Reverse Engineering with

Fuzzy Layered Graph Grammar s

Jorg Nierel, Albert Ziindorf?

1 Department of Mathematics and Computer Science, University of Paderborn,
Warburger Stral3e 100, D-33098 Paderborn, Germany
nieregj @upb.de
2 |nstitute of Software, Technical U niversity of Braunschweig,
Postfach 3329, D-38023 Braunschweig, Germany
zuendorf @ips.cs.tu-bs.de

Abstract. Reverseengineering isaprocess highly influenced by assumptionsand
hypothesises of a reverse engineer, who has to analyse a system manually, be-
cause tools are often not applicable to large systems with many different imple-
mentation styles. Successful tools must support an interactive process, where the
engineer is able to steer the analysis process by proving certain assumptions and
hypothesises. Consequently, the input format of the analysis tool must support a
kind of impreciseness to formulate weak presumptions. In this paper we present
areverse engineering process based on fuzzified graph transformation rules. We
use layered graph grammarsin addition with fuzzy logic to detect design patterns
in Java source code. Impreciseness is expressed by assigning fuzzy values to
graph transformation rules and thresholds are used to lookup only firmed occur-
rences of patterns. Underlying the transformation rules is an object-oriented
graph model providing composition and inheritance, which reduces the complex-
ity of therules. We propose areverse engineering process starting with imprecise
rules and refining and specifying the rules during the analysis. Preliminary results
applying our process are promising, i.e., we present the results of detecting design
patternsin Java s abstract window toolkit library.

1 Introduction

Reverse engineering tries to recover design information from legacy source code. Sim-
ple reverse engineering approaches, using simple tools like grep and perl, have
turned out as inappropriate for most of the interesting reverse engineering tasks, cf.
[KP96]. More sophisticated results require the analysis of method bodies using compil-
er techniques. In such sophisticated approaches, the program is usually represented as
an enriched abstract syntax graph, cf. [MOTU93]. For the analysis of such abstract syn-
tax graphs, graph grammars are well suited, cf. [Wil96, JZ98]. However, al these ap-
proaches face severe scalability and pattern complexity problems. First, the large size
of some million lines of codes of typical legacy systems needs to be managed. Second,
the flexibility provided by current programming languages give different programmers
alot of freedom to implement certain design elementsin various ways. To deal with all
these implementation variants, one needs alarge number of variant design element de-
tection rules. This large number of rules again creates a performance and complexity
problem.

"% This work is part of the Finite project funded by the German Research Foundation (DFG),
projectno. SCHA 745/21.

maroc
 * This work is part of the Finite project funded by the German Research Foundation (DFG),
 projectno. SCHA 745/21.

maroc
*

maroc

2

To overcome these problems, our approach provides a bundle of techniques. We use
sophisticated query optimization techniques for the execution of graph rewriterules, cf.
[SWZ99, FNTZ98]. We allow superclasses as wildcards for sets of node labels within
graph rewrite rules. A sophisticated rule selection algorithm optimizes the analysis re-
sponse time by focusing on the local context of certain design element indicators. In-
stead of alarge number of 100% precise descriptions of each possible implementation
variant for a certain design element, we use a small number of somewhat imprecise de-
tection rules, cf. [NSW+02].

Our imprecise detection rules may, e.g., only check for some important implementa-
tion fragments that are in common to many implementation variants. This reduces the
number of necessary detection rules, significantly. However, this advantage is paid by
aloss of preciseness. Depending on the actual implementation variants used in the con-
sidered legacy system, thisloss of preciseness may result in false positives; incorrectly
found occurrences. In other cases, certain implementation variants may not be covered.
This impreciseness depends on individual programming styles and skills of the legacy
system devel opers as well as on the application domain and the programming language
(version) used. To deal with thisimpreciseness more flexibly, this paper adds the usage
of fuzzy techniquesto the rules presented in [NSW+02] resulting in so-called fuzzy lay-
ered graph grammars. Each detection rule is equipped with a so-called fuzzy belief ex-
pressing the confidence of the reverse engineer in the rule within the current application
context and a threshold, that restricts the rule application to cases with reasonable con-
fidence. If a detection rule relies on intermediate results of other detection rules, the
fuzzy belief of the generated design elements is computed from the fuzzy belief at-
tached to the rule combined with the fuzzy beliefs of the intermediate results.

