
Triple Graph Grammars: Concepts, Extensions,

Implementations, and Application Scenarios

Technical Report
tr-ri-07-284

Ekkart Kindler and Robert Wagner
Department of Computer Science

University of Paderborn
D-33098 Paderborn, Germany
[kindler|wagner]@upb.de

June 2007

Abstract

Triple Graph Grammars (TGGs) are a technique for defining the
correspondence between two different types of models in a declara-
tive way. The power of TGGs comes from the fact that the relation
between the two models cannot only be defined, but the definition
can be made operational so that one model can be transformed into
the other in either direction; even more, TGGs can be used to syn-
chronize and to maintain the correspondence of the two models,
even if both of them are changed independently of each other; i. e.,
TGGs work incrementally.

TGGs have been introduced more than 10 years ago by Andy Schürr.
Since that time, there have been many different applications of
TGGs for transforming models and for maintaining the correspon-
dence between these models. To date, there have been several mod-
ifications, generalizations, extensions, and variations. Moreover,
there are different approaches for implementing the actual transfor-
mations and synchronizations of models. In this paper, we present
the essential concepts of TGGs, their spirit, their purpose, and their
fields of application. We also discuss some of the extensions along
with some of the inherent design decisions, as well as their benefits
and caveats. All these are based on several year’s of experience of
using TGGs in different projects in different application areas.

ii

Contents

1 Introduction 1

2 Ideas and Principles 1
2.1 Models and Meta-models . 2
2.2 Graph Grammars . 3
2.3 Triple Graph Grammars . 6
2.4 Application Scenarios . 15
2.5 Discussion . 21

3 Advanced Concepts 23
3.1 Attributes . 23
3.2 Constraints . 25
3.3 Reusable Nodes . 26
3.4 Modes . 28
3.5 Short hand Notations . 28

4 Usability 30
4.1 Specification by Example . 30
4.2 Specification in Graphical Syntax 48

5 Realization 50
5.1 Generative Approach . 50
5.2 Interpreted Approach . 54

6 Tool Support 60
6.1 TGG-Compiler . 60
6.2 TGG-Interpreter . 61
6.3 Tool Adapter . 63

7 Related Work 65
7.1 Model Transformation . 65
7.2 Model Integration . 67
7.3 Model Synchronization . 67
7.4 Usability . 69

8 Conclusion and Future Work 70

iii

iv

1

1 Introduction

Triple Graph Grammars (TGGs) have been introduced by Andy Schürr in 1994
as a technique for model transformation [40]. Their main advantage is that
TGGs allow us to define a transformation in a declarative way and still execute
the transformation in both directions. Actually, TGGs are even more powerful:
They can be used to define the relation between two types of models and, then,
to transform a model of one type into another, to compute the correspondence
between two existing models, or to maintain the consistency between the two
types of models as defined by the TGGs. When one of the models is changed,
the other one can be change accordingly, which means that the transformations
or synchronizations can be applied incrementally.

Over the years there have been many applications of TGGs for model trans-
formation, and – based on the experience of these applications – there has been
much research on TGGs and many modifications, generalizations, extensions,
and variations of TGGs. Some of these modifications and extensions fit the
idea and principles of TGGs quite naturally; others need a more careful inves-
tigation. Moreover, there are different implementations that actually execute
the transformations and synchronizations defined by TGGs.

It turned out that the concepts of QVT (Query/View/Transformation) –
the new OMG-standard for model transformation – are strikingly similar to the
concepts of TGGs and at least the core of QVT can be easily mapped to TGGs
[18].

Though there are several implementations of TGGs and many papers pre-
senting the use of TGGs, there is no paper yet that gives a concise survey
covering the idea and principles of TGGs, discusses their motivation from the
application point of view, and weighs the benefits of different extensions and
modifications. This is why we set out to write this paper.

2 Ideas and Principles

In this section, we explain the idea of TGGs and the underlying principles. The
exact definition is a slight extension1 of the original definition of Schürr [40],
but still in accord with its original intension. Schürr formalized the semantics
by a double-pushout approach; here we give a concise definition of the syntax
and the semantics of TGGs. But, we do not dwell on their formalization in
terms of category theory.

Actually, we present the approach not from the graph theoretic or category
theoretic point of view, but from a software engineering point of view: We
use the concept of a typed graph and the concept of a UML object diagram2

interchangeably; where the types of nodes and arcs of a graph are defined by a
UML class diagram, the type of the graph.

1For the experts, we present TGGs for typed graphs right away and correspondence nodes
may have multiple connections to the source and target model.

2Object diagrams are also called instance diagrams.

2 2 IDEAS AND PRINCIPLES

2.1 Models and Meta-models

The models that are to be related and transformed by TGGs will be represented
as object diagrams; and a class diagram represents the set of models to be
considered. As an example of a set of models, we consider a simple version
of Petri nets. Figure 1 shows a simple Petri net model. It consists of places,
transitions, and arcs, where the places are graphically represented as circles, the
transitions as squares, and the arcs as arrows. Moreover, some places contain a
token, which is graphically represented by a black dot inside the corresponding
place.

a

b

c

d

t

u

v

Figure 1: A Petri net

This structure of Petri nets is formalized in the UML class diagram of Fig. 2:
A Petri net consists of nodes and arcs, where a node can be either a transition
or a place; all these concepts are represented as classes in the class diagram.
The class Node is abstract, since a concrete node needs to be a transition or a
place. An arc connects two nodes, which is represented by the two associations
between the classes Node and Arc. In Petri nets, it is not allowed to have an
arc between two places or between two transitions; this condition is expressed
by the OCL constraint for the class Arc3. The association between the class
Place and the class Token indicates the tokens belonging to each place. Since
the UML class diagram captures the concepts of all Petri nets models, such
kind of UML diagrams are often called meta-models; a concrete Petri net, such
as the one shown in Fig. 1 is a model and an instance of the meta-model.

Actually, Fig. 1 shows a Petri net in its graphical representation, which is
often called its concrete syntax 4. In UML, a Petri net can be represented as an
object diagram. The object diagram corresponding to the Petri net of Fig. 1 is
shown in Fig. 3. Of course, this is not very readable anymore, since arcs are
now explicitly shown as objects. The type of each object is indicated by the
name of the class following a colon. The relation to other objects is indicated
by links. This kind of representation of a Petri net model is called a model in

3Note that the OCL constraints are not important for the TGG concepts presented later.
They are only relevant for concisely capturing the legal Petri net models, which is not the
point of TGGs. We left them in the UML model only for completeness sake.

4Note that the exact positions and dimensions of the places, transitions, and arcs are not
captured in our meta-model for Petri nets. Of course, this information could be captured in
the meta-model; we omitted this information here in order to have simpler meta-models.

2.2 Graph Grammars 3

Transition Place

 (self.source.isKindOf(Place) and self.target.isKindOf(Transition)) or
 (self.source.isKindOf(Transition) and self.target.isKindOf(Place))

contex Arc inv:

Arc

PetriNet

Node
* *

name: String

Tokenmarking
*

1

1
source

target

out
*

*
in

Figure 2: A class diagram: A meta-model for Petri nets

abstract syntax. And this will be the models on which transformations, and in
particular our TGG-transformations, work. Clearly, object diagrams are some

name = "a"
p1:Place

name = "b"
p3:Place

name = "d"
p4:Place

name = "c"
p2:Place

a5:Arc a6:Arc

name = "u"
t2:Transition

a4:Arc a3:Arc

a8:Arc a7:Arc

name = "v"
t3:Transition

a1:Arc a2:Arc

name = "t"
t1:Transition

d1:Token

d2:Token

pn:PetriNet

target source

targetsource

source target

sourcetarget

target

source target

source

target source

target

source

marking

marking

Figure 3: An object diagram: The Petri net in abstract syntax

version of typed graphs, which is the reason for applying techniques from graph
grammars for model transformation.

2.2 Graph Grammars

In order to present the idea of TGGs, we need to discuss graph grammars first.
But, we use a restricted form of graph grammars only: graph grammars without
deletion rules. The graphs to be transformed will be object diagrams.

Figure 4 shows a simple graph grammar rule for our Petri net example.
Basically, it consists of a pair of object diagrams. The first object diagram is

4 2 IDEAS AND PRINCIPLES

the left-hand side of the graph grammar rule. In our example, it consists of
three objects: two places and one token with a link to the first place. These
elements occur in the right-hand side of the graph grammar again, which is
represented by the second object diagram. The use of the same names p, q and
d, indicates which are the elements that occurred in the left-hand side already5.
Additionally, there are a new transition and two new arcs, which connect the
transition to the two places. Basically, the rule says that we can add a transition
between two places, if the source place has a token.

d :Token

a :Arc b :Arct:Transitiontarget source targetsource

marking

p:Place q:Place

d :Token

marking

p:Place q:Place

::=

}
}

left

right

Figure 4: A graph grammar rule

The semantics of a graph grammar rule is similar to classical grammars in
formal languages. A graph grammar rule can be applied to some graph, i. e.,
to an object diagram in our example. Here we apply the graph grammar rule
from Fig. 4 to the object diagram from Fig. 3. In order to apply the rule at
a particular position in this object diagram, we need to map the nodes and
the links of the left-hand side of the rule to the objects and links of the object
diagram. In our example, we map the node p of the graph grammar to object
p3 of the object diagram, node d to object d2, and node q to object p4; the link
between p and d in the rule is mapped to the link between p3 and d2 in the object
diagram. Of course, the types of the objects must match and all links, which
are in the left-hand side of the rule, must be there between the corresponding
nodes in the object diagram. Then, this mapping is called matching left-hand
side of the rule to the object diagram. Note that the given match is only one
out of six other possible matchings. If we have found a matching mapping, we
can apply the graph grammar rule in this mapping; this means that we insert
new copies for all the objects and links which occur in the right-hand side of
the rule, but not in left-hand side of the rule, where we keep the context of the
mapping. In our example, this means that we introduce the transition t4 and
the arcs a9 and a10 along with the corresponding links as shown in Fig. 5.

Applying a graph grammar rule changes an object diagram in a similar way
the application of a string grammar rule changes a character string. In our
example, we could apply this rule over and over again with different or even
the same matchings, introducing more and more elements – though this would
not make much sense.

5Moreover, we have drawn arrows between the corresponding elements, in order to empha-
size this relation.

2.2 Graph Grammars 5

name = "a"
p1:Place

name = "b"
p3:Place

name = "d"
p4:Place

name = "c"
p2:Place

a5:Arc a6:Arc

name = "u"
t2:Transition

a4:Arc a3:Arc

a8:Arc a7:Arc

name = "v"
t3:Transition

a1:Arc a2:Arc

name = "t"
t1:Transition

d1:Token

d2:Token

pn:PetriNet

a9:Arc a10:Arc

target source

targetsource

source target

sourcetarget

target

source target

source

target source

target

source

marking

marking

source

target source

target

t4:Transition

Figure 5: The Petri net after applying the rule

6 2 IDEAS AND PRINCIPLES

Note that in our graph grammar rule, the right-hand side contains all the
elements that occurred in the left-hand side. This is called a non-deleting rule.
In the context of our paper, all rules will be non-deleting rules. Non-deleting
rules can be represented in a more concise way: Figure 6 shows the short hand
form for the rule from Fig. 4. The black objects and links represent the elements
that occur on both sides of the graph grammar rule; the green objects and links,
which in addition are labeled with ++, represent the elements occurring on the
right-hand side of the rule only. The labels ++ emphasize their meaning: these
are the nodes to be added to the object diagram once the black nodes are
matched in the original object diagram and the rule is applied.

d :Token

a :Arc t:Transition b :Arc

marking

++

++

++ ++

++ ++++
p:Place q:Placesource target source target

Figure 6: Short hand form for the graph grammar rule

Note that in general, graph grammar rules can refer to attribute values
of objects. Since there are some subtleties concerning attributes, we ignore
attribute values for the moment, and we will deal with attributes only later
(see Sect. 3.1).

2.3 Triple Graph Grammars

Basically, graph grammars can be used for defining the dynamic evolution of
a single model. Triple graph grammars allow us to define the relation between
to different kinds of models and – as will be discussed later – to transform one
kind of model into the other. Here, we will consider a simplified example from
[28]: We transform a construction plan for some toy-train constructed from
some standard components to a Petri net, which defines the dynamic behavior
of the toy-train.

A construction plan for the toy-train consists of two different types of com-
ponents: tracks and switches. These components have ports at which they can
be mechanically connected. A track has a single in-port and a single out-port ;
whereas a switch has a single in-port, but two out-ports or vice versa two in-
ports and a single out-port. Figure 7 shows a simple example of the graphical
representation of such a construction plan, which we call a project. The dif-
ferent components are shown as boxes, the in-ports of a component are shown
as small circles attached to these boxes, and the out-ports are shown as small
squares. The connection of an in-port to an out-port is shown as an arrow from
the in-port to the out-port. The meta-model for such a project is shown in
Fig. 8. Note that, in this meta-model, we omitted the restriction of the num-
ber of ports for the particular type of component. We assume that the editor
for such construction plans takes care of constructing only syntactically correct
projects.

Next, we will define how such a construction plan and its different elements
correspond to a Petri net. Figure 9 shows how each element of the construction

2.3 Triple Graph Grammars 7

T
rack5

Switch1

Track6

Track7

T
ra

ck
1

Switch2

Track2Track3Track4

Figure 7: A construction plan for a toy train

Port

Connection

Train
name: String

Switch

Project

Component
*

*train
*

Out
1 1

source target

Track In

Figure 8: The meta-model for projects

plan should be mapped to a Petri net – informally in graphical syntax. Next we
will define this relation formally by TGG-rules; these rules refer to the elements
of both models, the construction plan and Petri nets, in abstract syntax, i. e.,
to object diagrams.

The first step toward a TGG-rule is from the graphical syntax to the abstract
syntax. Figure 10 shows a track component and its corresponding Petri net in
abstract syntax – the counterpart to the top left pair in Fig. 9.

Figure 11 shows the full TGG-rule for this relation: It defines how a Track
component corresponds to a Petri net. On a first glance, this rule looks like a
graph grammar rule. The only difference is that, now, there are three ‘lanes’
which define the different domains. On the left-hand side is the domain for the
project, on the right-hand side is the domain for the Petri net, and in the middle
is the part defining the correspondences between the elements of the different
models (a meta-model for these elements is shown in Fig. 17); these objects
are called correspondence nodes. The meaning of this TGG-rule is as follows:
The black parts, which are not marked with ++, represent a Project which
corresponds to a PetriNet via Pr2PN. The green parts, also marked with ++,
insert a Track component along with its two ports to the project, as well as the
corresponding Place, Transition and Arc into the corresponding PetriNet. This
defines, how a Track component inserted to a project corresponds to inserting
a Petri net fragment to the Petri net. The detailed correspondence nodes keep
track of even more detailed correspondences between the ports of the project
and the places and transitions of the Petri net.

8 2 IDEAS AND PRINCIPLES

T
rack

Sw
itch

Sw
itch

Figure 9: Informal mapping of project elements to Petri nets

:In

:Out

:Track :Arc

:Place

:Transition

target

source

Figure 10: Object diagram of a track and its Petri net

:Project :Pr2PN :PetriNet

:Track

:In

:Out

:IP2Pl

:OP2Tr

:Place

:Arc

:Transition

:Cp2PN

target

source

++

++
++

++

++

++

++

++

++

++ ++

++

++

++

++

++

++++

++

++

++

++

++

domain:project correspondence domain:petrinet

++

++

++ ++

Figure 11: TGG-rule for component Track

2.3 Triple Graph Grammars 9

This interpretation is in accord with the graph grammar interpretation. It
says, how the project and the Petri net can be generated alongside. The only
difference is that the TGG-rules are considered to generate both models along-
side. This way, they define legal correspondences between models of different
types.

Before discussing this in more detail, we present the TGG-rules for the
remaining components and for connections. Figure 12 shows the TGG-rule for
the switch that splits up a track into two. Again the in-port of the component
corresponds to a place in the Petri net, and the two out-ports correspond to
two transitions, and there is an arc from the single place to the two transitions
(see Fig. 9 for the idea in graphical syntax). The rule for the switch which
joins two tracks is shown in Fig. 13. It is similar, but there is only one place
corresponding to both in-ports, which exactly reflects the join.

