
An Interactive and Scalable Approach to
Design Pattern Recovery ∗

Jörg Niere, Lothar Wendehals
University of Paderborn

Department of Computer Science
Warburger Straße 100

33098 Paderborn, Germany

[nierej|lowende]@upb.de

Albert Zündorf
Technical University of Braunschweig

Institute of Software
Postfach 3329

38023 Braunschweig, Germany

zuendorf@ips.cs.tu-bs.de

ABSTRACT
Reverse engineering is a process highly influenced by as-
sumptions and hypotheses of a reverse engineer, who has
to analyse a system manually, because tools are often not
applicable to large systems with many different implemen-
tation styles. Successful tools have to support an interactive
process, where the engineer is able to steer the analysis pro-
cess by proving certain assumptions and hypotheses. Conse-
quently, the input format of the analysis tool must support
a kind of impreciseness to formulate weak presumptions. In
this paper we present a reverse engineering process based
on fuzzy graph transformation rules. We use graph rewrite
rules in addition with fuzzy logic to detect design patterns
in Java source code. Impreciseness is expressed by assigning
fuzzy values to graph transformation rules and thresholds
are used to look up only firmed occurrences of patterns. Un-
derlying the transformation rules is an object-oriented graph
model providing composition and inheritance, which reduces
the complexity of the rules. We propose a reverse enginee-
ring process starting with imprecise rules and refining and
specifying the rules during the analysis. Preliminary results
applying our process are promising, i.e., we present the re-
sults of detecting design patterns in Java’s Abstract Window
Toolkit (AWT) library.

1. INTRODUCTION
Reverse engineering tries to recover design information from
legacy source code. Simple reverse engineering approaches,
using tools like grep and perl, have turned out as inappro-
priate for most of the interesting reverse engineering tasks,
cf. [6]. More sophisticated results require the analysis of me-
thod bodies using compiler techniques. In such sophisticated
approaches, the program is usually represented as an enri-

∗This work is part of the Finite project funded by the Ger-
man Research Foundation (DFG), project-no. SCHA 745/2-
1.

ched abstract syntax graph, cf. [8]. For the analysis of such
abstract syntax graphs, graph grammars are well suited, cf.
[12, 4]. However, all these approaches face severe scalability
and pattern complexity problems.

First of all, large system sizes of several million lines of co-
de need to be managed. Second, the flexibility provided by
programming languages give different programmers a lot of
freedom to implement a certain pattern in various ways. To
deal with all these implementation variants, a large num-
ber of variant design element detection rules are required.
This large number of rules again leads to a performance and
complexity problem.

To overcome these problems, our approach provides a bund-
le of techniques. We use sophisticated query optimization
techniques for the execution of graph rewrite rules, cf. [10,
1]. We allow super-classes as wildcards for sets of node labels
within graph rewrite rules. A sophisticated rule selection al-
gorithm optimizes the analysis response time by focusing on
the local context of certain pattern indicators. And, instead
of a large number of 100% precise descriptions of each pos-
sible implementation variant for a certain pattern, we use a
small number of somewhat imprecise detection rules, cf. [9].

Our imprecise detection rules may, e.g. only check for some
important implementation fragments that are in common to
many implementation variants. This reduces the number of
necessary pattern definition rules significantly. However, this
advantage is paid by a loss of preciseness. Depending on the
actual implementation variants used in the considered legacy
system, this loss of preciseness may result in false positives,
incorrectly found pattern occurrences. In other cases, certain
implementation variants may not be covered. This impreci-
seness depends on individual programming styles and skills
of the legacy system developers as well as on the applica-
tion domain and the programming language used. To deal
with this impreciseness in a more flexible way, this paper
adds the usage of fuzzy techniques to the pattern definitions
presented in [9]. Each detection rule is equipped with a so-
called fuzzy belief. This value expresses the confidence of the
re-engineer in the rule within the current application con-
text. Furthermore, each rule has a threshold, that restricts
the rule application to cases with reasonable confidence. If a
pattern definition rule relies on intermediate results of other
pattern definition rules, the fuzzy belief of the generated re-

1



sults is computed from the fuzzy belief attached to the rule
combined with the fuzzy beliefs of the intermediate results.