The next Section 2 presents the related work concerning other pattern detection ap-
proaches. Section 3 introduces our fuzzy detection rules. Section 4 discusses an exam-
ple catalogue of detection rulesfor the “Gang of Four” design patterns[GHJV 95]. How
far our rule selection algorithm concentrates the efforts to certain local areas is dis-
cussed in Section 5. Section 6 shows how the reverse engineer may adapt the rulesto a
certain legacy system and Section 7 summarizes our results and shows the direction of
our current work.

2 Related Work

Comparable work on reverse engineering of source code has been reported over the past
decade. Harandi and Ning [HN90] present program analysis based on an Event Base
and a Plan Base. Events are constructed from source code and plans are used to define
the correlation between one or more (incoming) events and they fire anew event which
corresponds to the intention of the plan. Each plan definition correspondsto exactly one
implementation variant, which leads to a high number of definitions.

An approach to recognize clichés, i.e.,, commonly used computational structures, is
presented in [Wil96]. The GRASPR system examines legacy code represented as flow
graphs and clichés are encoded as an attributed graph grammar. The recognition of cli-
chés corresponds to the sub-graph isomorphism problem, which is NP-complete

3.

[Meh84]. Consequently, the approach is only useful to analyse not more than ten thou-
sand lines of code.

Keller et a. [KSRP99] analyse behaviour aswell as structure and use the CDIF for-
mat for UML to represent the source code aswell as the patterns. Scripts match the pat-
tern’s syntax graphs on the program’ s syntax graph. The reverse engineer hasto imple-
ment the scripts manually, thus they are not generated out of the patterns themselves.
Such a script language very quickly becomes large, awkward to read and difficult to
maintain and reuse.

In addition, none of the approaches facilitates the exploitation of the human engi-
neer’s domain and context knowledge. This contributes to scalability problems for the
process enabled.

3 Fuzzy Reverse Engineering Rules

To model fuzzy reverse engineering rules, we adopt the Fujaba approach [FNTZ98,
Zun01]. This approach has been formalized using a set-theory approach in [ZUn01].
Main features of the Fujaba approach are a graph model with object-oriented features
like inheritance, graph rewrite rules showing left- and right-hand side as asingle graph
in aUML collaboration diagram like notation, additional collaboration messages em-
bedded within graph rewrite rules and UML activity diagrams as means for pro-
grammed graph rewriting. For the purpose of reverse engineering, we have adapted the
Fujaba notation by introducing special shapesfor design pattern artefactsand in this pa-
per, by adding fuzzy beliefs to graph elements and reverse engineering rules, cf.
Figure 2 and Figure 3.

For the purpose of this paper, the most important feature of the Fujaba graph model
is the support for object-oriented inheritance. While this supports polymorphic method
calls, reverse engineering rules mainly exploit, that superclasses may be used as wild-
card node | abels that match nodes of all direct and indirect subclasses. This mechanism
has already been proposed in Progres, cf. [SWZ99]. For example, the Reference noder
in Figure2 may map on a host graph node with label Reference or with label
MultiReference or with label ArrayReference, cf. Figure 1 and Figure 4. Similarly, the
NeighborCall node n matches NeighborCall and Delegation nodes and the Generalization
nodes match Generalization or MultiLevelGeneralization nodes. Thus, the usage of in-
heritance allows us to replace 3* 2* 2* 2=24 rules with special node labels by a single
rule with the superclass node |abels.