The TGG-rule for the connections, shown in Fig. 14, is different. When a
connection is inserted between an out- and an in-port, which correspond to a
transition and a place already, a corresponding arc will be inserted between this
transition and place.

:Project :Pr2PN :PetriNet

:Switch

:In

:Out

:IP2Pl

:OP2Tr

:Out

:Place

:Arc

:Arc

:OP2Tr

:Cp2PN

++

++
++

++

++

++

++

++

++

++

++

++

++

++

++++

++
target

source++
++

++

++

:Transition

++

:Transition
target

++

++

++
++

source

++

++

++
++ ++

++

++

++

++
++

++
++

++
++

++

Figure 12: TGG-rule for a splitting Switch

At last, we introduce a rule that defines the correspondence between the
trains that are on some components and the tokens in the Petri net. Each
train on a component corresponds to a token on the corresponding place. This
is represented by the TGG-rule shown in Fig. 15. In combination with the
meta-model from Fig. 2, 8, and 17, these TGG-rules define how to construct
corresponding pairs of projects and Petri nets, where we should start from the
situation shown in Fig. 16, an empty project corresponding to an empty Petri
net. This is called a TGG-axiom. Every pair of object diagrams for projects
and Petri nets that can be constructed by applying the graph grammar rules,
starting from this axiom at any matching position as long as we like, represents
a legal relation between the two kinds of models. This is the semantics of a set
of TGG-rules.

Figures 18–21 show how a simple project consisting of a sequence of three
tracks along with its Petri net model can be constructed by applying the TGG-

10 2 IDEAS AND PRINCIPLES

:Project :Pr2PN :PetriNet

:In :IP2Pl

:In :IP2Pl
:Place

source ++

:Transition:Out :OP2Tr

:Switch :Cp2PN :Arc
++

++

++

++
++

++

++
++ ++

target++
++

++
++

++
++ ++

++

++
++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

Figure 13: TGG-rule for a joining Switch

:PetriNet

:Arc:Cn2Arc

:Out :Transition:OP2Tr

:In :Place:IP2Pl

++
++ ++

++++
++

++

:Connection

source

target

++

++

source

target

++

Figure 14: TGG-rule for a Connection

:Train :Tr2To

:Place:Cp2PN

:Token
++

++ ++
++++

++
markingtrain

++

:Component

Figure 15: TGG-rule for a Train

:Project :Pr2PN :PetriNet

Figure 16: The axiom

2.3 Triple Graph Grammars 11

Project Pr2PN PetriNet

Place

Arc

Transition

Component

Out

IP2Pl

OP2Tr

Connection

Train Token

1 1

1 *

Cn2Arc

1 1
Tr2To

1 1

* *

* *

1

1

Corresp PetrinetProject

In
1..2 1

Cp2PN
suffix:String

Figure 17: Meta-model for the correspondence objects

rule for tracks three times and the TGG-rule for connections twice. Figure 22
shows the corresponding models in graphical syntax.

:Pr2PN:Project :PetriNet

:In

:Track

:Out

:Place

:Transition

:IP2Pl

:Cp2PN

:OP2Tr

:Arc
target

source

Figure 18: Applying the track rule to the axiom

12 2 IDEAS AND PRINCIPLES

:Pr2PN:Project :PetriNet

:In

:Track

:Out

:Place

:Transition

:IP2Pl

:Cp2PN

:OP2Tr

:Arc
target

source

:In

:Track

:Out

:Place

:Transition

:IP2Pl

:Cp2PN

:OP2Tr

:Arc
target

source

:In

:Track

:Out

:Place

:Transition

:IP2Pl

:Cp2PN

:OP2Tr

:Arc
target

source

Figure 19: Applying the track rule two more times

2.3 Triple Graph Grammars 13

:Pr2PN:Project :PetriNet

:In

:Track

:Out

:Place

:Transition

:IP2Pl

:Cp2PN

:OP2Tr

:Arc
target

source

:In

:Track

:Out

:Place

:Transition

:IP2Pl

:Cp2PN

:OP2Tr

:Arc
target

source

:In

:Track

:Out

:Place

:Transition

:IP2Pl

:Cp2PN

:OP2Tr

:Arc
target

source

:Connection :Cn2Arc :Arc

source

target target

source

Figure 20: Applying the connection rule once

14 2 IDEAS AND PRINCIPLES

:Pr2PN:Project :PetriNet

:In

:Track

:Out

:Place

:Transition

:IP2Pl

:Cp2PN

:OP2Tr

:Arc
target

source

:In

:Track

:Out

:Place

:Transition

:IP2Pl

:Cp2PN

:OP2Tr

:Arc
target

source

:In

:Track

:Out

:Place

:Transition

:IP2Pl

:Cp2PN

:OP2Tr

:Arc
target

source

:Connection :Cn2Arc :Arc

:Connection :Cn2Arc :Arc

source

target target

source

source

target target

source

Figure 21: Applying the connection rule a second time

T
rack

T
rack

T
rack

Figure 22: A pair of corresponding models in graphical syntax

2.4 Application Scenarios 15

2.4 Application Scenarios

In the previous section, we have had a look at the semantics of TGGs by
generating the three parts, the source model, the target model, and the corre-
spondences, in parallel – this way, we obtain pairs of models which are related
to each other by the correspondence model. This definition is very much like
the definition of the language of a classical string grammar by the words that
are generated by it; the TGGs only generate pairs of related models instead of
character sequences.

In practice, however, string grammars are seldom used for generating the
words of a language; rather grammars are used for checking whether a given
word is in the language or for parsing6 a given character string into its structure:
a syntax tree or derivation tree. Likewise, TGGs will be used for different
purposes, which will be discussed below.

2.4.1 Model Transformation

The most obvious application scenario of TGGs is the transformation of one
model into another: model transformation. In this scenario, one of the two mod-
els on either side exists already, and we would like to generate a corresponding
model on the other side. For example, there could be a project and we would
like to generate the corresponding Petri net. Since the project occurred on the
left-hand side of our TGGs, this is typically called the source side, and the
Petri net on the right-hand side is considered to be the target. Therefore, this
transformation would be called a forward transformation.

In order to do this transformation, we start from the existing object diagram
of a project and extend it as shown in Fig. 23. Then, we try to match the
source domain of the rules of the TGG to the existing project model, and add
the missing correspondence nodes and nodes of the Petri net of that rule to
the correspondence model and to the Petri net. Figure 24 shows the situation
after applying the TGG-rule for tracks twice to the situation of Fig. 23; Fig. 25
shows one additional application of the TGG-rule for connections. Once we
have fully matched the project model, we have generated the corresponding
Petri net model. For the situation shown in Fig. 23, we will eventually end
up in the situation shown in Fig 21– which, again, corresponds to the pair of
models shown in Fig. 22. The Petri net model on the right-hand side is the
result of the transformation.

In principle, the transformation works also in the other direction, i. e., a
Petri net could be transformed into a project. This is often called a backward
transformation. Actually, TGGs are neutral with respect to the direction of the
transformation, it only depends on which side is called the source or the target
model. Sometimes, it is not even clear, what should be the source and what
should be the target, so we simple call them domains. Then we must indicate
which domain should be used as source and which as target for a transformation.

For this particular example, however, there are some problems with the
transformation from a Petri net to a project: Firstly, there are Petri nets that do

6Actually, the grammar is used for constructing a parser.

16 2 IDEAS AND PRINCIPLES

:Pr2PN:Project :PetriNet

:In

:Track

:Out

:Connection

:In

:Track

:Out

:Connection

:In

:Track

:Out

source

target

source

target

Figure 23: Forward transformation

2.4 Application Scenarios 17

:Pr2PN:Project :PetriNet

:In

:Track

:Out

:In

:Track

:Out

:Connection

:In

:Track

:Out

:Connection

:Place

:Transition

:IP2Pl

:Cp2PN

:OP2Tr

:Arc

:Place

:Transition

:IP2Pl

:Cp2PN

:OP2Tr

:Arc

source

target

source

target

target

source

target

source

Figure 24: Forward transformation after applying rule for tracks twice

18 2 IDEAS AND PRINCIPLES

:Pr2PN:Project :PetriNet

:In

:Track

:Out

:In

:Track

:Out

:Connection

:In

:Track

:Out

:Connection

:Cn2Arc :Arc

:Place

:Transition

:IP2Pl

:Cp2PN

:OP2Tr

:Arc

:Place

:Transition

:IP2Pl

:Cp2PN

:OP2Tr

:Arc

source

target

source

target

target

source

target

source

source

target

Figure 25: Forward transformation after applying the rule for connections

2.4 Application Scenarios 19

not have a corresponding project; so we will not be able to fully match the Petri
net side of the TGG-rules with the Petri net, and therefore, we will not obtain
a complete project model for the Petri net. Secondly, the same Petri net can
have different corresponding projects; so the transformation is not deterministic.
Thirdly, when trying to match the Petri net side of the TGG-rules with the Petri
net model, there might be different choices; for some choices, we might get stuck
later during the matching process, whereas other choices might succeed in fully
matching the Petri net resulting in a successful transformation. Therefore, the
matching process might need backtracking, making the transformation process
very inefficient.

For defining the relations between different model types, non-determinism
is no problem at all. For some applications, this might be what we want. For
making the transformations efficient, however, we typically want to exclude
non-determinism. Here, we will not go into the details of these problems. Some
of the problems can be solved by a clever matching strategy. Others can-
not be avoided. And we need further research in a parsing theory for TGGs
which characterizes necessary and sufficient conditions, when the transforma-
tion process of a TGG works deterministically and efficiently. This is similar
to the parsing theory for classical string grammars such as LL(k)-, LR(k)- or
LALR(k)-grammars.

2.4.2 Model Integration

A second application scenario is that we have two models, and we would like to
see the correspondences between them. Technically, the setting is very similar
to the transformation approach. Since we have models for both domains, we do
not need to generate the models – both models are already there. We need to
introduce the correspondence node between the root elements of these models
as shown in Fig. 26. From there, we match both domains of the TGG-rules on
the existing models and introduce the correspondence nodes of the matching
TGG-rule. When both models are fully matched, we have established the legal
correspondences between the two initial models. We call this model integration.
In this example, we will end up in the situation shown in Fig. 21 already.

Again, it could happen that we cannot fully match both models. In that
case, the models do not fully correspond to each other.

2.4.3 Model Synchronization

The last scenario is similar to model integration, but more general. We assume
that there is a model for each domain and that we have correspondences between
these models already. But, these models need not be in complete or correct
correspondence anymore. Typically, this could happen, when we transform one
model into the other as discussed above, and then start modifying one model
or even both models independently of each other.

In this setting, the task is to modify both models and the correspondences
in such a way that we obtain a complete and correct correspondence according
to the rules of the TGG again. We call this scenario model synchronization.

20 2 IDEAS AND PRINCIPLES

:Pr2PN:Project :PetriNet

:In

:Track

:Out

:Place

:Transition

:Arc

:Connection :Arc

:In

:Track

:Out

:Place

:Transition

:Arc

:Connection :Arc

:In

:Track

:Out

:Place

:Transition

:Arc

target

source

source

target target

source

target

source

source

target target

source

target

source

Figure 26: Model integration

2.5 Discussion 21

Actually, the synchronization task is a bit more involved, because we are inter-
ested in a ‘best possible matching pair’ and with as ‘few as possible changes’ on
both sides. In order to do this, some rules that have been applied earlier need
to be taken back, and other rules need to be applied again. In this case, the
match of a rule can be partial on both sides and the missing elements in both
domains will be added. The exact strategy depends on the application domain
and on the last changes made on the two models. Actually, it is the precise
definition of ‘best possible matching pair’ and ‘as few changes as possible’ that
define the strategy.

Technically, model transformation and model integration can be considered
as a special case of model synchronization. For a transformation, we start with
the situation in Fig. 23 and changes of the source domain are not allowed, but
we may introduce elements to the target domain and to the correspondence
domain. For the integration of two models, we start with the situation in
Fig. 26 and only changes in the correspondence domain are allowed. Since
the setting for transformation and integration are much simpler than general
synchronization, it is easier to implement them directly. Therefore, we consider
transformation and integration as separate scenarios.

2.5 Discussion

In the previous sections, we have discussed the basic idea of TGGs. A set of
TGG-rules along with a TGG-axiom define a relation between two kinds of mod-
els. What is more, these rules can be made operational in different application
scenarios: model transformation, model integration, and model synchroniza-
tion.

The definition of the relation between two models is driven by the structure
of the model. In our example, we have one rule for each concept of the project,
as informally shown in Fig. 9. Formally, this relation is defined by the TGG-
rules in Fig. 11–14 in the abstract syntax of the two models. Though a bit
more verbose7, the TGG-rules are a way for defining this relation in a local and
declarative way.

This local definition of the relation between different models has several
nice implications. Firstly, the TGG-rules can be made operational in the above
application scenarios. Secondly, the transformation works in both directions,
forth and back; i. e., the definition is bi-directional ; actually, TGG-rules also
work in the model integration and model synchronization scenario. Thirdly,
the approach works incrementally : for example, let us assume that we have a
pair of corresponding models as shown in Fig. 21 already; next, someone adds
a train to the last track component as shown in Fig. 27. Then, the TGG-rule
for trains can be applied locally at this point and will add the missing parts
to the Petri net and the correspondence graph (as shown in green in Fig. 27).
Fourthly, the local definition of the relation between the two models strongly
resembles the style of structural operational semantics (SOS), which helps to

7Currently, we are working on a tool which will allow us to specify the rules in graphical
syntax as shown in Fig. 9, which will be discussed in more detail in Sect. 4.2.

22 2 IDEAS AND PRINCIPLES

verify the semantical correctness of the relations between the models.8

:Pr2PN:Project :PetriNet

:In

:Track

:Out

:Place

:Transition

:IP2Pl

:Cp2PN

:OP2Tr

:Arc
target

source

:In

:Track

:Out

:Place

:Transition

:IP2Pl

:Cp2PN

:OP2Tr

:Arc
target

source

:In

:Track

:Out

:Place

:Transition

:IP2Pl

:Cp2PN

:OP2Tr

:Arc
target

source

:Train :Tr2To :Token

:Connection :Cn2Arc :Arc

:Connection :Cn2Arc :Arc

markingtrain

source

target target

source

source

target target

source

Figure 27: A local modification and its incremental transformation

In order to make TGGs work in practice, however, we need some extensions.
In the literature, there are many proposals for extensions, modifications, and
variations of TGGs. For example, we need to propagate the values of attributes
between the models, we need to consider some additional context not belonging
to the meta-model of either model, we would like to have negative conditions,
etc. Unfortunately, we need to be very careful in order not to spoil the nice
properties and the spirit of TGGs by introducing these concepts improvidently.
Therefore, we will deal with these concepts in a separate section. Here, we
gave a clear exhibition of the idea and the spirit of TGGs – unspoilt by any
additions.

8In this paper, we do not cover verification. For more ideas on the verification of TGG-
transformations, we refer to [16, 31].

23

3 Advanced Concepts

In Sect. 2, we have discussed the basic idea and the underlying principles of
TGGs. We did not discuss some advanced concepts of TGGs, which are neces-
sary for using TGGs in practice. For example, we need to transform attributes
of nodes resp. objects, and, for some transformation examples, we need TGG-
rules with some additional constraints such as the non-existence of some objects,
sometimes called negative nodes.

The reason for not introducing these advanced concepts along with the basic
concepts is the following: Attributes and constraints are important concepts,
and are present in many implementations of TGGs. The problem, however, is
that, often, they are introduced in a way that breaks the basic principles of
TGGs. One of the contributions of this paper is to introduce these concepts
in such a way that they do not break the basic principles of TGGs. In order
to motivate the way we deal with attributes and constraints, we focused on
the principles first. Now, we will discuss the additional concepts in the light of
these principles, we will show the problems with the ad-hoc definitions of these
concepts, and then present a clear way of defining these concepts.

3.1 Attributes

In UML, object diagrams may have attributes, and techniques for model trans-
formation, integration, and synchronization must take care of attributes too.
For example, the components of our project have an attribute name, and there
are attributes for the names of the nodes of a Petri net too. Up to now, we did
not transform these attributes. But, we might wish to transform these names
accordingly. For example, if the name of a track component is c1a, we might
wish to name the corresponding place of the Petri net p1a and the corresponding
transition t1a.