The next section 2 presents the related work concerning
other pattern detection approaches. Section 3 introduces our
fuzzy pattern definitions. Section 4 discusses an sample cata-
log of detection rules for the “Gang of Four” design patterns
[2]. Section 5 gives a brief introduction about our reverse
engineering process. The re-engineer’s interaction with the
process and some results from re-engineering a real world ex-
ample are topics of section 6. Section 7 finally summarizes
our results and shows the direction of our current work.

2. RELATED WORK
Comparable work on reverse engineering of source code has
been reported over the past decade. Harandi and Ning [3]
present program analysis based on an Event Base and a Plan
Base. Events are constructed from source code and plans are
used to define the correlation between one or more (inco-
ming) events and they fire a new event which corresponds
to the intention of the plan. Each plan definition corresponds
to exactly one implementation variant, which leads to a high
number of definitions.

An approach to recognize clichés, i.e. commonly used com-
putational structures, is presented in [12]. The GRASPR sy-
stem examines legacy code represented as flow graphs and
clichés are encoded as an attributed graph grammar. The
recognition of clichés corresponds to the sub-graph isomor-
phism problem, which is NP-complete [7]. Consequently, the
approach is limited to systems of a few thousand lines of co-
de. Real world systems usually exceed this size.

Keller et al. [5] analyze behavior as well as structure and
use the CDIF format for UML to represent the source code
as well as the patterns. Scripts match the pattern’s syntax
graphs on the program’s syntax graph. The reverse engi-
neer has to implement the scripts manually, thus they are
not generated out of the patterns themselves. Such a script
language very quickly becomes large, awkward to read and
difficult to maintain and reuse.

In addition, none of the approaches facilitates the exploitati-
on of the re-engineer’s domain and context knowledge. This
contributes to scalability problems for the process enabled.

3. FUZZY PATTERN DEFINITION
To model fuzzy pattern definitions, we adopt the Fujaba
graph model approach [1, 13]. This approach has been for-
malized using a set-theory approach in [13]. The legacy sy-
stem to be analyzed is transformed by the Fujaba environ-
ment from source code into an abstract syntax graph (ASG)
representation. This graph can be manipulated by graph re-
write rules showing the left- and right-hand side as a single
graph in a UML collaboration diagram like notation.

For the purpose of pattern definitions, we have adapted the
Fujaba notation of defining graph rewrite rules by intro-
ducing special shapes for design patterns artifacts and by
adding fuzzy beliefs to graph rewrite rules, cf. figures 1 and
3. Those pattern definitions can be applied as graph rewri-
te rules to the ASG. Pattern definitions are special graph
rewrite rules in the way that they don’t remove elements

from the ASG. Only annotation elements indicating a found
pattern occurrence are added to the ASG. Each pattern de-
finition rule adds a single annotation element connected by
links to ASG elements. Figure 1 depicts a pattern definition
for the “Gang of Four” (GoF) design pattern Bridge from
[2]. Elements with the stereotype �create� only belong to
the right-hand side of the rule, all other elements belong to
both sides. Annotation elements added to the ASG are de-
picted as oval shaped nodes. Thus already defined patterns
can be combined to new pattern definitions.

b:Bridge
80/50

«create»

operation:Method n:NeighborCall

abstraction implementor

field

references

subClass superClass

calleecaller

methods methods

«create» «create»

abstraction:Class

r:Reference

operationImpl:Method
Boolean abstract = true

implementor:Class
Boolean abstract = true

refField:Attribute

attrs

g2:Generalization

g1:Generalization

superClass

Figure 1: Bridge Pattern Rule

One important feature of the Fujaba graph model is the
support for object-oriented inheritance. In pattern definiti-
ons super-classes may be used as wildcard node labels that
match nodes of all direct and indirect sub-classes. This me-
chanism has already been proposed in Progres, cf. [10].
For example, the Reference node r in bridge may map on a
host graph node with label Reference, MultiReference or Ar-
rayReference, cf. figure 2. Similarly, the NeighborCall node n
matches NeighborCall and Delegation nodes and the Generali-
zation nodes match Generalization or MultiLevelGeneralization
nodes. Thus, the usage of inheritance allows us to replace
3*2*2*2=24 rules with special node labels by a single rule
with the super-class node labels.