Our reverse engineering rules search for certain clichés and pattern fragmentsand an-
notate them with design pattern markers (the oval shaped nodes). Thus, we usually em-
ploy avery complicated left-hand side whilethe right-hand sideisjust acopy of theleft-
hand side with one additional pattern marker node. In the Fujaba approach, a single
graph isused to express both, the left- and the right-hand side of arule. Nodes and edges
belonging only to the left-hand side carry «destroy» markers (not employed for reverse
engineering rules), nodes and edges belonging only to the right-hand side carry
«create» markers (cf. Bridge node b and the attached edgesin Figure 2) and nodes and
edges without such markers belong to both sides of therule. Note, our reverse engineer-
ing rules do not remove any graph elements and thus, the nodes and edges without

«Pattern» «Pattern»
Assignment ReadOperation
«Pattern»
WriteOperation
«Pattern» «Pattern»
AssignmentToContainer ContainerReadOperation
«Pattern» «Pattern» «Pattern» «Pattern»
Reference NeighborCall MultiNeighborCall Generalization
«Pattern» «Pattern» «Pattern» «Pattern»
MultiReference Delegation MultiDelegation MultiLevelGeneralization
«Pattern» «Pattern»
ArrayReference Association
«Pattern» «Pattern» «Pattern»
Composite Strategy Bridge

Figure 1 Pattern inheritance hierarchy

markers form the left-hand side of arule and the right-hand side if formed by the union
of the left-hand side and all «create» elements. In addition, our reverse engineering
rules are restricted to the creation of a single new (ova shaped) design pattern annota-
tion node and some links connecting this new annotation node to existing nodes vianew
links. For example, the rule of Figure 2 creates a single new Bridge annotation node b
and an abtraction and an implementor edge to the annotated UMLClass hodes a and i,
respectively.

Constraints on attribute values may be shown as boolean expressions within the “at-
tribute compartment” of a node. General constraints may be shown within the rule as
boolean expressions in curly braces.

Nodes or edges with dashed shapes/ lines represent optional rule elements. Thisisa
shorthand notation for one rule contai ning the dashed rule and another rule not contain-
ing the dashed element. Nodes with two stacked shapes match the set of all appropriate
nodes in the host graph. Hollow lines with an arrow head are used to indicate OCL like
navigational expressions that facilitate to express derived relationships between differ-
ent rule nodes.

Crossed out nodes or edges represent negative application conditions. For example
the crossed out Generalization node g2 in Figure 2 represents the negative application
condition that the abstraction and implementor classes must not be connected by a
Generalization relationship.

Note, our rules show some oval nodes with thick border. Such nodes are so-called
trigger nodes. Thiswill be discussed in chapter 4.

For the purpose of fuzzy reverse engineering rules, this paper extendsthe Fujabarule
notation with oval shapesfor design pattern annotation nodes and with an implicit han-

«create»

b:Bridge
gl:Generalization 80/50
«createx «create»

: implementor
superCIass\/ abstraction A\
| -
— v implementor:UMLClass
| abstraction:UML Class |—subC|ass @aﬁ@ superClass— =
< ‘ > Boolean abstract = true
attrs\ references /7

methods V' refField:UMLAttr fiéld methodsV

operationimpl:UMLMethod

Boolean abstract = true

operation:UMLMethod |—c<a||er n:NeighborCall cziee—

Figure 2 Bridge pattern rule

dling of fuzzy beliefs. Each oval design pattern annotation node is equipped with two
implicit attributes carrying a belief value and a threshold value between 0% and 100%.
For example, the “80/50” inscription of the Bridge node in Figure 2 gives afuzzy confi-
dence of 80% and athreshold of 50% for that node/ rule. The fuzzy confidence roughly
describes the percentage of rule applications that due to the estimation of the rule de-
veloper or to the experience reported by historical data have been successful applica-
tions. The remaining percentage thusrefer to false positives. In our example we assume
that 80 of 100 rule applications actual detect a bridge pattern while 20 of 100 rule ap-
plications mark false positives. The threshold is discussed below.