The straightforward way of dealing with attributes is to introduce assign-
ments within the TGG-rules. Figure 28 shows such an extension of the TGG-
rule from Fig. 11 with the corresponding assignments. The idea is that, when
transforming a component project to a Petri net, the place and the transition are
named according to the name of the component. In order to refer to the name of
the component object, the component now has a unique identifier in the TGG-
rule: cp. This way, we can refer to the name attribute of the component by
cp.name. Using Java notation, the method call cp.name.substring(1) strips the
leading character “c”. The assignment name = "p"+cp.name.substring(1)
takes care of assigning the corresponding name to the place – with a preceding
“p”. Analogously, the assignment for the transition takes care of assigning the
corresponding name to the transition. In order to make the transformation
work in the reverse direction, there is an assignment to the name attribute at
the component object. It uses the name of the place attribute, strips the first
character and adds the prefix “c”.

Most implementations of TGGs use this kind of assignments for taking
care of the attribute values. And this approach works fine as long as we are
interested in forward or backward transformations only. For integration, these

24 3 ADVANCED CONCEPTS

:Project :Pr2PN :PetriNet

:In

:Out

:IP2Pl

:OP2Tr

:Arc:Cp2PN

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

domain:project domain:corresp domain:petrinet

++

++

++target
++

++

++

pl:Place

source

++

name="p"+cp.name.substring(1)

name="c"+pl.name.substring(1)

++
++

++cp:Track

name="t"+cp.name.substring(1)
++ tr:Transition
++

Figure 28: Ad-hoc way for dealing with attributes

assignments do not work any more, rather there should be comparisons. And
some implementations add another operation for the integration scenario or
just interpret the assignment as a comparison when applied in the integration
scenario. Even worse, the assignments do not work when we generate pairs of
models by applying TGG-rules starting from an axiom, which is how we defined
the semantics of TGGs. This shows that the straightforward way of dealing
with attributes breaks the principles of TGGs. Moreover, we can easily have
TGG-rules with assignments in such a way that the transformations in forward-
direction and in backward-directions are inconsistent – they do different things
in different application scenarios. The reason is that we have two (or in our
example) even three assignments for expressing a single idea: the component,
the place, and the transition should have, basically, the same name – only
prefixed by a “c”, a “p” or a “t”, respectively.

Therefore, we introduce a concept for dealing with attributes in a clearer and
more uniform way. The main idea is that the actual name or rather the suffix
(stripping the first character) is an attribute of the correspondence node of class
Cp2PN. Actually, we introduced that attribute already in the meta-model for
the correspondence objects in Fig. 17 – we called it suffix. The values from either
domain are now derived from this suffix attribute. The relations of the name
attributes of the different nodes are then defined by constraints, which relate the
attributes of the objects of one domain and the correspondence domain. This
is shown in Fig. 29. The rounded boxes represent these constrains, where each
constraint can be read as an assignment, which constructs the corresponding
name from the suffix attribute of the correspondence node.

Actually, there is no restriction on the exact constraints imposed on the
different attributes from a semantical point of view. It is only required that,
when we have a matching pair of models, all constraints are met. For some
application scenarios, however, some restrictions need to be imposed on the
constraints in order to efficiently execute transformations and synchronizations.
For example, the expression on the right-hand side of the “assignment” should
be invertible. This will be discussed with the tool support.

3.2 Constraints 25

:Project :Pr2PN :PetriNet

:Track

:Out

:IP2Pl

:OP2Tr

:Place

:Arc

:Transition

:Cp2PN
cp.name ==
"c"+cn.suffix t.name ==

"t"+cn.suffix

p.name ==
"p"+cn.suffix

:In

++ ++

target

source

++

++
++

++

++

++

++

++

++

++

++

++

++

++++

++

++

++

++

++

domain:project domain:corresp domain:petrinet

++

++

++
cncp

++

++

++

++

++

cn

t

++

++
++
cn

++ p

++

++

Figure 29: TGG-rule with attributes

3.2 Constraints

In the previous section, we have used constraints already for expressing the
relations between values of attributes. In this section, we generalize the concept
of constraints. Again, we start with a motivation and a discussion of some issues
and problems related to constraints. In the end, we will present the way, we
deal with constraints.

Let us consider an example first. In Fig. 15, we introduced a rule that trans-
forms a train associated with a component into a token in the corresponding
place of the Petri net. Now, for the sake of an argument, let us assume that
we want to transform a train associated with a component to a token on a
place only if the component has no incoming connections (i. e., the initial com-
ponents) resp. if the corresponding place has no ingoing arc. Figure 30 shows
the extended rule, where the constraint imposes the additional condition on the
place by an OCL expression: the set of in arcs should be empty.

:Train :Tr2To

:Place:Cp2PN

:Token

:Component

++
++ ++

++++
++

markingtrain
++

++ ++

 isEmpty()
place.in −>place

Figure 30: Extended TGG-rule for a Train

The meaning of this constraint seems to be obvious. But, actually there
are different interpretations, depending on the application scenario. The differ-
ences come from the time at which the constraint is checked. For example, in
the transformation scenario from a component project to a Petri net, it could be
that we first generate the Petri nets for the two track components as shown in
Fig. 24. In this situation, both places do no not have incoming arcs, and there-
fore, the constraint is true at that time. If we had a train on these components,

26 3 ADVANCED CONCEPTS

we might figure that the TGG-rule for the train could be applied. But later on,
the TGG-rule for a connection is applied, which adds an incoming arc to one
place (cf. Fig. 25) and finally both of the above places will have an incoming
arc (cf. Fig. 21). So, in the end the constraints are violated. This shows, that
it makes a difference at which time the constraints are evaluated. In particular,
this makes a difference between the forward and backward transformation, the
integration and synchronization, and between the actual generation semantics
of TGGs.

Of course, the semantics and the relation between models should be the
same for all application scenarios. Therefore, we introduce a uniform concept:
The idea is that all constraints are added while applying the rules and while
constructing the models. But, the constraints will be evaluated only after the
full model is constructed. The relation between the two models is only valid,
if all constraints evaluate to true in the final result. Of course, this is only the
definition of the semantics of TGGs; in practice, depending on the application
scenario, the constraints can and will be considered to chose the TGG-rule to
be applied and to resolve between different choices of applicable TGG-rules.
This, however, is an implementation issue and not a semantical issue.

Due to this a-posteriori semantics of constraints, all application scenarios
will produce valid relations only. Moreover, the actual constraint in a con-
straint node can be any OCL expression that refers to the objects it is attached
to. Restrictions are only necessary in order to make implementations of the
transformations or synchronizations more efficient.

3.3 Reusable Nodes

Up to now, TGGs require that all parts of the two models are completely
captured by the TGG-rules, and all parts are completely generated. Sometimes
however, there are parts of models that should neither be generated nor be
changed by the transformation or synchronization of two models. Still, the
model is related to these parts and the relation between the two models must
take these parts into acount. In order to properly deal with this problem, we
introduce two additional concepts: reusable nodes and modes. We will discuss
reusable nodes in this section; modes will be discussed in the next section.

In order to illustrate these concepts, we extend our example from Sect. 2.3.
In the meta-model for projects (see Fig. 8), we had a separate class for each
type of component: Train and Switch. Actually, Component Tools is much
more flexible [28]: the possible types of the components are not fixed, but
can be defined in a so-called component library. The type of a component is
not encoded in the class, but by a reference to the component type, which is
defined in the component library. Figure 31 shows a simplified version of the
corresponding meta-model. A component library consist of some component
types. Each project is associated with exactly one component library and each
component is associated with exactly one component type. In a transformation,
this library should not need be transformed, but the references to it must be
taken into account.

The basic idea for the rules for transforming these kinds of projects is the

3.3 Reusable Nodes 27

Port

Connection

name: String

Project

*

Out
1 1

source target

ComponentType

type: String

ComponentLib

*

Component
*

1

1

type

library

In

Figure 31: The extended meta-model for projects and libraries

same as before. The only difference is that the type of a component is now
encoded in the reference to a type in the library. The TGG-rule for transforming
a track to a Petri net (as originally defined in Fig. 11) is now modified as shown
in Fig. 32. The component now needs to refer to a component type from the
component library, and the constraint says that the type is “Track”.

:Pr2PN

:In

:Out

:IP2Pl

:OP2Tr

:Place

:Cp2PN

:PetriNet

:Transition

:Arc

:Project

:ComponentType

:ComponentLib

[]

[]

[]

++

ct.type=="Track"

++

++

++

++

++

++

++

++
++

++

++

domain:corresp

++ ++

++

++

target

source

++
++

++

++

domain:petrinet

++

++

++

++

domain:project

:Component

++ct

++

[]

context:library

++

++

++

++

Figure 32: The new TGG-rule for component Track

During a transformation or synchronization, the component library should
not be changed. But, the library, the type, and a reference need to be there.
And it needs to be checked that they are there. Note that the component types
do not need to be generated, but can be reused over and over again form the
already existing nodes with the required properties. Therefore, we call them
reusable nodes. Graphically, these nodes are represented in gray and with a label
[]. The semantics of the reusable nodes is that they can be newly generated or
reused in an arbitrary way. The gray color reflects the fact that, semantically,
each reusable nodes could be either black (a node from the left-hand-side of
the TGG-rule, i. e., it is reused) or green (a node from the right-hand-side of
the TGG-rule, i. e., it is newly generated), which can be chosen whenever the
rule is applied. This interpretation shows that actually, reusable nodes are
not strictly necessary. We could replace it by exponentially many TGG-rules

28 3 ADVANCED CONCEPTS

with all possible ‘colorings’ of the gray nodes. But, the concept of reusable
nodes helps reducing the number and the complexity of TGG-rules. In more
complex examples, the rules without reusable nodes might become really messy.
Reusable nodes allow us to have simpler TGG-rules and to concentrate on the
essence of the relevant models.

3.4 Modes

As discussed above, the reusable nodes can be newly generated or existing
nodes with the same property can be reused. In the above example, however,
the transformation should not create new nodes in the component library. This
is where the concept of modes comes in. The domain library can be used and
accessed in the transformation, but it should not be changed. So this domain
is used in mode access.

The mode of the other domains depends on which of the scenarios we use:
For a transformation from a Component Tools project to a Petri net, the domain
project has mode read and the domains corresp and petrinet have mode write.
For the synchronization scenario, all domains project, corresp, and petrinet have
mode write. For the integration scenario, the domains project and petrinet have
mode read and the domain corresp has mode write.

Actually, the application scenario can now be precisely defined by assigning
a mode to each domain of the TGG. Mode access says that this domain may
be accessed, but not modified. Mode read says that this domain also may not
be modified; by contrast to mode access, mode read requires that at the end
of the transformation every element of that domain was actually read, so that
the domain was covered completely. In mode write, the domain may also be
changed and, upon termination, all elements of the domain have been used.

This way, the application scenarios as defined in Sect. 2.4 can be defined in
terms of modes for each domain. Note that there could be even more refined
modes, which allow only adding or only removing nodes or only changing at-
tributes for more refined definitions of application scenarios. But, this needs
further investigation and is beyond the scope of this paper.

3.5 Short hand Notations

In the previous sections, we have introduced some advanced concepts for TGGs.
In fact, some of these concepts have been first introduced in a different way and
in different notations. Since some of these notations are well-known in the
TGG community, we introduce them as a short hand notation here. But, the
semantics of these short hand notations will be defined by translating them to
the concepts defined in the previous sections.

3.5.1 Assignments

As discussed in Sect. 3.1, the values of attributes of newly created nodes is
often defined by an assignment for this attribute, which belongs to that node
(see Fig. 28). Later we introduced a more general concept of constraints.

3.5 Short hand Notations 29

Every assignment to some attribute of some node can be easily replaced by a
constraint. For example, the assignment name = "p"+cp.name.substring(1)
in node pl of the TGG-rule in Fig. 28 could be replaced by a constraint node
attached to node pl and node cp with the following constraint:

pl.name == "p"+cp.name.substring(1)
And all the other assignments in this TGG-rule could be replaced by an anal-
ogous constraint.

Note that in Fig. 29, we did not use this straight-forward translation of
these assignments. Rather we distilled the common parts of the different name
attributes in an extra attribute name of a correspondence node and derived
all the other names from there. Moreover, this makes the implementation of
a transformation or a synchronization engine more efficient and helps avoiding
inconsistent constraint, which could arise from a pair or a set of inconsistent
assignments.

3.5.2 Negative Links

In some situations, we would like to ensure that, in a pair of corresponding
models, some links are not there. To this end, there are different notations using
crossed out links or nodes. Since there are some ambiguities when crossing out
nodes, we introduce a short hand for crossing out links only. All other situations
can be expressed with constraint nodes, if necessary.

:Track :Train
++

:Track :Train
++

:Track :Track

++ ++
ba

 exist(t|t=b)

++
!a.train −>

++++
train

short−hand form its translation

++
train

++ a

 isEmpty()

++
a.train −>

++

Figure 33: Two parts of a TGG-rule with negations and the corresponding
constraints

Figure 33 shows two parts of a TGG-rule with negations in them on the left-
hand side. The right-hand side shows their meaning in terms of a constraint.
The example on the top shows a crossed out link between two nodes–which
is also shown in red. The meaning is that no such link should exist. This is
expressed exactly by the constraint shown on the right. The example on the
bottom says that there should be no link to any other node. This non-existing
node is shown in red as a dashed box. Again, this can be expressed by the
constraint shown on the right-hand side.

30 4 USABILITY

4 Usability

As we have seen in the previous sections, TGGs can be used to define the
relation between two (or more) types of models and to transform such models
into each other and to synchronize such models. In practice, there will be some
15 to 20 rules and each rule has some 10 to 40 nodes. TGG-rules with some 40
nodes are quite hard to edit, check, debug, and revise manually. Therefore, we
need methods and tools for making the editing and design process for TGG-
rules more comfortable.

In this section, we discuss two approaches to design the TGG-rules in a
more comfortable way: The first approach automatically generates the TGG-
rules from some pairs of corresponding models. The second approach simplifies
the editing of the TGG-rules by not using object diagrams with the abstract
syntax, but the graphical syntax of the models directly. These approaches are
discussed below.

4.1 Specification by Example

Up to now, a correspondence mapping between two or more models has been
specified using the abstract syntax defined by the meta-models of the involved
modeling languages. However, meta-models are not always as simple and easy
to understand as in our running example. Rather, in most cases the meta-
models are quite large and contain many different concepts which often lack an
obvious link to their concrete representation in the modeling language (cf. the
meta-model of the Unified Modeling Language (UML) [36]). As a consequence,
a meta-model based definition of a correspondence mapping between two or
more models becomes quite complicated.

In order to ease the specification of a correspondence mapping between mod-
els, we propose to specify the correspondence mapping by the use of example
pairs given in the concrete syntax of the involved modeling languages. From
the given example pairs, we synthesize the TGG-rules automatically.

In the following, we present the basic idea of our approach and the require-
ments for its implementation which was worked out in full detail in a masters
thesis [15]. Then, we informally describe the basic rule synthesis algorithm, its
extensions concerning the given sequence of example pairs as well as necessary
extensions in order to handle the introduced concepts of attributes, constraints,
and reusable nodes. We close this subsection with a discussion of our specifica-
tion by example approach and some recommendations for its application.

4.1.1 Basic Idea

The basic idea of our approach is that the user specifies the relation between
two model types by providing a set of example pairs. An example pair consists
of two sample models which correspond to each other – each from the domain
of the involved modeling language. The correlation of the sample models in the
example pair defines a semantic relationship resp. correspondence between both
models. In the upper part of Fig. 34, an example pair defining the correlation

4.1 Specification by Example 31

between a project and a Petri net is given. The example pair is defined using
the concrete syntax of the involved modeling languages. For the definition of a
correspondence mapping the user’s knowledge about the modeling language is
sufficient.

set of synthesised rules

Track1Track2

set of example pairs

:CorrNode2

:Out :Transition

:In :Place

:Connection :Arc

source

target

source

target

++
++

++

++

++

++

++

:PetriNet

:CorrNode2

:CorrNode3

++
++ ++

automatic rule
synthesis

Figure 34: Overview: Specification by Example

In order to utilize the given set of example pairs for the presented appli-
cation scenarios like model transformation, integration, or synchronization, we
synthesize the necessary TGG-rules from the set of example pairs automatically.
A necessary prerequisite for the automatic rule synthesis is the translation of
the example pairs into the TGG-formalism. In Fig. 35, the initial translation of
an example pair into the TGG-formalism is shown. The example pair relates a
track to its Petri net representation which consists of a place, a transition and
an arc from the place to the transition. In the top of Fig. 35, the example pair
in its graphical and abstract syntax representation is shown; in the bottom the
same example pair is shown after the translation to the TGG-formalism.