«Pattern»
Reference

«Pattern»
MultiReference

«Pattern»
AssignmentToContainer

«Pattern»
WriteOperation

«Pattern»
Assignment

«Pattern»
ReadOperation

«Pattern»
ContainerReadOperation

«Pattern»
ArrayReference

«Pattern»
NeighborCall

«Pattern»
MultiNeighborCall

«Pattern»
Delegation

«Pattern»
MultiDelegation

«Pattern»
Generalization

«Pattern»
MultiLevelGeneralization

«Pattern»
Association

«Pattern»
Composite

«Pattern»
Strategy

«Pattern»
Bridge

Figure 2: The pattern catalog

Constraints on attribute values may be shown as boolean
expressions within the “attribute compartment” of a node.
Crossed out nodes or edges represent negative application
conditions. For example the crossed out Generalization node
g2 in figure 1 represents the negative application condition
that the abstraction and implementor classes must not be
connected by a Generalization relationship. Note, our rules
show some oval nodes with thick border. Such nodes are
so-called trigger nodes. They will be discussed in chapter 4.

2



callee:Methodcaller:Method

callerClass:Classroot:Block

calleecaller

parseTree methods

methodCall:Identifier
String name = callee.getName ()

refField:Attribute

attrs

r:Referencefield

calleeClass:Class

methods

references

«create» «create»

n:NeighborCall
80/50

«create»

Path without (Loop)

Figure 3: Neighborcall Pattern Rule

Figure 3 depicts a pattern definition for the sub pattern
Neighborcall used in the Bridge-pattern definition. It shows
how to analyze dynamic parts of patterns. The NeighborCall
sub pattern describes a single method call between methods
from different classes, where the caller class references the
callee class. To detect such a pattern, method bodies have
to be analyzed. Implementations of those method calls vary
highly. To overcome this problem, only significant parts of
the method bodies’ ASG are described by the pattern defini-
tion. We use paths within the ASG to find these significant
elements. In Figure 3 for example an Identifier with the callee
method’s name is searched within the caller method body.
Additionally, the Identifier must not be contained in a Loop,
so that this is only a single method call.

For the purpose of fuzzy pattern definition rules, this paper
extends the Fujaba rule notation with an implicit handling
of fuzzy beliefs. Each oval design pattern annotation node is
equipped with two implicit attributes carrying a belief value
and a threshold value between 0% and 100%. For example,
the “80/50” inscription of the Bridge node in figure 1 gives
a fuzzy confidence of 80% and a threshold of 50% for that
node/rule. The fuzzy confidence roughly describes the per-
centage of rule applications that due to the estimation of the
rule developer or to the experience reported by historical da-
ta have been successfully applied. The remaining percentage
thus refer to false positives. In our example we assume that
80 of 100 rule applications actual detect a Bridge pattern
while 20 of 100 rule applications mark false positives.

During rule application, the belief of an annotation node is
computed as the minimum of the fuzzy beliefs of all anno-
tation nodes employed in that rule. Let’s consider we apply
the rule of figure 1 and nodes g1, r and n are rated with
fuzzy beliefs 60%, 70% and 65%. These values are combined
with the 80% fuzzy belief of the Bridge node to be created
and the resulting fuzzy belief will be 60%, the minimum of
all these fuzzy beliefs. If the fuzzy beliefs of the matches of
g1, r and n are all higher than 80%, the belief of the Bridge
node would serve as an upper bound for the whole rule: the
overall belief can not top 80%.

Note, a node in the reverse engineering rule may have mul-
tiple valid matching candidates in the host graph that have
different fuzzy beliefs. In that case the candidate with the
maximal fuzzy belief is chosen as match such that the new
annotation created by the rule application uses the most
reliable source of information.

Let us suppose that the fuzzy belief of one of the nodes that
are matched by g1, r and n is very low, e.g. 30%. In that
case the fuzzy threshold of 50% of the Bridge pattern app-
lies. As mentioned the second fuzzy value employed in our
pattern definition rules serves as a threshold that limits rule
application to reasonable cases. If some of the intermediate
results are very unreliable, i.e. a low fuzzy belief, it may not
make sense to waste more computation time and memory
resources on further investigations relying on this uncertain
information. Thus, thresholds are again a means to improve
the scalability of our approach. These thresholds are chosen
by the rule developer based on personal experience or based
on historical data.