During rule application, the belief of an annotation nodeis computed as the minimum
of the fuzzy beliefs of al annotation nodes employed in that rule. For example, if we
apply the rule of Figure 2 and nodes g1, r and n are mapped to host graph nodes with
fuzzy beliefs 60%, 70% and 65%, respectively, then these values are combined with the
80% fuzzy belief of the Bridge node to be created and the resulting fuzzy belief will be
60%, the minimum of all these fuzzy beliefs. If the fuzzy beliefs of the matches of g1,
rand n are all greater than 80%, the belief of the Bridge node would serve as an upper
border for the whole rule: the overall belief cannot become higher than 80%.

Note, a node in the reverse engineering rule may have multiple valid matching can-
didatesin the host graph that have different fuzzy beliefs. In that case the candidate with
the maximal fuzzy belief is chosen as match such that the new annotation created by the
rule application uses the most reliable source of information.

Let us assume that the fuzzy belief of one of the nodes that are matched by g1, r and
nisvery low, e.qg. 42%. In that case the fuzzy threshold 50% of the examplerule applies.
As mentioned the second fuzzy value employed in our reverse engineering rules is a
threshold that limits rule application to reasonabl e cases. If some of the intermediate re-
sultsare very unreliable (have alow fuzzy belief), it may not make sense to waste more
computation time and memory resources on further investigations relying on thisuncer-
tain information. Thus, thresholds are again a means to improve the scalability of our
approach. These thresholds are chosen by the rule devel oper based on persona experi-
ence or based on historical data.

6.

Note, during the inference process new design pattern annotation nodes may be cre-
ated which have ahigher fuzzy belief asalready existing similar annotation nodes. This
may trigger the re-evaluation of some other rulesthat formerly used the annotation node
with the lower fuzzy belief. Thereby, for some rules the threshold will be met and these
rules again create new annotation nodes that may trigger further rule evaluations. How-
ever, thefuzzy belief of an annotation may never decrease: if anew nodeis created with
alower belief than a similar existing one, nothing happens.

Note, possibly the creation of an annotation node could always trigger a rule which
creates a new annotation node and this process could run, infinitely. In order to avoid
such termination problems we adopt the approach of [RS95] proposing layered graph
grammars for parsing of graphical diagrams. Basically, in alayered graph grammar the
node kinds are separated in certain layers and each rule has either to reduce the number
of elementsor it hasto add elements of alayer higher than the so far employed elements.
This guaranteestermination and allowsto organize the parsing process more efficiently.
In our approach, al design pattern annotation nodes are partially ordered according to
dependencies derived from the rule set. For the rule set employed in this paper we have
derived the dependency / support structure shown in Figure 4 asfollows: An annotation
node created by some rule gets a higher order than all (other) kinds of annotations that
are employed in that rule. (The new annotation must not rely on an another annotation
of the same kind). This dependency relation must not contain cycles. Thus, the applica-
tion of arule may only trigger rules on a higher level and the inference process will fi-
nally terminate.

4 A Rule Catalogue for the GoF Design Patterns

As stated in the introduction, reverse engineering is naturaly an interactive process.
Fully automated tasks usually fail, because the large variety of designs and the high
number of different implementation styles can not all be recovered by toolsin an appro-
priate time. Current reverse engineering processes support are-engineer with a number
of different tools, e.g. al kinds of grep derivates, which offer plain information ex-
tracted from the software system. The re-engineer has to combine the extracted infor-
mation and make conclusions manually. Other reverse engineering tools with direct fo-
cus on design documents such as TogetherJ try to detect, in addition to simple class di-
agrams with classes, attributes and methods, also relations between classes based on
name conventions such as get-, set- and add-, remove- prefixes. The produced docu-
ment is usually an UML class diagram but the techniques to extract the information are
comparable with grep technology.

Reverse engineering includes, in addition to rudimentary information such as classes
and their relations, the recovery of the architecture and behaviour of a system and the
recovery of dependencies between certain parts of a system. The latter are very impor-
tant during maintenance of a system, because they show potentially problematic system
parts where changes may have many unanticipated side-effects.