32 4 USABILITY

Track1

:PetriNet

:Arc

:Place

:Transition

source

target

:Project

:Track

:In

:Out

:PetriNet

:Arc

:Place

:Transition

source

target

++

++

++

++

++

:Project

:Track

:In

:Out

++

++

++

++

++ ++

++

E
xa

m
pl

e
P

ai
r

-G
ra

ph
ic

al

S
yn

ta
x

E
xa

m
pl

e
P

ai
r -

A
bs

tra
ct

 S
yn

ta
x

P
ar

tia
l T

G
G

 R
ul

e
–

C
on

cr
et

e
S

yn
ta

x

translation translation

Figure 35: Initial translation to the TGG-formalism

4.1 Specification by Example 33

As shown in Fig. 35, the graphical representation of a TGG-rule is quite
similar to the abstract syntax representation of the example pair. However,
there is a fundamental difference between the abstract syntax representation of
the example pair and the graphical representation of a TGG-rule. For example,
in a TGG-rule the nodes and links can have additional ++ labels. Or, we can
mark the nodes as reusable and assign some constraints to them.

4.1.2 Basic Rule Synthesis Algorithm

In order to explain the basic rule synthesis algorithm, we exemplify our synthesis
algorithm by the help of our running example. We start with an empty set of
example pairs and extend the provided set of example pairs step by step.

First Example Pair The simplest example pair consists of an empty project
which is mapped to an empty Petri net. It is provided by relating an empty
project diagram to an empty Petri net diagram. In the first step, this example
pair is translated to the TGG-formalism as shown in the previous subsection.
According to the meta-models shown in Fig. 2 and Fig. 8, an empty project is
represented by an object of type Project and an empty Petri net respectively as
an object of type PetriNet. During the translation, both objects are assigned to
their domains. In addition, the objects are marked with ++ labels, i.e., initially
they are marked to appear only on the right-hand side of the grammar rule.

After the translation into the TGG-formalism, the synthesis checks if some
already synthesized rules exist which have to be checked against this new exam-
ple pair. Since this is the first example pair, no further rules have to examined.
Therefore, our synthesis algorithm introduces a correspondence node between
the Project and PetriNet objects. In Fig. 36, the extracted TGG-rule is shown.

:CorrNode1:Project :PetriNet

++ ++++

++ ++

Figure 36: Step 1

At the moment, the extracted TGG-rule has an empty left-hand side and
provides only objects on the right-hand side which are therefore marked with
++ labels. Hence, the synthesized rule does not correspond to the so far known
structure of TGG-rules. In fact, it is similar to the axiom shown in Fig. 16.
For the further processing, the rule will be left as is. However, at the end of
our rule synthesis algorithm, the ++ labels will be removed which will result
in the previously introduced axiom shown in Fig. 16. We recognize that this is
an axiom by the fact that the rule contains only one correspondence node.

Second Example Pair We proceed with the rule synthesis by providing a
second example pair. The second example pair relates a track element to a Petri
net as shown in the top of Fig. 35. Once again, the synthesis starts with the
translation of the example pair to a TGG-rule. The result of this translation is
shown in Fig. 37.

34 4 USABILITY

:Project

:Track

:In

:Out

:PetriNet

:Arc

:Place

:Transition

source

target

++

++

++

++

++ ++

++

++

++

++

++

++

Figure 37: Step 2

Now, the synthesis algorithm checks if some other rules exist that could be
matched to the extracted object structure of the example pair. In our case,
only the rule shown in Fig. 36 has to be considered. The algorithm matches the
objects from the already synthesized rule with the new example pair according
to their domains. This is similar to the integration scenario presented earlier
except for the fact, that the correspondence node is not considered during the
matching procedure. Since the correspondence node of the synthesized rule is
omitted, a valid match can be found as shown in Fig. 38.

:Project

:Track

:In

:Out

:PetriNet

:Arc

:Place

:Transition

source

target

++

++

++

++

++ ++

++

++

++

++

++

++

:CorrNode1:Project :PetriNet

Figure 38: Step 3

Due to the valid matching, the ++ labels are removed from the matched
objects, i.e., the objects become black. In addition, the correspondence node
of the matched rule is added to the considered object structure of the new
example pair. In order to obtain a valid TGG-rule, the ++ label of the added
correspondence node is deleted. The intermediate result of the rule synthesis
so far is shown in Fig. 39.

The matching procedure is executed for each synthesized rule as long as
valid matchings with existing rules can be found. In the example, the axiom
matches only once. Therefore, the algorithm proceeds and since this is the only
rule synthesized so far, no further rules have to be checked. In the last step, a
new correspondence node is added to the object structure under consideration.
This correspondence object connects all remaining objects from both domains
which are marked with the ++ labels. In order to obtain a valid TGG-rule, the
correspondence node and its links are also marked with ++ labels. Altogether
we obtained the TGG-rule shown in Fig. 40.

4.1 Specification by Example 35

:Track

:In

:Out

:Arc

:Place

:Transition

source

target

++

++

++

++ ++

++

++

++

++

++

:CorrNode1:Project :PetriNet

Figure 39: Step 4

:Track

:In

:Out

:Arc

:Place

:Transition

source

target

++

++

++

++ ++

++

++

++

++

++

:CorrNode1:Project :PetriNet

:CorrNode2

++

++

++

++
++

++

++

Figure 40: Step 5

The synthesized rule in Fig. 40 resembles the hand-crafted rule in Fig. 11.
However, there are two differences between the hand-crafted rule and its auto-
matically synthesized counterpart. The first difference is the type of the corre-
spondence nodes. In manually designed rules, the types of the correspondence
nodes can be modeled explicitly at the discretion of the rule designer. For ex-
ample, in our hand-crafted version of the rule, the correspondence type reflects
the established mapping between the involved object types. In contrast to that,
in the automatically synthesized rule, the types of the correspondence nodes are
generated automatically by numbering them consecutively. This numbers re-
flect the order in which the rules have been synthesized.

The second difference is the number of correspondence nodes. In the hand-
crafted rule, three correspondence nodes are used for expressing the mapping
of the track component as well as the ports to the corresponding Petri net
elements. In the synthesized rule only one correspondence node is generated.
Although this is quite sufficient for our example, the manual design of TGG-
rules allows to establish a more fine-grained mapping structure, which increases
the understandability of the TGG-rules and sometimes makes the transforma-
tions more efficient.

Third Example Pair Up to now, the given example pairs have been quite
simple – they relate only a few project elements to a corresponding Petri net.
So let us consider the more complex example pair shown in the upper part of
Fig. 34. The example pair consists of two connected track elements and their
appropriate Petri net representation.

As in the previous synthesis steps, the example pair is prepared for the rule

36 4 USABILITY

synthesis by translating the underlying abstract syntax representation to the
common TGG-formalism. The translated example pair is shown in Fig. 41.

:Project

:Track

:In

:Out

:PetriNet

:Arc

:Place

:Transition

source

target

:Track

:In

:Out

:Arc

:Place

:Transition

source

target

:Connection :Arc

source

target

source

target

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

Figure 41: Step 6

Now, the synthesis algorithm has to check if some of the already synthesized
rules can be applied to the new example pair. Due to the fact that our new
example pair does not have any black objects yet, the only applicable rule is
the rule from Fig. 36. In Fig. 42, the rule matching is shown. Once again,
the objects Project and PetriNet are matched successfully to the example pair.
Therefore, the ++ labels are deleted from the matched objects in the new
example pair and a correspondence node is inserted. The result of this matching
is shown in Fig. 43.

Now, the intermediate TGG-rule has some black objects without the ++
labels. Therefore, the TGG-rule from Fig. 40 becomes applicable and can be
matched. In fact, it can be matched twice. The first match is shown in Fig. 44.
The second match is presented in Fig. 46.

The matched objects – if not already black – are in turn rendered in black,
i.e., the ++ labels are removed. In addition, the correspondence nodes are
added to the intermediate TGG-rule. The result of the first matching is shown
in Fig. 45. The result of the second matching is presented in Fig. 47.

Due to the performed matching, only a few objects marked with ++ labels
are left. In particular, this is the Connection object in the project domain
and the Arc object in the Petri net domain. Since no further rules can be
matched to the resulting intermediate TGG-rule, the synthesis algorithm inserts
a new correspondence node relating these objects to each other. The inserted
correspondence node connects two objects marked with the ++ labels. In order
to obtain a TGG-rule which can be used for model transformation, integration,
and synchronization purposes, the correspondence node is also marked with the
++ label. The resulting TGG-rule is shown in Fig. 48.

4.1 Specification by Example 37

:Project

:Track

:In

:Out

:PetriNet

:Arc

:Place

:Transition

source

target

:Track

:In

:Out

:Arc

:Place

:Transition

source

target

:Connection :Arc

source

target

source

target

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

:CorrNode1:Project :PetriNet

Figure 42: Step 7

:Track

:In

:Out

:Arc

:Place

:Transition

source

target

:Track

:In

:Out

:Arc

:Place

:Transition

source

target

:Connection :Arc

source

target

source

target

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

:CorrNode1:Project :PetriNet

Figure 43: Step 8

38 4 USABILITY

:Track

:In

:Out

:Arc

:Place

:Transition

source

target

:Track

:In

:Out

:Arc

:Place

:Transition

source

target

:Connection :Arc

source

target

source

target

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

:CorrNode1:Project :PetriNet

:Track

:In

:Out

:Arc

:Place

:Transition

source

target

:CorrNode1:Project :PetriNet

:CorrNode2

++

++

++

++
++

++

++

Figure 44: Step 9

:Track

:In

:Out

:Arc

:Place

:Transition

source

target

:Track

:In

:Out

:Arc

:Place

:Transition

source

target

:Connection :Arc

source

target

source

target

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++
++

++

:CorrNode1:Project :PetriNet

:CorrNode2

Figure 45: Step 10

4.1 Specification by Example 39

:Track

:In

:Out

:Arc

:Place

:Transition

source

target

:Track

:In

:Out

:Arc

:Place

:Transition

source

target

:Connection :Arc

source

target

source

target

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++
++

++

:CorrNode1:Project :PetriNet

:CorrNode2

:CorrNode1:Project :PetriNet

:CorrNode2

++

++

++

++
++

++

++:Track

:In

:Out

:Arc

:Place

:Transition

source

target

Figure 46: Step 11

:CorrNode2

:Track

:In

:Out

:Arc

:Place

:Transition

source

target

:Track

:In

:Out

:Arc

:Place

:Transition

source

target

:Connection :Arc

source

target

source

target

++
++

++

++

++

++

++

:CorrNode1:Project :PetriNet

:CorrNode2

Figure 47: Step 12

40 4 USABILITY

:CorrNode2

:Track

:In

:Out

:Arc

:Place

:Transition

source

target

:Track

:In

:Out

:Arc

:Place

:Transition

source

target

:Connection :Arc

source

target

source

target

++
++

++

++

++

++

++

:CorrNode1:Project :PetriNet

:CorrNode2

:CorrNode3

++
++ ++

Figure 48: Step 13

The synthesized rule in Fig. 48 conforms already to the well known struc-
ture of TGG-rules: it has some black objects and some green objects with ++
labels. However, the synthesized rule contains quite many black objects. Dur-
ing the execution of a model transformation, integration, or synchronization,
all the black objects have to be matched to a given model. These additional
matching efforts reduce the overall performance and restricts the rule applica-
tions. However, due to our experience, not all objects are really needed for the
specification of a valid mapping; simply speaking some of them are redundant.
Therefore, our algorithm always tries to minimize the number of black object
in a TGG-rule using a simple heuristic.

In order to get rid of these redundant objects and to reduce our rule to a
minimal set of objects, the synthesis algorithm examines all objects and checks
for objects which are not directly connected to green objects, i.e., it searches
for objects which have no direct link to an object marked with a ++ label. In
Fig. 49, these objects are labeled with a red x. Note that the PetriNet object
is not marked with a red x since it is directly connected to the Arc object.

All marked objects and their incidents links are deleted from the synthesized
TGG-rule. In addition, all correspondence nodes without links or with links to
only one domain are removed. For example, after the deletion of the Project
object and its incident links, the correspondence node CorrNode1 will only have
a link to the Petri net domain object PetriNet. Therefore, this correspondence
node will be deleted as well. The final TGG-rule after the deletion of the
redundant objects is shown in Fig. 50.

The automatically synthesized TGG-rule resembles the hand-crafted TGG-
rule for a connection presented in Fig. 14. The only difference between the syn-
thesized and the hand-crafted rule is the additional link between the PetriNet
object and the Place object. In fact, in the Petri net model, the PetriNet object

4.1 Specification by Example 41

:CorrNode2

:Track

:In

:Out

:Arc

:Place

:Transition

source

target

:Track

:In

:Out

:Arc

:Place

:Transition

source

target

:Connection :Arc

source

target

source

target

++
++

++

++

++

++

++

:CorrNode1:Project :PetriNet

:CorrNode2

:CorrNode3

++
++ ++

x

x

x

x

x

x

x

x

x

Figure 49: Step 14

:CorrNode2

:Out :Transition

:In :Place

:Connection :Arc

source

target

source

target

++
++

++

++

++

++

++

:PetriNet

:CorrNode2

:CorrNode3

++
++ ++

Figure 50: Step 15

42 4 USABILITY

has links to Transition objects as well as to Place objects. Therefore, the syn-
thesized TGG-rule is correct. However, when specifying a TGG-rule manually,
the designer is more flexible and can decide to omit some of the links.

In this section, we have exemplified the basics of our rule synthesis algo-
rithm. We have started with an empty set of example pairs and extended it
step by step. This iterative synthesis procedure was possible since the example
pairs have been provided in a quite advantageous order. In order to be able
to synthesize TGG-rules even if the order of example pairs is not such advan-
tageous, or if the set of example pairs is not extended incrementally but given
at once, we have to modify our synthesis algorithm in such a way that it is
independent from the provided example pair order. This is explained in more
detail in the following section.

4.1.3 Example Order

Let us assume that the order of provided example pairs is changed. First, once
again the example pair relating an empty project with an empty Petri net is
given. Then, the example pair relating two connected tracks and its Petri net
representation is provided (cf. upper part of Fig. 34). Lastly, the example pair
from Fig. 35 is made available.

From the example pairs given in the new order, our algorithm will once
again synthesize three TGG-rules. From the first example pair once again the
TGG-rule presented in Fig. 36 is synthesized. From the second example pair the
TGG-rule shown in Fig. 51 is synthesized whereas the TGG-rule synthesized
from the third example pair is once again the TGG-rule presented in Fig. 39.

:Track

:In

:Out

:Arc

:Place

:Transition

source

target

:Track

:In

:Out

:Arc

:Place

:Transition

source

target

:Connection :Arc

source

target

source

target

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

:CorrNode1:Project :PetriNet

:CorrNode2

++

++
++

++

++

++ ++

++

++ ++
++

++

++

++
++

Figure 51: TGG-rule resulting from second example pair

The TGG-rules shown in Fig. 50 and in Fig. 51 have been synthesized
from the same example pair. Altogether, the rules are quite different. This
results from the changed order of example pairs. Due to our new example pair

4.1 Specification by Example 43

order, only the synthesized rule shown in Fig. 36 is available when our second
example pair is considered by our synthesis algorithm. Therefore, only one rule
is matched with the second example pair, whereas, in the previous ordering,
already two synthesized rules have been taken into account. This results in
fewer matched objects and leads to a quite large rule.

In order to be independent from a special ordering of the example pairs,
the synthesis algorithm is slightly more involved. In the extended version of
the rule synthesis algorithm, not only already synthesized rules are matched
against the newly extracted TGG-rule, but also the new TGG-rule is matched
with all already available TGG-rules. If such a match is found, the algorithm
handles this matching as in the case before.