Note, during the inference process new design pattern anno-
tation nodes may be created which have a higher fuzzy belief
as already existing similar annotation nodes. This may trig-
ger the re-evaluation of some other rules that formerly used
the annotation node with the lower fuzzy belief. Thereby, for
some rules the threshold will be met and these rules again
create new annotation nodes that may trigger further rule
evaluations. However, the fuzzy belief of an annotation may
never decrease: if a new node is created with a lower belief
than a similar existing one, nothing happens.

4. A CATALOG FOR DESIGN PATTERNS
As stated in the introduction, reverse engineering is natural-
ly an interactive process. Fully automated approaches usual-
ly fail, because the large variety of designs and the high
number of different implementation styles can not all be
recovered by tools in an appropriate time. Current reverse
engineering processes support a re-engineer with a number
of different tools, e.g. all kinds of grep derivatives, which
offer plain information extracted from the software system.
The re-engineer has to combine the extracted information
and make conclusions manually. Other reverse engineering
tools with direct focus on design documents such as Together
Control Center try to detect also relations between classes
based on name conventions such as get-, set- and add-, re-
move-prefixes. The produced document is usually a UML
class diagram but the techniques to extract the information
are comparable with grep technology.

Reverse engineering includes, in addition to rudimentary in-
formation such as classes and their relations, the recovery of
the architecture and behavior of a system and the recovery
of dependencies between certain parts of a system. The lat-
ter are very important during maintenance of a system, be-
cause they show potentially problematic system parts where
changes may have many unanticipated side-effects.

Design patterns introduced by Gamma et al. [2] describe
good design solutions for recurring problems. Thereby, we
use the term design patterns for the certain pattern catego-
ry and the term GoF-patterns (Gang of Four) for the pat-
terns introduced by Gamma et al. Design patterns describe
solutions for more or less complex relations and interactions
between different parts in a software system, usually clas-
ses in object oriented system designs. For example, a Bridge
GoF-pattern is a solution to “Decouple an abstraction from
its implementation so that the two can vary independently”
[2, p. 151]. It is often used for window toolkits, and compri-
ses in its application at least 5 classes where each class has

3



to play a certain role.

Consequently, design patterns are highly suited to provide
dependencies between parts of a software system. For exam-
ple, by detecting a Bridge GoF-pattern in a system during
a reverse engineering task, the dependencies are fixed and
this helps to find possible side-effects of changes later on.
Currently our reverse engineering approach focuses on the
detection of GoF-patterns in Java source code. However, the
approach isn’t limited neither to GoF-patterns nor to Java.
Patterns for different domains are imaginable. The basis for
rule application is an abstract syntax graph representati-
on of the source code. So for different languages the parser
needs to be changed only.

The acceptance and success of a reverse engineering process
does not only depend on its produced results but also on its
usability and scalability, especially in semi-automated pro-
cesses. For semi-automated processes scalability means, in
addition to a complete analysis of thousands or million lines
of code in an appropriate time-range, to produce reasonable
intermediate results quickly. Depending on the intermediate
results a engineer is able to steer the analysis process in an
early stage and thus avoid non-productive or wrong analysis.

The definition of a GoF-pattern consists of the pattern na-
me, an example application, the static structure, the colla-
borations, consequences applying the pattern in a systems
design and some other parts. All parts are described in prose
except the static structure and collaboration, where Gam-
ma et al. used OMT class diagrams resp. collaboration dia-
grams. This informal definition is not sufficient for a tool
supported reverse engineering process. In addition, the in-
formal definition offers many interpretation opportunities,
so that patterns are implemented in many different ways
even in one application.

As a formal description of design patterns, we use fuzzy
graph rewrite rules as described in the previous section. Each
pattern is represented by one rule, whereas each rule creates
at most one new pattern annotation node with a certain
fuzzy belief for each application of the rule.

A cut-out of our patterns and their relations is shown in
figure 4. The arcs with a stick arrow-head represent the de-
pendency relations between the pattern and ASG nodes. The
pattern catalog contains three GoF-pattern definitions, i.e.
the Bridge, the Strategy and the Composite GoF-pattern at
the top of the dependency graph in figure 4. All other pat-
terns are used as sub patterns for composition of those GoF-
patterns. Additional GoF-patterns could be defined by using
the existing sub patterns and possibly defining new sub pat-
terns. The catalog is the result of two analysis processes, the
re-engineering of Java’s AWT and the Java Generic Library
(JGL), and thus adapted to the specific analyzed software
systems.