Design patterns introduced by Gamma et al. [GHJV95] describe good design solu-
tions for recurring problems. Thereby, we use the term design patterns for the certain
pattern category and the term GoF-patterns (Gang of Four-pattern) for the patterns in-

7.

troduced by Gamma et a. Design patterns describe solutions for more or less complex
relations and interactions between different parts in a software system, usually classes
in object oriented system designs. For example, a Bridge-GoF-pattern is a solution to
“Decouple an abstraction from its implementation so that the two can vary independ-
ently’[GHJIV95 p.151], it is often used for window toolkits, and comprisesin its appli-
cation at least 5 classes where each class has to play a certain role, and collaborations
between the classes.

Consequently, design patternsare highly suited to provide dependencies between cer-
tain parts of a software system and thus our reverse engineering approach focuses on
the detection of GoF-patternsin Java source code. For example, by detecting a Bridge-
GoF-pattern in a system during a reverse engineering task, the dependencies are fixed
and this helpsto find possible side-effects of changes later on. Our approach isnot lim-
ited either to GoF-patterns nor Java as implementation language because the analysis
base is an abstract syntax graph representation of the source code and which patterns
are analysed depends only on therules.

The acceptance and success of areverse engineering process does not only depend on

its produced results but also on its usability and scalability, especialy in semi-automat-
ed processes. For semi-automated processes scalability means, in additionto acomplete
analysis of thousands or million lines of code in an appropriate time-range, to produce
reasonabl e intermediate results quickly. Depending on the intermediate results are-en-
gineer is able to steer the analysis processin an early stage and thus avoid non-produc-
tive or wrong analysis.
The definition of a GoF-pattern consists of the pattern name, an example application,
the static structure, the collaborations, consequences applying the pattern in a system’s
design, etc. All parts are described in prose except the static structure, where Gamma et
a. have used OMT class diagrams and sometimes the collaborations, where they have
used collaboration diagrams. This informal definition is not sufficient for a tool sup-
ported reverse engineering process. In addition, the informal definition opens many in-
terpretation opportunities, so that patterns areimplemented in many different wayseven
in one application.

As aformal description of design patterns, we use fuzzy layered graph grammars as
described in the previous section. Each pattern is represented by one rule, whereas each
rule creates exactly one new pattern-node with a certain fuzzy belief. Figure 2 shows
the definition of the Bridge-GoF-pattern. We distinguish between two kinds of nodes.
Nodes represented as ovals are pattern-nodes produced by other rules and nodes repre-
sented as rectangles are nodes of the abstract syntax graph created by an initial parser
run. Abstract syntax graph nodes may contain attributes, such as theimplementor node.
The Bridge node b with a «create» marker represents the new pattern-node, which is
created when the rule is applied. The left number inside the node is the fuzzy belief and
the right number the threshold. This means that each pattern-node in the rule must have
abelief higher than 50% when the rule is applied. The threshold can be refined by as-
signing a threshold to each pattern-node of the rule. For efficiency reasons, each rule,
without the optional-, negative- and set-nodes, must form a connected graph. In theory,
thisis asevere restriction, but our experiences show that there always exists some kind
of root node connecting different rule parts. In combination with so-called trigger nodes

8.

(pattern-nodes with athick border line), thiscondition allowsusto provide afast pattern
matching algorithm introduced in the next section.

Our definition of the Bridge-GoF-pattern requires an abstraction classthat isa super-
class in an inheritance hierarchy represented by the Generalization pattern-node g1 in
the upper left corner and that contains an attribute which is a Reference to another class
implementor. The abstraction class must also contain a method, which has a
NeighborCall to amethod of theimplementor class. In addition, the operationimpl meth-
od and the implementor class have to be abstract. The crossed out / negative
Generalization node g2 in the middle meansthat the abstraction class must not be a (di-
rect or indirect) subclass of the implementor class.

