry, exit, do, and transition actions that deal with complex object-structures. In order to facilitate the use
of graph rewriting rules for object-oriented designers and programmers, we propose to adopt UML collabo-
ration diagrams as a notation for object-structure rewriting rules. In UML, collaboration diagrams do not
have a precise execution semantics, but model only possible scenarios. Using graph grammar theory we are
able to define an execution semantics for collaboration diagrams, easily, thus enabling their translation to
an object-oriented programming language.

Originally, collaboration diagrams are intended to model scenarios of complex message flows between a
group of collaborating objects.6 In addition, collaboration diagrams allow to depict the effects of operations
in terms of changed attribute values and created and destroyed objects and links. Thus, the intial situation
modeled by a collaboration diagram corresponds to the left-hand side of a graph grammar rule. Accordingly,
the situation resulting from the execution of the collaboration diagram corresponds to the right-hand side of
that graph grammar rule. This view allows the execution and translation of collaboration diagrams using
techniques known from the graph grammar field, cf. [SWZ95, Zü96, FNTZ98].

Figure9 shows an example for the combination of state-charts and object-structure rewrite rules. The left
half of Figure9 shows a refinement of statefetch of Figure2. startFetch, the initial state of the shown dia-
gram, has an activity shape. The activity shape is a short-hand notation for states that contain a do action

6. This use of collaboration diagrams is equivalent to UML sequence diagrams, cf. [BRJ99].

Figure 9 Refinement of state fetch of Figure2

Shuttle::fetch

this g : Good

1: closeClambs ()

handOver

AssemblyLine::active

this

f : Field

s : Shuttle

1: handOver ()

at at

g : Good holdscarries
+++++

load

producing

carries

finishFetch

deliver

waiting

this

f : Field

al : AssemblyLine

2: load ()

1: openClambs ()

at at

startFetch

10

and that may have triggerless outgoing transitions fired on termination of the do action. In our example, acti-
vity startFetch is specified via an object-structure rewriting rule that shows three objects, this, f, and al. The
this object is attached to the Field object f via an at link and the same holds for the AssemblyLine object al.
We interpret this, al and f as variables and the shown links as logical constraints on the allowed values of
these variables. Based on this interpretation, such a diagram is executed by binding the specified variables
to concrete object instances such that all specified constraints are fulfilled.

In our example variable f is bound to the field object
that is connected to the current shuttle object (bound
to variable this) via an at link. In turn, al is bound to
the AssemblyLine object that is attached to that field
object via an at link. Once all variables are bound to
appropriate object instances the specified change
effects and method invocations are executed. Activity
startFetch show no object-structue changes but two
method invocations. Thus, in step 1 startFetch calls
method openClambs on the this object, i.e. the current
shuttle. In step 2 startFetch calls method load at the
AssemblyLine al. After that the do action terminates
and state startFetch is ready to accept the next event.

Let us assume, that the AssemblyLine object bound to variable al is in the state waiting, cf. the left-hand side
of Figure 9. Thus the load method invocation on al generates a load event that causes al to switch to activity
deliver. Activity deliver is again specified by an object-structure rewriting rule. In activity deliver variable
this represents the current assembly line. deliver determines its field f, the shuttle s attached to field f and a
good g it holds. Activity deliver shows two object-structure changes. First, the holds link connecting vari-
able this and g is cancelled by two small lines. This is executed by deleting the corresponding link. Second,
the + symbols attached to the carries link connecting variables s and g indicates that such a link is created.
Finally, activity deliver calls method handOver at shuttle s and terminates. On termination of activity deli-
ver, the outgoing triggerless transition fires and the corresponding assembly line object switches to activity
producing. Once our shuttle object receives the handOver event the corresponding transition fires and acti-
vity finishFetch is triggered. finishFetch just checks whether the shuttle actually carries a good and then it
closes its clambs and terminates. Thereby, the terminal state is reached and the whole fetch activity termi-
nates.

To implement the story diagram shown in Figure 9, its control flow parts are translated as shown in
chapter 4. In addition our code generator translates the object-structure rewrite rules to normal Java code.
For example the code for the do action of activity startFetch is shown in Figure 10. Object-structure rewrite
rules provide much more language features for the manipulation of application specific data structures.
They deal with attribute values, arbitrary application conditions, excluded links and nodes, optional and set-
valued nodes, etc. Altogether object-structure rewrite rules provide sophisticated means to specify changes
to complex application specific object-structures. Combined with state-charts one yields a powerful visual
programming language.

6 Conclusions

This paper discussed the use of UML diagrams as a visual programming language. For class diagrams the
translation to an object-oriented program is straight-forward although the uniform handling of associations
is not yet common practice. The translation of state-chart is based on a table driven approach inspired by
[Doug98]. The use of collaboration diagrams and their translation to Java is taken from our previous work
[FNTZ98, JZ98, ZSW98]. The main contribution of this paper is the combination of state-charts and colla-
boration diagrams. The resulting specification language combines the power of state-charts, providing
sophisticated means for modeling concurrent reactive objects, with the power of graph grammars, providing
appropriate means for the specification of application specific object-structures on a very-high level of abs-
traction.