In our example, after the synthesis of the third rule shown in Fig. 39, the
synthesized rule will be matched against the second synthesized rule shown in
Fig. 51. This results in two valid matchings and, as described before, the two
successful matchings lead to a reduction of the second rule. Hence, the final
result of the extended rule synthesis yields a set of TGG-rules which is nearly
identical to the previously synthesized set of TGG-rules. The only difference
between the synthesized rule sets is the numbering of the correspondence nodes.
Remember that the numbering of the correspondence nodes reflects the order
in which the TGG-rules have been synthesized. Since this order differs, also the
numbering of the correspondence nodes is different – but this has no impact on
the quality of the synthesized rules.

Altogether, due to the described extensions our rule synthesis algorithm
is independent from the order of the given example pairs and what’s more,
it is also capable of processing a set of example pairs at once. However, an
advantageous order of the provided example pairs increases the performance of
our synthesis algorithm.

4.1.4 Extensions

Up to this point, our algorithm takes only objects and links of the given example
pairs into account. Attributes, additional constraints, and reusable nodes have
not been considered yet. In the following, we describe the synthesis support for
these advanced concepts.

Attributes The provided example pairs can contain attributes with a partic-
ular value. In order to synthesize correct TGG-rules, we have to take care of
these attributes too. In order to handle attributes automatically, the transla-
tion of a given example pair to the common TGG-formalism also considers the
concrete attribute values of the involved objects. For example, the component
elements of our project as well as places of the Petri net have an attribute name.
As shown in Fig. 29, for a valid mapping these attributes have to be included
in the TGG-rule as well.

Let us assume that a user provides an example pair relating a track compo-
nent to a Petri net where both, the track component as well as the associated
place, are named t1. As shown in Fig. 52, the translation will include the
attribute name with an assigned string literal t1 in both objects.

44 4 USABILITY

:Project

:In

:Out

:PetriNet

:Arc

:Transition

source

target

++

++

++

++

++ ++

++

++

++

++

++

++

:Track
name=“t1“

:Place
name=“t1“

Figure 52: Translated example pair with attributes

In our approach, we use a simple heuristic based on string matching. Due
to this heuristic, we can conclude that both attributes are related to each other,
e.g., during a transformation from a project to a Petri net, a place has the same
name as the corresponding component, and vice versa. As a consequence, we
synthesize the attribute constraints from the example pair as shown in Fig. 53.

:Track

:In

:Out

:Arc

:Place

:Transition

source

target

++

++

++

++ ++

++

++

++

++

++

:CorrNode1:Project :PetriNet

:CorrNode2

++

++

++

++
++

++

++

cp.name ==
cn.name

++
++

++

cp cn

p.name ==
cn.name

++
++

cn

p

++

Figure 53: Synthesized rule with attributes

In the case that no such relation is found, we synthesize a simple constraint
from the attribute value. For the sake of an argument, let us assume that a
track component has a kind attribute in order to distinguish between a straight
track and a curved track. Consequently, the values which can be assigned
are the enumeration constants STRAIGHT and CURVED. Furthermore, let
us assume that the user can create only example pairs where this attribute is
set to a particular value. Therefore, he provides an example pair with the kind
attribute set to STRAIGHT. The track component, however, is mapped in both
cases to a transition, a place, and a connecting arc as in the previous example
pair, i.e., it is mapped independently from the value of the kind attribute.
During the rule synthesis, no related attribute is found. Therefore, the simple
attribute constraint presented in Fig. 54 is extracted. This rule will take only
straight tracks into account. In order to handle a curved track, the user has to
provide a second example with the kind attribute set to CURVED.

In our example, there are just two different enumeration values. Therefore,
it is feasible to provide a second example pair. However, if we imagine that an

4.1 Specification by Example 45

:Track

:In

:Out

:Arc

:Place

:Transition

source

target

++

++

++

++ ++

++

++

++

++

++

:CorrNode1:Project :PetriNet

:CorrNode2

++

++

++

++
++

++

++

cp.kind ==
 STRAIGHT

++

++

cp

Figure 54: Synthesizing simple attribute constraints

enumeration can have many different values, things become much more com-
plicated since for each value an own example pair has to be provided. Things
become even worse, if more attributes in an example pair have to be considered.
In such a case, for each combination of attribute values a separate example pair
has to be specified.

At this point, our attribute synthesis and heuristic can be improved a lot.
For example, the attribute synthesis could ignore attributes if at least two
example pairs with the same object structure which only differ in the given
attribute value have been provided. Or, concerning our heuristic, we could in
addition search for some substrings in order to extract prefixes or suffixes for
the attribute values.

For the moment, we deal with this kind of problems by user interaction,
i.e., our synthesis algorithm makes initial proposals how to deal with the given
attributes, but the final decision is left to the user. In that sense, our attribute
synthesis algorithm is semi-automatic only. However, in most of our examples,
the proposals are correct and have just to be confirmed.

Constraints As already described in Section 3.2, beside attribute constraints,
there are also some more general constraints. In this section, we will show how
such constraints are synthesized using our specification by example approach.

Let us consider once again the example from Section 3.2. There, we intro-
duced a rule which transforms a train with a component into a token in the
corresponding place of a Petri net. However, this transformation may be per-
formed only if the corresponding place has no incoming arcs. For this purpose,
we extended the rule in Fig. 30 with an additional constraint.

In order to synthesize a TGG-rule together with such a constraint, we have
to provide – beside an adequate example pair for the mapping itself – an exam-
ple expressing the constraint, i.e., a counter example describing the forbidden
situation, which is also referred to as a negative application condition. For our
example, this constraint is expressed in the graphical syntax of the Petri net by
a place with an incoming arc. Although conceptually this would be sufficient,
most Petri net editors do not allow to insert an arc without a source since this
will lead to an inconsistency in the abstract syntax representation. For this

46 4 USABILITY

reason, we also include a transition in the example constraint, i.e., our graph-
ical constraint comprises a transition, a place, and a connecting arc with the
transition as source and the place as target. In Fig. 55, the translated example
pair and the translated counter-example are shown.

:Component

:Train :Arc

++

++

++

++

++

:Place

:Token

++

:Place

++

++

:Transition

:Arc

++

++ ++

counter-
example

example pair

Figure 55: Translated example pair with counter-example

In order to extract a constraint, the synthesis algorithm tries to find a
matching between the counter-example shown in the top of Fig. 55 and the ex-
ample from the Petri net domain. Here, only the place object can be matched
(depicted by the dotted line between both place objects). As a consequence,
during the execution of the rule synthesis algorithm both objects are merged.
The link to the unmatched object of the counter-example representing the arc
is marked as a negative link and the arc object is included into the synthesized
TGG-rule. Since the transition object can not be reached from the place with-
out traversing the negative link, it is deleted from the synthesized rule. The
result of the described procedure is presented in Fig. 56 using the short hand
notation for negative links.

Reusable Nodes As described in section 3.3, there are some model elements
that should neither be generated nor changed when applying a TGG-rule, but
are only necessary since they are referenced from other model elements.

Typically, the referenced model elements belong to a separate domain like
the component library. In order to handle these referenced model elements
correctly and not to delete them from the TGG-rule during synthesis, these
meta-model elements are annotated as reusable. During the rule synthesis,
instances of annotated meta-model elements are not deleted from the TGG-
rule at all. They remain within the TGG-rule regardless of whether they are
connected to any newly created object or not.

4.1 Specification by Example 47

:Component

:Train :Arc

++

++

++

:Place

:Token

++

:CorrNode4

:CorrNode5

in

++

++ ++

Figure 56: Synthesized TGG-rule with constraint

4.1.5 Recommendations

In the previous sections, we have presented an algorithm which synthesizes
TGG-rules from simple correspondence example pairs. The example pairs are
defined using the concrete syntax of the involved models. In the case of a visual
modeling language the concrete syntax conforms to the graphical representation
of the models. In that sense, the specification of the example pairs is performed
in a more user-friendly way and no extra knowledge about the underlying TGG-
formalism is needed.

The presented synthesis algorithm works fully automatically provided that
no object attributes have to be considered. It is independent from a particular
order of the given example pairs. However, one example pair is not sufficient in
order to synthesize a universal set of TGG-rules that handles all model instances
defined by the according meta-model of the modeling language. Rather, a set of
example pairs has to be provided where each example pair has some similarities
with at least one other example pair and where one additional concept of the
modeling language is introduced. In the case that a particular concept is not
covered in any of the given example pairs, the synthesized set of TGG-rules will
not be able to handle this concept at all. On the other hand, from an example
pair introducing more than one concept at once, a TGG-rule is synthesized that
can only handle that concept in conjunction with the other concepts. There-
fore, we recommend to start with quite small example pairs and to extend the
examples step by step.

In order to support an incremental design process for the example pairs,
the rule synthesis process works in an iterative manner. An overview of the
supported process is shown in Fig. 57. The process starts with the definition of
some example pairs. From the given example pairs, TGG-rules are synthesized.
The synthesized TGG-rules can be validated, e.g., by executing a transforma-
tion on some test models and comparing the transformation result with the
expected resp. required transformation result. In the case that the yielded
model does not conform to the expected model, the set of example pairs can
be further refined, modified, and extended until a final and valid mapping is
achieved.

As mentioned before, providing semantically corresponding source and tar-

48 4 USABILITY

define
example pairs

synthesize
rules

refine
example pairs

refine
synthesized

rules

validate
rules

[valid]

[invalid]

Figure 57: Process overview

get models, a validation of the synthesized TGG-rules can be accomplished
either by transforming the source model and comparing the output of the trans-
formation with the target model or by executing the integration scenario and
checking whether both models are fully matched. Moreover, since corresponding
model pairs have already been provided as example pairs for the rule synthesis,
these example pairs can be also used for an automated validation of the TGG-
rules. Of course, in that case only the correctness of the synthesis algorithm
will be checked.

However, as already said before, our synthesis algorithm works only auto-
matically if no attributes have to be considered. In the case that also attributes
have to be considered, the algorithm works interactively, i.e., it proposes a so-
lution for the attribute mappings but the final decision is left to the user. In
addition, the number of needed example pairs depends on the number and
range of the attribute values. For example, if an example pair contains two at-
tributes where the first attribute can be assigned m different values and where
the second attribute can be assigned n values, than altogether m*n different
configurations are possible. In the worst case, for each configuration a sepa-
rate example pair is needed. Obviously, this increases the needed specification
efforts and spoils the advantages of the specification by example approach.

In order to circumvent this problem, we allow the user to refine and modify
the synthesized TGG-rules manually (cf. Fig. 57). This way, the attribute map-
ping can be generalized by hand, e.g., by providing a simple mapping function.
Although the synthesis algorithm now becomes semi-automatic only, the main
advantage is the reduced effort for the specification of the mappings. Now, the
automated validation based on the provided example pairs also makes sense
since not only the correctness of the synthesis algorithm but also the manually
performed refinements are validated.

4.2 Specification in Graphical Syntax

One reason for TGG-rules having so many nodes is that we refer to their abstract
syntax – i. e. the object diagrams – rather than to the graphical representations
of these model elements. This becomes clear if we compare the informal defini-
tion of the relation of a track element to its Petri net in Fig. 9 on page 8 with
the corresponding object diagram in Fig. 10. And it is even worse for the TGG-

4.2 Specification in Graphical Syntax 49

rule for the splitting switch (top right in Fig. 9) to the corresponding TGG-rule
in Fig. 12 on page 9. The main point is that, for most graphical notations, the
underlying abstract syntax is much more verbose than the graphical syntax.

We could avoid much of this verbosity, if we could edit the TGG-rules
directly in the graphical syntax of the two models – similar to the informal
mapping of Fig. 9. The only parts that are missing there are the correspon-
dence nodes. Figure 58 shows the completed example. In addition to the two
parts of the two models, it shows the correspondence nodes (in some graphical
notation) and how they relate the different objects in the graphical notation.
The dashed part represents the canvas on which the model is drawn and the
relation between the two overall models. This will be the left-hand side of the
TGG-rule. Though, the correspondences make the graphics a bit more com-

Sw
itch

Figure 58: A TGG-rule on graphical syntax

plex, the representation of a TGG-rule is much simpler, and the relation to the
actual parts of the model is more obvious than in the TGG-rule in abstract
syntax. All other rules could be represented in a similar way.

Conceptually, this representation of TGG-rules in the graphical syntax of
the respective models is not a big deal. The problem is in the implementation.
But when we want to implement an editor for the TGG-rules in graphical
syntax, things become more difficult – as we will see in a minute. First let
us point out, that a TGG-rule editor in abstract syntax needs to know the
meta-models of both models and the correspondence nodes; therefore, we can
easily implement an editor for TGG-rules in abstract syntax. The problem
with an editor for TGG-rules in graphical syntax is that we need to know how
the graphical editors for both models are implemented and we need to integrate
both of them into a single editor. Since every editor is implemented in a different
way, it is hard – if not impossible – to implement such an editor in a generic
way.

Recently, however, within the EMF Technology (EMFT) framework, the
Graphical Modeling Framework (GMF) was proposed. This is pretty much a
generic way to define a graphical editor on top of an EMF meta-model for some
type of model. Basically, GMF needs to know how each meta-model object
is graphically represented. With this information, GMF fully automatically
generates the code for the editor. Since GMF editors are generated in a standard
way, we could also generate a TGG editor joining two models – provided that
both models have GMF editors.

We have not yet investigated this idea in detail and we did not yet implement

50 5 REALIZATION

this idea. Still, implementing an editor for TGG-rules in the graphical syntax
of the involved models is no longer out of reach – if we restrict ourself to EMF
meta-models and GMF editors.

5 Realization

There are many different tools implementing TGGs and there are different
editors for TGGs; here, we focus on the tools which perform the actual trans-
formations, integrations and synchronizations with respect to some TGG-rules.
An important implementation issue is the choice of an underlying technology,
i. e., in which technology will the meta-models and the models be represented.
Here, we discuss two examples: a tool based on the proprietary technology
used in the Fujaba Tool Suite [43] and a tool based on the Eclipse Modeling
Framework (EMF) [10].

In Fujaba, TGGs play an important role in the transformation and integra-
tion of different UML models, and therefore, Fujaba is a good choice when using
TGGs in the context of model based software engineering. The EMF based tool
might be better suited for more general kinds of applications. Actually, it is
possible to implement adapters for all kinds of proprietary formats so that they
can be used either within the EMF or the Fujaba technology.

We do not go into the technical details of these two technologies. Rather,
we discuss the Fujaba and the EMF approach for another reason. Essentially
both approaches need to do extensive pattern matching in order to apply rules.
But, Fujaba compiles the TGG-rules into Java code for the pattern matching,
i. e., it generates code for the transformations. The EMF tool interprets the
TGG-rules while performing the transformations. These two approaches will
be discussed in the following section.

5.1 Generative Approach

As already mentioned, in the generative approach, the TGG-rules are translated
into code which is compiled and executed in order to perform the different ap-
plication scenarios, i. e., model transformation, model integration, and model
synchronization, with high performance. However, instead of generating the
desired code from the TGG-rules directly, in a first step we derive simple graph
transformation rules from the declarative TGG-rules and generate the code in
a second step using Fujaba’s built-in code generation facilities for graph trans-
formation systems. This two-step approach is aligned to MDA’s [33] approach
in which a platform independent model is transformed into a platform specific
model which is then used to generate the executable implementation.

Fig. 59 shows a simple graph transformation rule which transforms a con-
nection from a project to an arc in a Petri net. The rule was derived from the
TGG-rule presented in Fig. 50 by removing the ++ labels from all elements
that belong to the project domain model. Note that although TGG-rules are
bidirectional and no direction of a transformation is favored, a graph trans-
formation rule transforming a model that is drawn on the left-hand side to a
model drawn on the right-hand side is often called a forward rule.

5.1 Generative Approach 51

:CorrNode2

:Out :Transition

:In :Place

:Connection :Arc

source

target

source

target

++

++

++

++

:PetriNet

:CorrNode2

:CorrNode3

++
++ ++

Figure 59: A forward graph transformation rule

In contrast to the forward rule, a graph transformation rule which handles
the transformation from a model drawn on the right-hand side to a model drawn
on the left-hand side, i. e., in our case from a Petri net to a project, is called
reverse or backward rule. It is derived from the TGG-rule in the same way as
the forward rule: we just remove the ++ labels from all elements that belong
to the model domain rendered on the right-hand side, i. e., from the elements
of the Petri net. It is presented in Fig. 60.