This definition omits detail s such aswhether a generalization hasto be adirect inher-
itance or an inheritance with some intermediate classes, and how areference or aneigh-
bour call looks like. Each of these sub-patterns has to be defined separately by its own
rule. For example, Figure3 shows the NeighborCall rule, which defines that a
NeighborCall isasimple method call between two different classes related to each other
via a Reference. The rule contains a path expression, which specifies that the method
call must not be contained in a loop. (Otherwise we cal it a MultiNeighborcall, cf.
Figure 4).

«create»

n:NeighborCall
80/50

«create» «create»

\/ caller callee \V
| caller:UMLMethod | | callee:UMLMethod |
|
\/ parseTree methods\/ methods A
| root:PTNode | | callerClass:UMLClass | | calleeClass:UMLClass |
Path without
(PTNodeLoop) attrs\/ references A

methodCal PTNoGeld | o7miors i Afr e
String name = callee.getName () <

Figure 3 NeighborCall sub rule

A cut-out of our patternsand their relationsisshownin Figure 4. Thearcswith astick
arrow-head represent the dependency relations and the arcs with an hollow arrow-head
represent the inheritance rel ations between the pattern and abstract syntax graph nodes.
For example, a MultiGeneralization pattern inherits from the Generalization pattern,
where the Generalization means a direct inheritance and a Multi(Level)Generalization
means an inheritance over more than one level. Thisis a recursive definition, because
the MultiGeneralization depends on the Generalization and the pattern matching, de-
scribed in the previous section, uses superclass labels as wildcards for subclass labels.
In case of the Bridge pattern this means that the employed Generalization nodes might
also be MultiGeneralizations, the NeighborCall might be a Delegation and the Reference
might be a MultiReference or an ArrayReference.

5 supports
—> triggers
—> inheritance

Neighbor

riteOperation
90/50
A

ssignment
90/0

Generalization
100/0

ontainerReadOperation
90/0

Rule Level
ASG Level

UMLALttr UMLMethod UMLGeneralization

Figure 4 Pattern dependency graph including inheritance relations

Figure 4 shows a part of the pattern catalogue as an UML class diagram, where rec-
tangle shaped classes represent abstract syntax graph elements. For pattern classes we
use a certain stereotype and draw them as ovals containing the pattern’s name, belief
and threshold. The inheritance relations and dependencies are also shown, whereby the
lines with the stick arrow heads denote the information flow.

The pattern catalogue of Figure 4 contains three GoF-pattern definitions, i.e. the
Bridge-, the Strategy- and the Composite-GoF-pattern. All other sub-patterns represent
different implementation variants. The whole catalogue including definitions for more
than half of the GoF-patterns consists of about 75 patterns including the GoF-patterns
itself. The catalogueistheresult of three analysis processes and thus adapted to the spe-
cific analysed software systems.

5 A “Local” Rule Selection Algorithm

As mentioned above, the success of a semi-automated pattern-based analysis process
highly depends on the production of reasonable intermediate results. Hence the sub-
graph isomorphism problem is NP-complete [Meh84], a smart pattern matching algo-

10.

rithm is indispensable. The major requirement is that the algorithm is able to handle
thousands and millions lines of code and either produces quickly a reasonable result or
shows quickly that the used catalogue is not sufficient for the software system, i.e,, the
implementation variants are not covered by the rules.

We present only the ideas of the algorithm and how they are related to the theoretical
approach of fuzzy layered graph grammars. A detailed description of the algorithm is
described in [NSW+02].

As aready mentioned, the sub-graph isomorphism problem is NP-complete, which
lets brute-force algorithms fail, if the host graph, where a pattern should be found, is
very large. Smarter algorithms, such asthe algorithm contained in the Progres[SWZ99]
and the Fujaba [FNTZ98] environment use the information in the pattern and try to
traverse the host-graph using the pattern as a kind of map. For example, if two nodes
are connected in arule and one node is already bound to a node in the host graph, the
algorithm traverses the edge to the second node and binds that node. If each rule con-
tains an aready bound “start” node, the complexity becomes polynomial or linear. In
practice, the restriction that each rule contains at |east one bound node causes no harm,
because in our experience such anodeis easily introduced.