5. THE RE-ENGINEERING PROCESS
Our approach provides a semi-automated iterative reverse
engineering process, which is illustrated in figure 5 depicted
as a statechart. The rule application, what we call inference
process is described in detail in [9]. Only a brief introduction
of the inference process will be given here.

Strategy
80/50

AssignmentToContainer
80/0

Generalization
100/0

Reference
80/50

MultiDelegation
70/50

Bridge
80/50

Composite
90/50

NeighborCall
80/50

ArrayReference
80/50

ReadOperation
90/0

WriteOperation
90/50

Assignment
90/0

MultiReference
80/50

Delegation
80/50

Association
90/50

MultiNeighborCall
70/50

Attribute Method Inheritance

ASG-Level

Rule-Level

precondition

trigger

MultiLevelGeneralization
100/50

Figure 4: Pattern dependencies

Inference Process

bottom-up strategy

top-down strategy

[change
strategy]

[change
strategy]

parse source code load pattern catalog

create, modify
delete patterns

show (intermediate)
results

start() adapt patterns()

stop()

stop() or
[finished]

ready()

adapt annotations ()

continue() create, modify,
reject annotations

Figure 5: The re-engineering process

The first step in the re-engineering process is parsing the
source code and creating an abstract syntax graph represen-
tation including any kind of additional links, e.g. application-
to-declaration links. In the next step the pattern catalog
which seems to be best adapted for the system will be loa-
ded. Afterwards the re-engineer can modify, add or remove
rules, which is the start of the iterative process. The infe-
rence process starts after all modifications are done.

Figure 4 shows the dependencies between the pattern de-
finitions. This dependency graph is used by the analysis
algorithm of the inference process to determine the order
of rule applications. The algorithm consists of a combined
bottom-up and top-down search. It starts in bottom-up mo-
de at the ASG-level as depicted in figure 6. In this example
the application of the Reference rule is tested for a certain
element of the ASG, the Attribute a. Before the Reference
rule could be applied, two preconditions have to be checked.
These are the existence of a ReadOperation and a WriteOpe-
ration pattern occurrence. To do so, the algorithm switches

4



attrs type

Abstract Syntax Graph

g1:Generalization n:NeighborCall

ro:ReadOperation

a:Attribute

b:Bridge

r:Reference

:... :...c2:Class

Bottom Up

c1:Class

g2:Generalization

wo:WriteOperation

Top Down

Figure 6: Sample inference process

to the top-down mode. Let’s consider the rules for these two
preconditions could be applied. Then the algorithm switches
back into the bottom-up mode and applies the Reference ru-
le. An annotation element indicating a found occurrence of
the Reference pattern is added to the ASG and linked to the
element a. The application of this rule triggers the next rule,
namely the NeighborCall, cf. figure 4. The NeighborCall rule
triggers again the Bridge rule. For the precondition check
the algorithm uses the top-down mode.

For each application of a rule one ore more context elements
of the preceding rule application are given. This prevents the
NP-complete problem of sub graph matching. With context
elements the sub graph matching is localized to only a few
elements of the whole graph.

After the application of the Bridge rule one step in the itera-
tive inference process is done. No other rule is triggered. The
next step of the inference process starts with an element of
the ASG again. The inference process ends, if all elements
from the ASG are checked for application of certain rules.

6. THE RE-ENGINEER’S INTERACTION
Due to the fact, that this is an iterative process, the re-
engineer can interrupt the algorithm each time it is in bottom-
up mode, cf. figure 5. The analysis resides in an consistent
state in the bottom-up mode whereas in the top-down mode
some preconditions of rules may not yet have been checked.
The re-engineer is now able to investigate the (intermedia-
te) results and may adapt fuzzy values of certain annota-
tions. Let’s consider, the re-engineer agrees with the found
Neighborcall pattern occurrence of figure 6. The annotation
created by the inference process got a fuzzy belief of 80%.
To express, that the found pattern is actually a Neighborcall
pattern occurrence, the re-engineer may now raise its fuzzy
belief up to 100%. All fuzzy beliefs of consequent annotati-
ons have to be recalculated now. This takes usually only a
fraction of a second. The fuzzy belief of the Brigde annota-
tion could raise too, if the belief of the Neighborcall pattern
occurrence was the limiting value.