:CorrNode2

:Out :Transition

:In :Place

:Connection :Arc

source

target

source

target

++
++

++

:PetriNet

:CorrNode2

:CorrNode3

++
++ ++

Figure 60: A reverse graph transformation rule

The third rule derived from the TGG-rule is responsible for the correspon-
dence analysis between the involved models, i. e., for model integration. The
rule is executed in the case that both models already exist and only the in-
terrelation between the models has to be established, i. e. the rule creates the
correspondence nodes and the traceability links where possible. The graph
transformation rule for model integration is derived by removing all ++ labels
from all elements that do not belong to the correspondence model. This graph
transformation rule is called relation or correspondence rule and is shown in
Fig. 61.

Up to now, the graph transformation rules derived can be applied as long as
a valid matching is found. In particular, this means that we could apply a rule
over and over again to the same matching. For example, a repeated application

52 5 REALIZATION

:CorrNode2

:Out :Transition

:In :Place

:Connection :Arc

source

target

source

target

:PetriNet

:CorrNode2

:CorrNode3

++
++ ++

Figure 61: A correspondence graph transformation rule

of the forward rule from Fig. 59 to the same matching will introduce many arcs
between the same transition and place. This neither makes sense nor does this
reflect the intended behavior resp. semantics of TGGs.

In order to implement a correct behavior of the TGG-rules, we have to mark
already mapped nodes within a transformation task. One alternative would be
to add an attribute to the classes of the involved meta-models. However, this
means that the meta-models have to be changed which is not always possible or
wanted. In addition, a single attribute will not allow the model to be involved
in different transformations. Another alternative would be to check for already
assigned correspondence nodes. But, once again this solution will not allow the
model to be involved in different transformations. Therefore, we have decided
to realize the marking as a set of already handled nodes within a transformation
task.

The derived forward graph transformation rule including the marking facil-
ity is shown in Fig. 62. The marking set is implemented using handled links.
For example, in the forward rule from Fig. 62 it is checked whether the Con-
nection node is not yet matched using a negative link between the Task node
and the affected Connection node. If no such negative link exists, i. e., if the
negative application condition evaluates to true, a valid match is found and the
affected node is marked by creating such a link. In addition, the created Arc
node is also marked as already handled. For a unidirectional transformation
this will be not necessary. However, our transformation algorithm can be used
for incremental transformations in both directions. For this reason, the han-
dled nodes of the Petri net are also marked. The newly created handled links
prevent matching these nodes another time by the same transformation task.

Another extension to the derived graph transformation rule are the links
between the correspondence nodes. Due to the construction principle of our
TGG-rules, each rule has at least one correspondence node which has to be
already present for a successful application of the rule. This correspondence
node is a necessary prerequisite for the application of the rule and therefore, the
rule can be only applied if the required correspondence node was already created
in a previous transformation step. Additionally, each successful application of a
rule results in at least one additional correspondence node. As a consequence,

5.1 Generative Approach 53

:CorrNode2

:Out :Transition

:In :Place

:Connection :Arc

source

target

source

target

++

++++

++

:PetriNet

:CorrNode2

:CorrNode3

++
++ ++

:Task
++succ

succ ++

++
handled

handled

++
handled

Figure 62: The extended forward graph transformation rule

the set of all TGG-rules implies a particular implicit execution order of the
rules. This observation can be exploited to select only likely candidates for
the rule application within an optimized transformation process such that we
can apply a local searching strategy reducing the costs for the required pattern
matching drastically. For this purpose, the execution order of the rules is stored
and made explicit using the succ links.

In order to reduce the costs for pattern matching and in order to make
our algorithm incremental we have to take the extended correspondence model
with the succ links into account. With the additional links between the cor-
respondence nodes, the correspondence model can be interpreted as a directed
acyclic graph (DAG). It is a graph rather than a tree due to the fact that rules
are allowed to have more than one correspondence node as a precondition (cf.
Fig. 62). The graph is acyclic since in a rule application, we never connect
already existing correspondence nodes by a link.

In Fig. 63 an overview of the realized incremental algorithm is shown. The
presented algorithm comprises several activities which in turn are implemented
using the aforementioned graph transformation rules. The combination of an
activity diagram with embedded graph transformation rules is also called a
story diagram [43]. The story diagram is derived automatically from a TGG-
rule. In order to execute the derived story diagram, we automatically generate
Java code from it using Fujaba’s code generation facilities. Finally, this code is
compiled to an executable format.

The incremental transformation and update algorithm traverses the corre-
spondence nodes of the DAG using breath-first search. For each correspondence
node the algorithm checks whether an inconsistent situation has occurred. This
is done by retrieving an applied rule (find applied rule) and checking whether
it still matches to the pattern structure (check pattern structure).

If the rule cannot be matched anymore, e.g., due to the deletion of a model
element, we have found an inconsistency. In that case, the algorithm has to undo
the applied transformation rule (undo rule application). This is achieved by
deleting the correspondence node and all created elements. Note that by delet-

54 5 REALIZATION

check
pattern structure

undo
rule application

propagate
attribute change

execute ruleexecute rulefind applied rule

[found]

[inconsistent]

[consistent] check
attribute value

[not found]

[inconsistent]

[consistent]

Figure 63: Incremental rule application

ing the correspondence node the precondition for all successors of the deleted
correspondence node will not hold anymore. As a consequence, this leads both
to the deletion of the succeeding correspondence nodes and the elements refer-
enced by the deleted correspondence nodes.

In the case that the structure of the applied rule still holds and only an
attribute constraint evaluates to false (check attribute value), it is sufficient to
propagate the attribute value change in the current transformation direction
(propagate attribute change). If all old rule applications have been checked,
the algorithm searches for new model elements and transforms those elements
according to the triple graph grammar specification (execute rule). Note that
the transformation is executed as long as rules are applicable which is indicated
by a for-each activity (execute rule).

The presented incremental algorithm can be used for unidirectional model
transformations as well as for bidirectional model transformation and model
integration. We can further optimize our incremental algorithm if the involved
models support change notifications. In that case, the presented transformation
algorithm starts to traverse the DAG at the correspondence node connected to
the modified element and not at the root node.

In order to support incremental model synchronization enabling round-trip
engineering between models, we have extended the presented algorithm by par-
tial pattern matching and automatic completion facilities. This enables the
reuse of nodes and allows us to create the missing parts only within a partially
matched pattern. However, we are not going into details here and refer to [3]
for an elaborate presentation of these extensions.

5.2 Interpreted Approach

As we have seen in the compiled approach, the basic task for transforming one
model into another or for synchronizing two models is matching parts of the
TGG-rules with the models and then create the remaining parts of the rule in
the models.

5.2 Interpreted Approach 55

5.2.1 Forward Transformation

We explain the basic idea of this mechanism for the forward transformation of
one model into another. To this end, let us consider the models and the rules
from Sect. 2.3 again where we transform a Component Tools project into a
Petri net, where we start from the model as shown in Fig. 64.

:Project

:In

:Track

:Out

:Connection

:In

:Track

:Out

:Connection

:In

:Track

:Out

source

target

source

target

Figure 64: A project

For the transformation, we start with generating the start situation as shown
in Fig. 65, which is the same situation as in Fig. 23. We only marked some
nodes and links with an asterisk. This indicates that we have processed and
mapped these elements already by a rule. In this case, we have used the axiom.
Now, the transformation proceeds by finding a rule which maps to the existing
nodes. For example, we can map the rule for Tracks as shown in Fig. 11. The
black nodes and links (rules of the left-hand side of the rule) of this rule map to
nodes and links which are marked with an asterisk already. The green nodes of
the TGG-rule in domain project map to the corresponding nodes of the project
which are not yet marked with an asterisk. The green nodes of the TGG-rule
in domain corresp and petrinet cannot be mapped. This mapping is shown in
Fig. 66.

Since all elements of domain project of the TGG-rule could be mapped to
nodes of the project, the rule is applicable, and we can generate the nodes

56 5 REALIZATION

:Connection

:In

:Track

:Out

:Connection

:In

:Track

:Out

:Pr2PN :PetriNet

:In

:Track

:Out

:Project

target

source

target

source

* * ** *

Figure 65: Start situation for transformation

5.2 Interpreted Approach 57

:Connection

:In

:Track

:Out

:Connection

:In

:Track

:Out

:Pr2PN :PetriNet

:In

:Track

:Out

:Project

target

source

target

source

* * ** *

:IP2Pl

:Cp2PN

:OP2Tr

:Pr2PN

:Place

:Transition

:Arc

source

target

source

:Track

:In

:Project :PetriNet

:Out

Figure 66: A matching TGG-rule

58 5 REALIZATION

corresponding to the green nodes of the TGG-rule from domain corresp and
petrinet. The result is shown in Fig. 67. Note that now, all nodes which where
mapped to the TGG-rule are also marked with an asterisk.

:Pr2PN :PetriNet

:In

:Track

:Out

:Place

:Transition

:IP2Pl

:Cp2PN

:OP2Tr

:Arc

:Connection

:In

:Track

:Out

:Connection

:In

:Track

:Out

:Project

target

source

source

target

source

target

* * ** *

* *

* * *

**

* *

*

*

*

*

*

*

**

*

*

*

*

*

* *

*

*

*

Figure 67: Application of the TGG-rule

Now, we could proceed matching the next TGG-rules. Since this proceeds
along the lines discussed in Sect. 2.4, we do not show theses steps in detail
again. The transformation ends, if we cannot match any TGG-rule anymore;
the transformation was successful, if all nodes of the source model have been
mapped, i. e., no unmarked node in the source model is left over. Moreover,
we need to check all the constraint nodes that have been generated during the
transformation process.

5.2.2 More Details

One important question in the interpreted approach is to find matching TGG-
rules efficiently. Therefore, we need to know where to start searching for match-
ing rules. To this end, we use the front-line. This is defined as the set of all
links starting from an already mapped node (marked by an asterisk), but which
are not yet mapped. In Fig. 65 and 67, the front-lines are also indicated by
a red bold-faced line. When we match a TGG-rule, the links of the current
front-line are the ones which are mapped to green links attached to a black

5.2 Interpreted Approach 59

node of a TGG-rule. This is where we start to match a TGG-rule. Typically,
there are not many different rules for such links so that we do not need to try
many rules before finding a matching one.

Of course, there is the possibility that different rules match at the same
links. In this case, there is non-determinism. There are different ways to deal
with non-determinism. First of all, we can consider the constraint nodes for
resolving the non-determinism and for selecting the TGG-rule with the best
chance for a match. This might exclude some TGG-rules right away and, this
way, resolve non-determinism and increase efficiency. Another way of dealing
with non-determinism is backtracking; this, however, can be very inefficient.
Therefore, in our applications, we designed the TGG-rules in such a way that
non-determinism does not occur. But a theory – similar to a theory on deter-
ministic push-down-automata and LR(k)-grammars in classical formal language
theory – is still missing.

An important technical issue is marking of the already mapped nodes. One
might be tempted to add a special attribute in the classes of the source and
target model. But, this is not possible because we do not want to change
the meta-models of the transformed models just for transformation purposes.
Moreover, the same model might be involved in several transformations, so
that a single attribute would not be enough. Therefore, the marked elements
of a model are maintained as a set in the transformation engine. Moreover, for
mapping a rule to a model, we need to navigate trough the model; often it is
convenient to navigate links backwards even if the link is directed. To this end,
we use the EMF cross referencing mechanism, which allows the interpreter to
navigate links in both ways.

5.2.3 Other Scenarios

For the backward-transformation and the integration scenario, the interpreted
approach for TGGs works in the very same way as explained in the forward-
transformation. The only difference is, which domains need to be matched to
the existing models and which are generated. The synchronization scenario is
a bit more involved. Since the matching can be done in all domains; and the
rest will be generated. The question is what does it mean to match sufficiently
in order to generate the rest. This clearly depends on the field of application
and there needs to be some metric which reflects this sufficient matching. The
matching algorithm itself, however, is the same as for the other scenarios. In
some cases, it might happen that an earlier matching is destroyed since in one
or both models some nodes have been deleted. In this case, it might be better
to not generate the missing elements, but to delete all the other elements of
that rule from both models. Again, it depends on the field of application and
there needs to be a metric for deciding to either delete the remaining elements
or whether to add the missing elements.

60 6 TOOL SUPPORT

6 Tool Support

As outlined in the previous section, there exist two different approaches for
the execution of the TGGs. In this section, we present the implemented tool
support for both approaches. The tool support for the generative approach is
presented in the first subsection. In the second section, the tool support for the
interpreted approach is presented. In the last section, we present a technique
which allows both tools to interact with models that are based on different
technologies.

6.1 TGG-Compiler

The TGG-compiler represents the generative approach which has been imple-
mented in the Fujaba Tool Suite9. The available tool support includes an editor
for the visual specification of the TGG-rules, a component for the automatic
extraction of the graph transformation rules, and an engine for the incremental
execution of these rules.

For the visual specification of TGG-rules we use the TGGEditor presented
in Fig. 68. This editor is implemented as a Fujaba plug-in and ensures con-
formance to the source, the correspondence, and the target meta-models. For
this purpose, the required meta-models have to be specified in Fujaba as class
diagrams. In addition to the editor, there is also a plug-in implementing the
specification by example approach. This plug-in enables the specification of
example pairs from which it synthesizes TGG-rules. The automatically synthe-
sized rules can be further refined using the editor.

Figure 68: TGG editor

9see www.fujaba.de

6.2 TGG-Interpreter 61

In order to execute the specified TGG-rules, we derive from each TGG-rule
corresponding graph transformation rules. From these automatically derived
graph transformation rules, we generate Java code using Fujaba’s code genera-
tion facilities. In order to execute the transformation, we compile the generated
code and bundle it into a single Jar archive file. In addition, the Jar file has to
provide a configuration file with listed rules. The archive represents the catalog
of rules defining the TGG. Once the catalog is available, model transformations,
model integrations, and model synchronizations can be carried out.

The first step to execute one of the scenarios is to setup an appropriate task.
For this purpose, we have to name the task and select the catalog containing
the compiled TGG-rules. Thereafter, we have to select the source and/or the
target model. For example, in a transformation scenario, we can select one
domain as a source model and transform it initially to a target model of the
other domain. Or, we can select a model from the other domain and transform
it in the reverse direction. If we select two models, both models are checked
for corresponding parts and the related parts are connected by correspondence
nodes. This corresponds to the model integration scenario. For synchronization
purposes, the different tasks can be re-executed each time a model changes.

The execution of the TGG-rules is performed by the two Fujaba plug-ins
MoTE and MoRTEn. MoTE is the abbreviation for Model Transformation
Engine. It is the core library for the execution of TGGs and can be also
used without Fujaba. MoRTEn is the abbreviation for Model Round Trip
Engineering. MoRTEn integrates the MoTE library into Fujaba and provides
a graphical user interface to setup and control the execution tasks.

MoRTEn is intended to be used to test a specified model mapping during
development. After a mapping is specified and tested, it can be integrated into
any Java-based software tool with Fujaba-compliant meta-models or appropri-
ate model adapters (cf. section 6.3) using the MoTE library. An example for
such an integration is presented in [17] where Matlab/Simulink models are auto-
matically transformed to pattern specifications by utilizing the MoTE plug-in.

6.2 TGG-Interpreter

In contrast to the generative approach, the interpreted approach is implemented
using the emerging technology of the Eclipse platform [9]. In particular, the
tool support comprises a visual editor for the specification of TGG-rules and
an interpreter engine in order to execute the specified TGG-rules. Both tools
are based on the Eclipse Modeling Framework (EMF) [10].

The reason for using EMF as an underlying technology is that this technol-
ogy is widely adopted and many modeling tools are using EMF as a basis for
their own meta-model implementations. As will be outlined later in section 6.3,
this is indeed not a hard requirement for the specification and application of
TGG-rules, but it is quite advantageous since the model instances can be ac-
cessed directly and in a quite uniform way.