In addition, this paper describes a possible semantics for the various UML diagrams (via their translation to
Java). This may facilitate the reading of certain UML diagrams (by thinking in terms of the corresponding

1: public class Shuttle extends FReactive { ...
2: boolean doStartFetch () {
3: Field f = this.getAt ();
4: if (f == null) { return false;} // abort, signal failure
5: AssemblyLine al = f.getAssemblyLine ();
6: if (al == null) { return false;} // abort, signal failure
7: this.openClambs (); // step 1
8: al.load (); // step 2
9: } // doStartFetch

10: } // Shuttle

Figure 10 Method doStartFetch of class Shuttle

11

implementation concepts) and clarify ambigous modelings. In addition, one may learn which UML diagram
should be used for which purpose and how different UML diagrams may be combined to cover mixed cases.

Currently, the Fujaba environment supports editing of and code generation from class diagrams and story
diagrams that already combine collaboration diagrams, sequence charts, and activity diagrams. The exten-
sion towards state-charts is under construction, a first alpha version is scheduled for July 1999.

Our current work deals with the coordination of multiple concurrent reactive objects that change their num-
ber, their interrelationships and their communication channels at runtime. Since the changes of the object
structure are specified by the graph grammar part of our language which provides a rich theory, we hope to
be able to reason about simple cases of questions like race conditions, lifeness and safety.

The current prototype of the Fujaba environment is available as free software and comprises about 140000
lines of pure Java code. The release of Fujaba is available via:

http://www.uni-paderborn.de/cs/fujaba.html

Acknowledgements

The following people contributed substantially to this work with fruitful discussions, careful proof readings
and a lot of suggestions: Prof. W. Schäfer, Dr. A. Wagner, Dr. R. Heckel, J. Wadsack. Thank your very
much

References

[AT98] J. Ali, J. Tanaka:Implementation of the Dynamic Behavior of Object Oriented System; IDPT
Vol. 4, 19998, Proc. of third biennial world conference on integrated desgin and process tech-
nology, 281-288, ISSN No. 1090-9389, Society for Design and Process Science (1998)

[BRJ99] G. Booch, J. Rumbaugh, I. Jacobson:The Unified Modeling Language User Guide; Addison
Wesley, ISBN 0-201-57168-4 (1999)

[Doug98] B. P. Douglass:Real Time UML; Addison Wesley, ISBN 0-201-32579-9 (1998)
[Flan97] D. Flanagan:Java in a Nutshell; 2nd edition, O’ Reilly, ISBN 1-56592-262-x (1997)

see also: http://java.sun.com/products/jdk/1.1/docs/api/Package-java.lang.reflect.html
[FNTZ98] T. Fischer, J. Niere, L. Torunski, A. Zündorf:Story Diagrams: A new Graph Grammar Lan-

guage based on the Unified Modelling Language and Java; in Proc. of the 6th International
Workshop on Theory and Application of Graph Transformation (TAGT), Paderborn, Novem-
ber 1998, LNCS, Springer Verlag, to appear (1999)

[GHJV95] E. Gamma, R. Helm, R. Johnson, J. Vlissides:Desgin Patterns; Addison Wesley, ISBN 0-
201-63361-2 (1995)

[HG96] D. Harel, E. Gery:Executable Object Modeling with Statecharts; Proc. 18th Int. Conf. on Soft-
ware Engineering (ICSE ’18), Berlin, pp 246-257, IEEE, SIGSOFT, ISBN 0-8186-7246-3
(1996)

[JGL99] Technical reference of the generic collection library for Java http://www.objectspace.com/jgl/
[JZ98] J.-H. Jahnke and A. Zündorf:Specification and Implementation of a Distributed Planning and

Information System for Courses based on Story Driven Modelling; in proceedings of the Ninth
International Workshop on Software Specification and Design April 16-18, Ise-Shima, Japan,
IEEE Computer Society, pp. 77-86, ISBN 0-8186-8439-9

[Köhl99] H. J. Köhler:Using UML as Visual Programming Language; Master Thesis, Dep. Computer
Science, University of Paderborn, in preparation (1999)

[Rhap] The Rhapsody case tool reference manual; Version 1.2.1, ILogix, http://www.ilogix.com/
[Roz97] G. Rozenberg (ed): Handbook of Graph Grammars and Computing by Graph Transformation,

World Scientific, 1997.
[SWZ95] A. Schürr, A.J. Winter, A.Zündorf. Graph grammar engineering with PROGRES. In

W. Schäfer, Editor, Software Engineering - ESEC ’95. Springer Verlag, 1995.
[ZSW98] A. Zündorf, A. Schürr, and A. J.Winter: Story Driven Modeling; submitted to acm Transac-

tions on Software Engineering and Methodology, August 21st 1998.
[Zü96] A. Zündorf: A Development Environment for PROgrammed Graph REwriting Systems; (in

German), Dissertation, RWTH Aachen, Germany, 1996.