On the other hand, the re-engineer may mistrust or even
reject the annotation of the Neighborcall pattern. To do so,
the fuzzy belief will be decreased to a lower value or even to
0%. Now the threshold of consequent rules could take effect.

In this case the fuzzy belief of consequent annotations would
drop to 0%.

Furthermore, in addition to the interaction during the ana-
lysis, the re-engineer could adapt the pattern definition ru-
les. The adaptation would include the change of the pat-
tern’s structure as well as fine tuning by changing the rule’s
fuzzy belief or threshold. To speed up analysis time, the
re-engineer could optimize trigger paths. The trigger path
to the Bridge pattern starts with an Attribute within the
ASG. This triggers the Reference pattern, which again trig-
gers the Neighborcall pattern, that finally triggers the Bridge
pattern. Let’s consider another trigger path from the ASG
element Inheritance to the Generalization pattern and finally
to the Bridge pattern. This trigger path would be worse. It
wouldn’t change the overall complexity, but a lot more of
failing applications of the Bridge rule would arise. So setting
up the trigger paths requires to take care.

We have developed a prototype supporting the described re-
verse engineering process. The prototype is part of the Fu-
jaba environment. It contains editors for the pattern defini-
tions and an inference engine, which uses the pattern mat-
ching algorithm provided by Fujaba. We use the JavaCC
[11] parser to generate an abstract syntax graph represen-
tation of the source code. Intermediate results are shown as
enriched UML class diagrams using annotations.

Figure 7: Results of AWT analysis

We evaluated our approach by reverse engineering Java’s
Abstract Window Toolkit (AWT) library. Figure 7 shows a
part of the annotated class diagram after the analysis. The
detected pattern occurrences are marked by a rounded rec-
tangle with the patterns name and the fuzzy belief of the
annotation. Note, the class diagram is a rudimentary one,
which does not contain associations, because they are not
included in the source code; references are hidden. Associa-
tions that are detected by our rules are shown as Association
patterns, e.g. between class Component and class Container.

5



The final analysis run with the modified patterns and ad-
apted fuzzy values took about 2 minutes and 40 seconds for
approximately 114,000 LOC on a 1.7GHz Pentium 4 ma-
chine with 1GB main memory. The first GoF-pattern was
detected after 5 seconds. This shows first of all the scalabli-
ty of our process to real world systems and furthermore the
success of the iterative approach. The re-engineer can inter-
rupt the process and view intermediate results quickly even
if the analyzed system is much more larger. One doesn’t ha-
ve to wait until the whole analysis is finished. The whole
reverse engineering process of AWT including manual ana-
lysis of the source code and documentation lasted about 4
days, whereby the modifications and adaptations were ma-
de by a student involved in development of the prototype
and therefore familiar with the rule’s syntax and semantics.
However, our experiences show that learning the syntax and
using the tool can be mastered by novice users.

The screenshot shows at least four patterns detected by our
algorithm, a Strategy between class Container and interface
LayoutManager with fuzzy belief 80%, a Composite between
Container and Component with fuzzy belief 70% and a Bridge
and a Strategy between Component and ComponentPeer with
fuzzy belief 80%, each. All pattern, except of the last one,
can actually be found in the source code and there exist
no missed pattern in this part of the source code. The ap-
parently false positive Strategy pattern in parallel to the
Bridge pattern results from the fact that the two patterns
are highly overlaid and we decided to define a Strategy as
part of a Brigde.

7. CONCLUSIONS
Reverse engineering, in general, contains the problem that
the systems to be analyzed consists of thousands and milli-
ons lines of code containing a large variety of different imple-
mentation styles. This paper presents an approach of fuzzy
valued pattern matching applied to the reverse engineering
of design patterns introduced by Gamma et al. We propo-
se a semi-automated process to manage the large variety of
implementation styles and to tune a pattern catalog to be
able to analyze huge software sizes.

We are confident that our approach scales to even larger
legacy systems. This is achieved by employing a rule set and
an inference process that works quite “locally”. In bottom-up
mode, only the neighborhood of a certain trigger needs to
be examined and in top-down mode, the provided context
restricts the pattern matching task to a small fragment of
the whole ASG. However, to achieve this, the pattern catalog
needs to be carefully designed.