Another reason for using the EMF technology is the fact that EMF is sup-
ported by many other projects and tools. For example, the Graphical Mod-
eling Framework (GMF) [11] enables to generate fancy graphical editors from

62 6 TOOL SUPPORT

EMF meta-models almost automatically. This facility was used to generate
a graphical TGG-editor for the interpreted approach. The generated editor
was enhanced by further features increasing the usability of the editor. For
example, when selecting a particular node, the editor proposes to create fur-
ther nodes that are potentially reachable from the selected node. This eases
the specification of TGG-rules and makes it more comfortable. A screenshot
of the generated editor is shown in Fig. 69. In this editor, there are no swim-
lanes for the representation of the different domains. Rather, the domains are
represented as special domain nodes. The membership of a node to a partic-
ular domain is established by a link between the node and a domain node (cf.
domain nodes on the bottom).

Figure 69: The generated TGG-editor for the interpreted approach

The TGG-rules specified within the editor are used by the TGG-interpreter
engine to perform transformations of EMF instance models. For this purpose,
the specified TGG-rules are stored using EMF’s default XML persistence fa-
cilities. In addition, the interpreter has to be configured step by step using a
configuration wizard. A configuration provides details in order to start a trans-
formation. The configuration consists of the XML-based rule definitions stored
by the editor and a start context with a source and target domain. After a
valid start configuration is provided, the transformation can be executed.

The TGG-interpreter supports the transformation of a source model into a
target model, reusable nodes, a basic set of attribute constraints, i.e., string,
integer, and boolean literal attribute values as well as simple attribute con-
straints specifying the equality of two attribute values. The TGG-interpreter
is still under development and therefore, model integration and model synchro-

6.3 Tool Adapter 63

nization are not supported yet. But it should be easy to extend them. Also, an
integration of OCL for the specification of more expressive constraints is not
yet completed. However, these additional capabilities are under development
and will be provided in future releases.

6.3 Tool Adapter

In the previous two sections, we have presented the implemented tool support
for the generative and the interpreted approach which are both based on differ-
ent technologies. In the generative approach, i.e., the TGG-compiler, it is nec-
essary that the meta-models are implemented according to the rules of Fujaba.
In the interpreted approach, i.e., the TGG-interpreter, it is necessary that the
meta-models are implemented according to the rules of EMF. The compliance
with these requirements allows navigating between model elements, accessing
and modifying model elements, as well as creating new model elements. These
kind of requirements are fundamental for the implemented algorithms in both
tools – if a meta-model implementation does not meet these requirements, the
underlying algorithms will not work with that model at all.

However, there are modeling tools that do not meet this requirement and
do not provide a Fujaba or EMF compliant implementation of their meta-
models. Of course, the tool’s meta-model implementations can not be changed.
In addition, instead of following some other standard implementation for the
access of their models, the tools often do not publish their underlying meta-
models but rather provide a rudimentary Application Programing Interface
(API) for this purpose only. In the worst case, i.e., if the meta-models are not
available, a conceptual meta-model has to be reverse engineered from the API.

In order to allow our algorithms to interact with such models anyway, we
propose to use the adapter design pattern [14]. The adapter design pattern
converts an interface of a class into an interface which other clients expect, i.e.,
the adapters let the interpreter resp. compiler work together with the models
of the proprietary tools.

In Fig. 70, an overview of the proposed tool adapter approach is presented.
In the upper part of Fig. 70, the relations between the TGG-rules and the
involved meta-models are shown. The specified TGG-rules are utilized by a
TGG-engine, which could be either an interpretative engine or an engine exe-
cuting the compiled TGG-rules. In the bottom part of Fig. 70, a transformation
scenario is shown. In particular, the TGG-engine transforms model A to model
B which are concrete instances of their corresponding meta-models.

In the presented transformation scenario in Fig. 70, the meta-model A has
a compliant implementation that fulfills the requirement of the used TGG-
engine. Therefore, the TGG-engine is able to access model A directly. In
contrast to that, the meta-model B has only a proprietary implementation. In
order to perform the transformation anyway, an adapter meta-model B’ with
an engine compliant implementation is introduced. Due to this intermediate
adapter implementation, the engine modifies model B indirectly by performing
all operations on the compliant adapter model B’ which in turn delegates the
access operations to the proprietary model B.

64 6 TOOL SUPPORT

Compliant Impl. Proprietary Impl.Adapter Impl.

TGG-Engine Model B’ Model B

Metamodel B’ Metamodel B

Correspondence
Metamodel

TGG-RulesTGG-RulesTGG-RulesMetamodel A

Model A

Correspondence
Model

<<instance of>> <<instance of>> <<instance of>>

<<uses>> <<uses>>

<<input>>

<<input>>

<<output>>

<<output>>

<<links to>>

<<links to>>

<<uses>>

<<instance of>>

<<references>>

<<adaptation>>

Figure 70: Overview of the tool adapter integration

In order to implement a compliant model adapter, either Fujaba’s or EMF’s
meta-model facilities can be used in order to specify the involved meta-model.
From this meta-model specification, the implementation can be derived auto-
matically using the built-in code generation in Fujaba or, respectively, EMF.
Up to this point, the automatically derived meta-model implementation does
not provide any access to the proprietary meta-model. In order to establish
such a linkage to the proprietary meta-model, we have to extend and modify
the generated meta-model implementation manually using the adapter pattern.
For this purpose, we remove all attributes from the generated code and replace
the generated access method implementations using the available API for the
proprietary meta-model. Note that we replace the method implementations
without changing the method signatures in order to preserve the desired inter-
face for the TGG-engine.

Following the described process, we have implemented model adapters in
several projects, e.g., for an automata meta-model and a Matlab/Simulink
meta-model [17]. The resulting model adapter implementations are stateless
with lazy object initialization, i.e., the adapter objects are created only on de-
mand. Additionally, the realized adapters keep a list of already adapted model
elements and reuse them each time the model element is revisited. Thus, a
model element is always represented by the same adapter object and adapter
object identities are preserved. This guarantees a fast access to already adapted
model elements and reduces at the same time the number of needed adapter
objects. Of course, in the worst case, i.e., if all model elements have to be ex-
amined, this will result in one adapter object for each adapted model element
anyway. Here, some further optimizations concerning the adapter implementa-
tions are possible.

The implementation of a model adapter is a convenient way in order to
bridge the technology gaps between different tools and their meta-models. The
implementation of an adapter can be further automated, if the meta-models
that are to be adapted conform to some standard or implementation guidelines.
For example, adapters for meta-models that are based on the Java Metadata
Interface (JMI) can be generated fully automatically from their specification.

65

7 Related Work

In this section, we give an overview of the related work concerning model trans-
formation, model integration and model synchronization. In addition, we dis-
cuss approaches which ease the specification of mappings resp. transformation
rules in order to increase the usability.

7.1 Model Transformation

Motivated by OMG’s Request for Proposal (RFP) on Query/Views/Transfor-
mations (QVT) [34], model transformations have been put into the focus of
many research activities. Meanwhile, a first version of the Final Adopted Spec-
ification [35] is published. In this specification, incremental model transforma-
tions are an important issue. However, up to now there are just two imple-
mentations for the operational part of QVT [7, 13]. These implementations do
not support incremental model transformations for synchronization purposes.
A prototype supporting incremental model transformations is the Model Trans-
formation Framework (MTF) [20] developed by IBM. The prototype implemen-
tation of the declarative part of QVT is able to synchronize node addition and
removal, however, MTF lacks support for defining custom constraints. Unfor-
tunately, so far, a full synchronization is therefore not possible [24]. In addition,
there is no performance data nor any publication describing the used approach
available.

However, beside QVT there is a large number of approaches for model trans-
formation – each for a special purpose and within a particular domain with its
own requirements. Here, we can only give a brief overview and refer to [8] for
a survey.

A well-known approach for model transformation is XSLT [48]. It is used for
the transformation of models represented as XML documents. Hence, a model
has to be exported to this representation and is then transformed in one step.
Incremental change propagation is therefore not supported. In addition, the
model transformation has to be expressed using the concepts offered by XML
and XSLT which is quite verbose and hard to read.

Another class of transformation approaches comprises visual transforma-
tion languages which are based on the theoretical work on graph grammars
and graph transformations. These approaches interpret the models as graphs
and the transformation is executed by using graph rewriting techniques. Exam-
ples for model transformation approaches based on graph grammars and graph
transformation include VIATRA [45] and GReAT [47].

VIATRA is a framework for the definition and implementation of trans-
formations in the context of transformation-based verification and validation.
In this framework, rules are specified visually using the UML notation. From
this specification unidirectional model transformers are derived. Similar to the
XSLT approach, the input models for the transformers have to be exported to an
XMI format. The result of the transformation is once again an XMI document.
In-memory model transformations as described in [27], bidirectional transfor-
mations, traceability, and consistency maintenance between the transformed

66 7 RELATED WORK

models are not supported. However, in [46] some initial ideas on incremen-
tal graph transformations for increasing the performance of the transformation
mechanism have been presented.

The GReAT model transformation system offers an operational specification
technique based on graph rewriting for complex domain-specific model trans-
formations. It offers language features for an explicit control flow with input
and output parameters for passing objects to the transformation rules. How-
ever, GReAT supports only unidirectional transformations in a batch-oriented
way. No further traceability information about the current transformation is
provided. This prevents both incremental transformations and any consistency
maintaining activities between the models after an applied transformation.

A feature shared by all mentioned approaches is that the transformation
must be specified for each transformation direction separately. Hence, these
approaches are not well suited for the specification of bidirectional transfor-
mations. A bidirectional transformation approach is BOTL [32]. It offers a
UML-like notation for rule specification comparable to graph transformations.
Like the two other approaches, the transformation is batch-oriented and not
incremental.

The discussed graph grammar based approaches do not provide any explicit
traceability information about the model transformation. This prevents both
incremental transformations and consistency maintaining activities for model
synchronization after an applied transformation. In contrast to that, triple
graph grammars are a particular technique tuned to the specification and exe-
cution of incremental transformations in both directions.

Triple graph grammars were motivated by integration problems between
different tools where interrelated documents have to be kept consistent with
each other [4, 29, 30]. In this field, triple graph grammars are used for the
maintenance of the required traceability links between different document ar-
tifacts. In [4] the transformation algorithm operates interactively. In contrast
to our approach, the transformation algorithm therefore relies heavily on the
guidance of the user which is not practical if very large models have to be trans-
formed. The incremental transformation approach in [21] is triggered by user
actions like creating, editing, or deleting elements. However, this requires the
specification of all possible user actions and appropriate activities for the up-
dates. Although the specification is done visually using graph grammar based
techniques and is therefore much more comfortable than ad-hoc programming,
the required specification effort increases with the number and granularity of
the available user actions. Due to this operational characteristic, the overall
consistency of the approach is difficult to guarantee. In addition, a complete
model transformation from scratch is not supported whereas our approach han-
dles both cases. However, some of the work served as a starting point for our
approach. In particular, we rely on the proposed attribute update propagation
techniques [4, 29] and the correspondence dependency introduced by [30].

7.2 Model Integration 67

7.2 Model Integration

Model integration means different things to different people. For example, the
integration of models is often seen as a process where a single model is created
from two or more models. In the domain of model management, this kind of
integration is also referred to as model merging [5, 42]. In distinction, model
integration as presented in our approach does not yield a new single model
in one particular formalism. Instead, it leaves the given models in their own
formalisms and establishes a correspondence mapping between them only. Once
again, in the domain of model management, this kind of model integration is
defined by a match operation: given two models as input a mapping between
both models is calculated and returned as output [5, 42].

The closest related work in the field of model integration similar to our
understanding is the work on tool integration in [4, 30]. This is quite obvious,
because the performed tool integration is heavily based on the integration of
the produced documents which can be seen as models, too. The document
integration in turn is achieved using the TGG-approach.

A quite prominent tool for defining mappings between two models is the
ATLAS Model Weaver (AMW) [12]. The main idea behind model weaving is
to support modelers to establish links between individual model elements of
models or meta-models. These links represent a mapping between the models
resp. meta-models and can serve as input for further operations. Model weaving
can be performed manually by the user [12] or automatically through some user-
defined mapping operations or heuristics [12, 39]. In contrast to that, in our
approach the mapping is specified explicitly and desired operations for checking
and creating the relationships are derived from this specification automatically.
In addition, in our approach, the specification of such mappings can be done in
the concrete syntax of the models, whereas the relationships resp. links in [12]
have to be defined on the abstract syntax representation of the models.

7.3 Model Synchronization

A classification of the model synchronization problem and an accompanying
synchronization approach between a feature model and its specializations is
given by Hwan et al. in [24]. In their work, the synchronization approach
is based on traceability links between the interrelated models. These links are
introduced during the generation of an initial specialization by cloning the orig-
inal feature model. After the traceability links are constructed, they are used
to propagate changes made in the feature model to the corresponding special-
ization models, i.e., the model synchronization works in one direction only. In
addition, due to the nature of the presented model synchronization problem,
the introduced traceability links represent one-to-many relationships. As the
authors admit, this kind of synchronization is usually easier to implement than
those involving many-to-many relationships. In contrast to that, our synchro-
nization approach is capable of handling many-to-many relationships between
elements of models in different notations as well as in different directions.

Ivkovic and Kontogiannis developed an approach for model synchronization

68 7 RELATED WORK

which is based on implicit traceability relations, i.e., the relations are defined
and encoded between the meta-models rather the interrelated models [26]. This
prevents fine-grained relations between models and restricts the approach sig-
nificantly. Moreover, in their approach, special graphs for the purpose of model
synchronization have to be derived from the meta-models. In addition, re-
spective modifications represented as atomic graph operations on nodes and
edges like insert, delete, modify, etc., have to be specified and implemented. In
order to synchronize two models, the operations applied to the source model
are traced and transformed to corresponding operations for the target model.
Then, the transformed operations are executed on the target model. In a final
step, an equivalence relation checks whether the synchronization was executed
successfully. For the definition of a model synchronization between two models
seven steps have to be accomplished. This is too complex if customizations
of the model synchronization should be allowed to end users. Moreover, the
authors agree that in practice implicit model synchronization will not suit all
synchronization scenarios.

Hearnden et al. extend a declarative logic-based transformation engine in
order to incrementally synchronize a target model with source model changes
[22]. The presented approach records a transformation execution and maps
changes in the source model to the execution record. This enables the calcu-
lation of necessary updates of the target model in order to keep both models
consistent to each other. The solution comes at the cost of a permanently
maintained transformation execution context. For large transformations, fur-
ther optimizations of the extra needed space for the execution context have to
be considered. In addition, it is not clear whether a bidirectional synchroniza-
tion can be executed on the same execution record or if one execution record for
each transformation direction is needed. However, utilizing model transforma-
tions for synchronization purposes is quite obvious and seems to be a promising
approach.

Another set of related work deals with the synchronization of a model with
its code. There are many tool environments which generate a code skeleton
out of class diagrams, or which retrieve a class diagram from code and try
to keep them consistent to each other [7, 25, 37]. However, in most current
tools this synchronization is achieved in an ad-hoc and hard-coded manner.
For this purpose, often changes to one common model are allowed only and
both, the code and the model, are seen as special views on that model. The
synchronization is achieved by utilizing some concepts like the Model-View-
Controller paradigm [38] to update the views if the model changes. However,
this approach does not allow to adapt the mapping between the code and the
model to user or enterprise specific needs.

Other approaches for automatic synchronization propose to use a combi-
nation of forward and reverse engineering techniques that is also referred to
as round-trip engineering [1, 23]. The main drawback of this approach is that
for a given forward engineering function an inverse function for reverse engi-
neering has to be derived. This is only possible if the model-to-code mappings
are bijective. However, this is rarely the case [41]. In addition, this approach
does not work anymore if a developer refines the implementation by completing

7.4 Usability 69

the generated skeleton code and makes thereafter some changes to the model
– the forward engineering step will overwrite the manual modifications. In a
round-trip scenario, the manual modifications should be preserved.