Another optimization, especialy concerning the production of reasonable intermedi-
ate results quickly, is to select a smart order in which rules are applied. Simple algo-
rithms try to match an arbitrary rule of the rule base and in the failure case try another
rule. Such an arbitrary choice can be optimized by a surrounding control-flow asin Pro-
gresor Fujaba. Our approach isto provide a smart automatic rule selection mechanism,
i.e., acombined bottom-up, top-down approach, so that the re-engineer has not to spec-
ify an explicit control-flow.

To provide an optimized application sequence, we assume that the rules are partially
ordered over their dependency relation, cf. Figure 4. This order also defines the layers
of alayered graph grammar, cf. section 3 and [RS95].

n.caleedsss, We cal t_he application of

n.caller.class attrs rules an inference process
i following afuzzy inference
mechanisms. Figure5 il-
lustrates an example infer-
ence process. This infer-
ence process starts with
Generalization) parsing the source code in
an abstract syntax graph
(asg) representation. After
this initial step, the algo-
rithm starts in bottom-up

c1:Class |&rS |o: Attributel@ttrtype| c2-Class mode, where it selects one
of the asg-nodes, which is

ASG E marked as a trigger in a

Figure 5 Optimized inference process rule, for example the
Attribute node which serves

asatrigger for Reference rules. In general the rule with the highest layer number is se-

references

11.

lected to achieve adepth first search behaviour that quickly producesfirst results. In this
case the Reference ruleis applied next and a new node r:Reference is created. Next the
NeighborCall rule creates a node n:NeighborCall, which triggers the Bridge rule. Since
the Bridge rule depends on additional sub-pattern nodes, the algorithm switches into
top-down mode and tries to establish or reject the hypothesis that a Bridge-GoF-pattern
existsinthe code. It isimportant that in top-down mode the algorithm providesacertain
context for the detection of the sub-patterns, e.g. the Reference rule gets as context the
callee class, that shall be thetarget of the Reference, and the set of attributes of the call-
er class, that may implement the Reference. Within the Bridge rule, these context nodes
are accessible from the known NeighborCall trigger via n.callee.class and
n.caller.class.attrs. If al required sub-pattern nodes can be found with sufficient fuzzy
beliefs, the Bridge rule createsanew Bridge node. Note, each newly created nodeisadd-
ed to the triggers used for the bottom-up mode. After aBridge node is created or if one
required sub-pattern cannot be found, the algorithm switches back to bottom-up mode
and uses the triggers to continue the analysis.

Each timethe algorithm isin bottom-up mode, the created pattern-nodes represent in-
termediate results. Choosing rules with high layer numbers, forces the algorithm to pro-
duce reasonable results, quickly, i.e., results about the existence of GoF-patterns are
provided early instead of elicitating a large number of only minor important sub-pat-
terns, first. Note, that the algorithm assignsinitial fuzzy valuesto the pattern-nodes.

6 Adapting Rules

Our approach provides a semi-automated reverse engineering process, which isillus-
trated in Figure 6 depicted as a statechart. The first step in the process is to parse the
source code and to create the abstract syntax graph including any kind of additional
links, e.g. application to declaration links. Second step is, to load a pattern catalogue,
which seams to be best adapted for the system. Afterwards the re-engineer can modify,
add or remove rules, which isthe start of the iterative process. A run of the analysisal-
gorithm starts after all modifications are done and, as specified, the re-engineer can in-
terrupt the algorithm each time it isin bottom-up mode, cf. previous section, or the al-
gorithm halts when the analysisis complete.

The re-engineer is able to investigate the (intermediate) results and may adapt fuzzy
values. After each modification, the fuzzy values are recalculated. This takes usually
only a fraction of a second, because the recalculation stops if no fuzzy value changes.
In case of amodification of arule, the algorithm hasto start at the beginning, again. This
point provides many possibilities for improvements we are currently investigating. The
reverse engineering process ends when the re-engineer decidesthat the produced results
are sufficient.