We employ somewhat imprecise pattern detection rules in
order to cover a large number of implementation variants
with a small number of simple rules. On the one hand, this
impreciseness implies many false positives, but on the other
hand the analysis is done more quickly. Alternatively, mo-
re precise rules produce less false positives but more rules
may be required and the analysis takes longer, or may fail
to detect unusual implementation variants. During the semi-
automatic process, the re-engineer is able to tune the infe-
rence process by modifying, deleting or adding rules. More
easily, the re-engineer may change the fuzzy values of certain
rules and thereby lower or raise the influence of the corre-

sponding sub patterns, e.g. due to their appropriateness for
the current legacy system. Similarly, performance may be
improved by raising the rule thresholds in order to restrict
rule application to very reliable inputs. However, this may
cause that certain design pattern occurrences are not found.
Thus, tuning the fuzzy values and thresholds improves the
inference process a lot. However, this is a tedious task re-
quiring a lot of trial and error. A fuzzy learning component
providing (semi-)automatic support for this tuning process
is current work.

Note, the proposed re-engineering process is not restricted
to design pattern detection. The approach is usable for va-
rious kinds of reverse engineering tasks and in many other
application areas. For example, we currently investigate the
usage of our fuzzy pattern definitions for the reverse engi-
neering of story diagrams, i.e. programmed graph rewrite
rules from legacy Java code.

8. REFERENCES
[1] T. Fischer, J. Niere, L. Torunski, and A. Zündorf.

Story diagrams: A new graph rewrite language based
on the unified modeling language. In G. Engels and
G. Rozenberg, editors, Proc. of the 6th International
Workshop on Theory and Application of Graph
Transformation (TAGT), Paderborn, Germany, LNCS
1764. Springer Verlag, 1998.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable Object
Oriented Software. Addison-Wesley, Reading, MA,
1995.

[3] M. T. Harandi and J. Q. Ning. Knowledge based
program analysis. IEEE Transactions on Software
Engineering, 7(1):74–81, 1990.

[4] J. Jahnke and A. Zündorf. Specification and
implementation of a distributed planning and
information system for courses based on story driven
modelling. In In Proc. of Intl. Workshop on Software
Specification and Design (IWSSD-9. Kyoto, Japan.,
pages 77–86. IEEE Computer Society Press, 1998.

[5] R. Keller, R. Schauer, S. Robitaille, and P. Page.
Pattern-based reverse-engineering of design
components. In Proc. of the 21st International
Conference on Software Engineering, Los Angeles,
USA, pages 226–235. IEEE Computer Society Press,
May 1999.

[6] C. Krämer and L. Prechelt. Design recovery by
automated search for structural design patterns in
object-oriented software. In Proc. of the 3rd Working
Conference on Reverse Engineering (WCRE),
Monterey, CA, pages 208–215. IEEE Computer
Society Press, November 1996.

[7] K. Mehlhorn. Graph Algorithms and
NP-Completeness. Springer Verlag, 1st edition, 1984.

[8] H. Müller, M. Orgun, S. Tilley, and J. Uhl. A reverse
engineering approach to subsystem structure
identification. Journal of Software Maintenance,
5(4):181–204, December 1993.

6



[9] J. Niere, W. Schäfer, J. Wadsack, L. Wendehals, and
J. Welsh. Towards pattern-based design recovery. In
Proc. of the 24th International Conference on
Software Engineering (ICSE), Orlando, Florida, USA,
pages 338–348, May 2002.

[10] A. Schürr, A. Winter, and A. Zündorf. The progres
approach: Language and environment. In H. Ehrig,
G. Engles, H.-J. Kreowski, and G. Rozenberg, editors,
Handbook of Graph Grammars and Computing by
Graph Transformation, volume 2 - Application,
Languages and tools., pages 487–546. World Scientific,
Singapore, 1999.

[11] SUN Microsystems. JavaCC, the SUN Java Compiler
Compiler. Online at http://www.suntest.com/JavaCC.

[12] L. Wills. Using attributed flow graph parsing to
recognize programs. In Proc. of International
Workshop on Graph Grammars and Their Application
to Computer Science, LNCS 1073, Williamsburg,
Virginia, 1994, November 1996. Springer Verlag.

[13] A. Zündorf. Rigorous Object Oriented Software
Development. University of Paderborn, 2001.

7