7.4 Usability

In most visual approaches for model transformation, e.g., [32, 45, 47], model
transformations are specified over the abstract syntax of the source and tar-
get languages described by the corresponding meta-models. Although such a
visual notation for model transformations has the advantage of representing
the patterns of the source and target models in one diagram, the drawback
of this approach is that the meta-model based representation becomes quite
verbose for non-trivial model transformations. In order to prevent scattered
specifications, Bettin [6] presents some ideas for a more compact representation
of meta-models. Based on this concise meta-model representation, a possible
notation for the specification of a model transformation is proposed. However,
the paper gives only some rough ideas and a quite simple example in order to
motivate the usage of a more compact visual syntax for model transformation.
Since more elaborate examples are missing and no practical experience with the
proposed approach has been made, it is arguable if the approach will be useful
in practice at all.

Baar and Whittle investigated how model transformations rules can be made
much more compact and easier to read by using the graphical syntax of the
involved modeling languages [2]. Their approach conforms to our idea of spec-
ifying TGG-rules in the graphical syntax of the modeling languages. However,
in contrast to our idea where the graphical editor for the transformation rules is
generated automatically from the graphical editors of the modeling languages,
in [2] the meta-models and the graphical rendering of the involved languages
have to be adapted to the imposed requirements manually. In addition, further
graphical objects, e.g., for the representation of abstract classes, have to be de-
fined. As the authors admit, the adaption of the meta-models and the existing
rendering is quite tricky and represents the main bottleneck of their approach.

Wimmer et al. propose a by-example approach for the definition of corre-
spondence mappings between models in the graphical syntax of the modeling
languages and to derive the model transformation rules from this definitions
almost automatically [49]. For this purpose, in a first step, the user has to
provide one or more semantically corresponding models covering the desired
concepts of the modeling languages. In a second step, the user has to define the
correspondence mappings between the elements of the involved models. From
this definition, and an additional mapping between the abstract and concrete
syntax which has to provided as a prerequisite, in the third step, model trans-
formation rules are derived. The presented by-example approach differs from
our approach (cf. Sec. 4.1) in the way the examples have to be designed. In [49],
one example covering all desired concepts of the involved modeling languages,
a user defined correspondence mapping between the elements of both models,
and an explicit mapping between the abstract and concrete syntax are needed
in order to synthesize the model transformation rules. In our approach, differ-

70 8 CONCLUSION AND FUTURE WORK

ent example pairs with some similarities and differences have to be provided.
Although the authors also recommend to provide more but smaller examples in
their approach, the additional user-defined mappings between model elements
are still required. In contrast to [49], in our approach the example pairs are
sufficient. In addition, we do not need an explicit mapping between the abstract
and concrete syntax. The authors also remark that their approach does not al-
low a fully automated transformation rule derivation due to the fact that some
ambiguities can be only resolved by user interaction. In addition, since no tool
support is available yet, it is not clear if the presented ideas also apply to more
elaborated transformation examples than the presented sample transformation.

Another by-example approach for the definition of model transformation
rules was introduced by Varró in [44]. The overall aim of the approach is
comparable to ours, but the concepts differ from each other. For example,
the mappings are defined in the abstract syntax of the modeling languages
whereas our approach uses the concrete syntax. In addition, in the approach
presented in [44], a prototypical mapping has to be established using reference
nodes in order to describe critical cases of the model transformation. These
reference nodes allow to define a one-to-one mapping only. In order to generate
the model transformation rues from the prototypical mapping, additional user
interactions are required. For example, further reference nodes have to be
added. Or, in order to reduce the number of generated rules, the user has to
refine the generated rules manually. Hence, in contrast to our approach, the
transformation rules in [44] have to be developed iteratively, whereas in our
approach the iterative development is rather an option but not a requirement.

8 Conclusion and Future Work

In this paper, we have discussed TGGs as a technology for model transforma-
tion, integration, and synchronization. The focus of this paper is the spirit of
TGGs and on how extensions can be made in a way compatible to their spirit.
Moreover, we have discussed different ways of implementing TGGs and tools
based on these ideas. Some of the extensions proposed in this paper, however,
still need to be implemented in the tools.

Still, there are many interesting open questions – theoretical as well as
practical ones.

• A theory for making TGGs deterministic or – at least – a sufficient con-
dition when the transformations are deterministic is still missing (see
Sect. 5).

• TGGs are very well suited for keeping track of relations among models
that have a similar structure. For models with a quite different structure,
TGGs are not so well-suited. We believe that TGGs could be combined
with other approaches – such as templates, other operational approaches,
or hybrid transformation languages – in order to be more flexible. This,
however, needs more research.

REFERENCES 71

• For the synchronization scenario, we need to use metrics or heuristics
that describe how many elements of a rule need to be mapped in order to
generate the remaining parts. The concrete metrics or heuristics depend
on the field of application. This needs further investigation. Moreover,
there needs to be a mechanism in order to incorporate different metrics
into a transformation resp. synchronization engine.

• TGGs define the relation between two models in a very local way. This is
close to the definition of a structural operational semantics (SOS). There-
fore, this kind of transformation is well-suited for verifying the semanti-
cal correctness of transformations. This also needs further investigation.
Some initial work in this direction can be found in [16, 31].

• Up to now, TGG-rules are quite large compared to their counterpart in
graphical syntax. The reason is that the TGG-rules need to be formulated
in abstract syntax. As discussed in this paper, it is possible to implement
a framework on top of the TGG-engine and EMF, which edits the TGG-
rules in graphical syntax. The implementation of such a tool, however, is
still missing.

QVT relational is an other transformation technology, which has a similar
characteristics as TGGs. Actually, some of the extensions discussed in this
paper have been inspired by QVT. And it turned out that QVT core can be
implemented by the help of TGGs [18, 19]. This shows that TGGs cover the
basic concepts of relational transformation technologies.

References

[1] U. Aßmann. Automatic roundtrip engineering. Electronic Notes in Theo-
retical Computer Science, 82(5):1–9, Apr. 2003.

[2] T. Baar and J. Whittle. On the Usage of Concrete Syntax in Model Trans-
formation Rules. In Sixth International Andrei Ershov Memorial Confer-
ence, Perspectives of System Informatics (PSI), LNCS, pages 84–97, 2006.

[3] J. Backsmeier. Inkrementelle Modellsynchronisation mit Tripel-Graph-
Grammatiken. Master’s thesis, Department of Computer Science, Uni-
versity of Paderborn, Nov. 2006.

[4] S. Becker, S. Lohmann, and B. Westfechtel. Rule execution in graph-based
incremental interactive integration tools. In Proc. Intl. Conf. on Graph
Transformations (ICGT 2004), volume 3256 of LNCS, pages 22–38, 2004.

[5] P. A. Bernstein, A. Y. Halevy, and R. A. Pottinger. A vision for manage-
ment of complex models. SIGMOD Record (ACM Special Interest Group
on Management of Data), 29(4):55–63, 2000.

[6] J. Bettin. Ideas for a concrete visual syntax for model-to-model trans-
formation. In OOPSLA’03 Workshop on Generative Techniques in the
Context of Model-Driven Architecture, 2003.

72 REFERENCES

[7] Borland. Together Architect, 2006. http://www.borland.com/us/products/
together.

[8] K. Czarnecki and S. Helsen. Classification of model transformation ap-
proaches. In Proceedings of the 2nd OOPSLA Workshop on Generative
Techniques in the Context of the Model Driven Architecture, Oct. 2003.

[9] The Eclipse Foundation. Eclipse, 2007. http://www.eclipse.org.

[10] The Eclipse Foundation. Eclipse Modeling Framework (EMF), 2007.
http://www.eclipse.org/emf.

[11] The Eclipse Foundation. Graphical Modeling Framework (GMF), 2007.
http://www.eclipse.org/gmf.

[12] M. D. D. Fabro, J. Bézivin, and P. Valduriez. Weaving models with the
eclipse amw plugin. In Eclipse Modeling Symposium, Eclipse Summit Eu-
rope 2006, Esslingen, Germany, 2006.

[13] France Telecom. SmartQVT: An open source model transforma-
tion tool implementing the MOF 2.0 QVT-Operational language, 2007.
http://smartqvt.elibel.tm.fr.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns, Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[15] A. Geburzi. Synthese von Modelltransformationsregeln aus
Übersetzungsbeispielen. Master’s thesis, Department of Computer
Science, University of Paderborn, Nov. 2006.

[16] H. Giese, S. Glesner, J. Leitner, W. Schäfer, and R. Wagner. Towards Ver-
ified Model Transformations. In D. Hearnden, J. G. Süß, B. Baudry, and
N. Rapin, editors, Proc. of the 3rd International Workshop on Model De-
velopment, Validation and Verification (MoDeV 2a), Genova, Italy, pages
78–93. Le Commissariat à l’Energie Atomique - CEA, Oct. 2006.

[17] H. Giese, M. Meyer, and R. Wagner. A Prototype for Guideline Checking
and Model Transformation in Matlab/Simulink. In H. Giese and B. West-
fechtel, editors, Proc. of the 4th International Fujaba Days 2006, Bayreuth,
Germany, volume tr-ri-06-275 of Technical Report. University of Pader-
born, Sept. 2006.

[18] J. Greenyer. A study of model transformation technologies: Reconciling
TGGs with QVT. Master’s thesis, Department of Computer Science, Uni-
versity of Paderborn, July 2006.

[19] J. Greenyer and E. Kindler. Reconciling TGGs with QVT, 2007. In prepa-
ration.

[20] C. Griffin. Eclipse Model Transformation Framework (MTF). IBM, 2006.
http://www.alphaworks.ibm.com/tech/mtf.

REFERENCES 73

[21] E. Guerra and J. de Lara. Event-driven grammars: Towards the integration
of meta-modelling and graph transformation. In International Conference
on Graph Transformation (ICGT’2004), volume 3265 of LNCS, pages 54–
69, 2004.

[22] D. Hearnden, M. Lawley, and K. Raymond. Incremental model transforma-
tion for the evolution of model-driven systems. In O. Nierstrasz, J. Whit-
tle, D. Harel, and G. Reggio, editors, Model Driven Engineering Languages
and Systems, 9th International Conference, MoDELS 2006, Genova, Italy,
October 1-6, 2006, Proceedings, volume 4199 of LNCS, pages 321–335.
Springer, Oct. 2006.

[23] A. Henriksson and H. Larsson. A definition of round-trip engineering.
Technical report, Linkopings Universitet, Sweden, 2003.

[24] C. Hwan, P. Kim, and K. Czarnecki. Synchronizing cardinality-based fea-
ture models and their specializations. In A. Hartman and D. Kreische,
editors, Model Driven Architecture - Foundations and Applications, First
European Conference, ECMDA-FA 2005, Nuremberg, Germany, Novem-
ber 7-10, 2005, Proceedings, volume 3748 of Lecture Notes in Computer
Science, pages 331–348. Springer, Nov. 2005.

[25] IBM. Rational Rose Developer for Java, Mar. 2007. http://www-
306.ibm.com/software/awdtools/developer/rose/java.

[26] I. Ivkovic and K. Kontogiannis. Tracing evolution changes of software
artifacts through model synchronization. In ICSM ’04: Proceedings of
the 20th IEEE International Conference on Software Maintenance, pages
252–261, Washington, DC, USA, 2004. IEEE Computer Society.

[27] E. Kindler, V. Rubin, and R. Wagner. An adaptable TGG interpreter for
in-memory model transformation. In Proc. of the Fujaba Days 2004, pages
35–38, Darmstadt, Germany, Sept. 2004.

[28] E. Kindler, V. Rubin, and R. Wagner. Component Tools: Integrating Petri
nets with other formal methods. In S. Donatelli and P. S. Thiagarajan,
editors, Application and Theory of Petri Nets 2006, 27th International
Conference, volume 4024 of LNCS, pages 37–56. Springer, June 2006.

[29] A. Königs and A. Schürr. Tool integration with triple graph grammars - a
survey. Electronic Notes in Theoretical Computer Science, 148(1):113–150,
Feb. 2006.

[30] M. Lefering and A. Schürr. Specification of integration tools. In
M. Nagl, editor, Building Thightly-Integrated (Software) Development En-
vironments: The IPSEN Approach, volume 1170 of LNCS, pages 324–334.
Springer Verlag, 1996.

[31] J. Leitner. Verifikation von Modelltransformationen basierend auf Triple
Graph Grammatiken. Master’s thesis, University of Karlsruhe, 2006.

74 REFERENCES

[32] F. Marschall and P. Braun. Model transformations for the MDA with
BOTL. In Proceedings of the Workshop on Model Driven Architecture:
Foundations and Applications, CTIT Technical Report TR-CTIT-03-27,
Univeristy of Twente, June 2003.

[33] OMG. Model Driven Architecture, 2003. http://www.omg.org/mda.

[34] OMG. OMG/RFP/QVT MOF 2.0 Query/Views/Transformations RFP,
2003. http://www.omg.org/mda.

[35] OMG. MOF QVT Final Adopted Specification, OMG Document ptc/05-
11-01, 2005. http://www.omg.org.

[36] OMG. Unified Modeling Language: Superstructure Version 2.0. Object
Management Group, 140 Kendrick Street, Needham, MA 02494, USA,
Aug. 2005. http://www.omg.org/cgi-bin/doc?formal/05-07-04.

[37] Omondo. EclipseUML Free Edition, Feb. 2007. http://www.omondo.com.

[38] E. V. Paesschen, W. D. Meuter, and M. D’Hondt. SelfSync: A dynamic
round-trip engineering environment. In L. C. Briand and C. Williams, edi-
tors, Model Driven Engineering Languages and Systems, 8th International
Conference, MoDELS 2005, Montego Bay, Jamaica, October 2-7, 2005,
Proceedings, volume 3713 of LNCS, pages 633–647. Springer, 2005.

[39] T. Reiter, E. Kapsammer, W. Retschitzegger, and W. Schwinger. Model
integration through mega operations. Workshop on Model-driven Web En-
gineering, 2005.

[40] A. Schürr. Specification of graph translators with triple graph grammars.
In E. W. Mayr, G. Schmidt, and G. Tinhofer, editors, Graph-Theoretic
Concepts in Computer Science, 20th International Workshop, WG ’94,
volume 903 of LNCS, pages 151–163, Herrsching, Germany, June 1994.

[41] S. Sendall and J. Küster. Taming model round-trip engineering. In Pro-
ceedings of Workshop on Best Practices for Model-Driven Software Devel-
opment, Vancouver, Canada, Oct. 2004.

[42] G. Song, K. Zhang, and J. Kong. Model management through graph trans-
formation. In VLHCC ’04: Proceedings of the 2004 IEEE Symposium on
Visual Languages - Human Centric Computing (VLHCC’04), pages 75–82,
Washington, DC, USA, 2004. IEEE Computer Society.

[43] University of Paderborn, Germany. Fujaba Tool Suite, 2007.
http://www.fujaba.de.

[44] D. Varró. Model transformation by example. In O. Nierstrasz, J. Whit-
tle, D. Harel, and G. Reggio, editors, Proc. 9th International Conference
on Model Driven Engineering Languages and Systems, MoDELS 2006,
Genova, Italy, October 1-6, 2006., volume 4199 of LNCS, pages 410–424.
Springer, Oct. 2006.

REFERENCES 75

[45] D. Varró, G. Varró, and A. Pataricza. Designing the automatic transfor-
mation of visual languages. Science of Computer Programming, 44(2):205–
227, August 2002.

[46] G. Varró and D. Varró. Graph transformation with incremental updates.
In R. Heckel, editor, Proc. of the 4th Workshop on Graph Transformation
and Visual Modeling Techniques (GT-VMT 2004), volume 109 of ENTCS,
pages 71–83. Elsevier, 2004.

[47] A. Vizhanyo, A. Agrawal, and F. Shi. Towards generation of efficient
transformations. In G. Karsai and E. Visser, editors, Generative Program-
ming and Component Engineering: Third International Conference, GPCE
2004, Vancouver, Canada, October 24-28, 2004. Proceedings, volume 3286
of Lecture Notes in Computer Science, pages 298–316. Springer, 2004.

[48] W3C. XSL Transformations (XSLT) Version 1.0, November 1999.
http://www.w3.org/tr/xslt.

[49] M. Wimmer, M. Strommer, H. Kargl, and G. Kramler. Towards model
transformation generation by-example. In Proc. of the 40th Hawaii Inter-
national Conference on System Sciences (HICSS’07), Hawaii, USA, vol-
ume 0 of System Sciences, 2007. HICSS 2007., page 285, Los Alamitos,
CA, USA, Jan. 2007. IEEE Computer Society.