We have developed a prototype supporting the described reverse engineering proc-
ess. The prototype is part of the Fujaba environment and contains editors for the rules
and the described inference engine, which usesthe pattern matching al gorithm provided
by Fujaba. We use the JavaCC [JCC] parser to generate an abstract syntax graph from
source code. Intermediate results are shown as enriched UML class diagrams using an-
notations.

12.

parse
source code
/analysisalgorithm \

bottom-up

strategy
[change mark rules for <
Strat] [change deletion; modify |5
Stret] values g

stop() or
[finished]

top-down
strategy
K show

(intermediate)
results

Figure 6 Reverse engineering process statechart

Figure 7 shows a part of the annotated class diagram after anaysing Java s Abstract
window toolkit (AWT) library. The detected patterns and subpatterns are marked by an
icon at the top of the pattern name and they show the fuzzy beliefs for the detected pat-
tern annotations. Note, the class diagram is a rudimentary one, which does not contain
associations, because they are not included in the source code; references are hidden.
Associations that are detected by our rule base are shown as Association patterns, e.g.
between class Component and class Container.

Thefina analysisrunwith the modified patterns and adapted fuzzy values took about
2 minutes for approximately 120 KLocs on a 1GHz Pentium 4 machinewith 1GB main
memory. The whole reverse engineering process including manual analysis of the
source code and documentation lasted about 4 days, whereby the modifications and ad-
aptations were made by a student involved in development of the prototype and there-
fore familiar with the rule’ s syntax and semantics. However, our experiences show that
learning the syntax and using the tool can be mastered by novice users.

The screenshot shows at |east four patterns detected by our algorithm. A Strategy be-
tween class Container and interface LayoutManager with fuzzy belief 80%. A
Composite between Container and Component with fuzzy belief 70% and a Bridge and
a Strategy between Component and ComponentPeer with fuzzy belief 80%, each. All
pattern, except of the last one, can actually be found in the source code and there exist
no missed pattern in this part of the source code. The apparently false-positive Strategy
pattern in parallel to the Bridge pattern results from the fact that the two patterns are
highly overlaid and we decided to define a Strategy as part of a Brigde.

7 Conclusions

Reverse engineering, in general, contains the problem that the systems to be analysed
consists of thousands and millions lines of code containing a large variety of different

13.

[900
File Edit Diagrams Packages Use Case Class Activity Design Pattern Consistency Management Tools Options Help
IEENERE S EE EE S B E R ES
= =
: areferences «references «references AWTTreeLock sreferences «references
|| AccessibleContext zinterfaces winterfaces sinterfaces sinterfaces
: % AccessibleComponent | Serializable AWTEventtistenar| | Focuslistener
i AccessibleAWTComponent AccessibleAWTFocusHandler
; Collapsed Collapsed
5 «references «references
: «interfaces sinterfaces Lightweig htDispatcher
i| [AccessibleAWTCantainer Containestistener Componenrlisienar Collapzed

Gollapsed
o Zo Zo
AccessibleContainerHand ler || NativelnLightFixer NeighborCall NeighborCall || Association
Collapsed Collapsed 80% 20% a0
«references «references AccessibleAWTComponentHand ler i)
«interfaces «interfaces Collapsed MNeighborCall
imagetbserver || MepuContainer 20%
[Fis)
MultiDelegation
MeighborCall
70%
TZo B0% oo
Strategy Strategy
80% Lo 80%
Delegation
o B0% coptyd =
Sl Neighborcall S Component Container sinterfacer
zinterfaces Collapzed call " LayoutManager
BO% abstractio ——
ComponentPeer 7 Collapsed
o conl posits
Collapsed .
i B i) Association
Bridge ag
20K
S
| einterfaces 2o [wiy) NeighborCall
:| | ContainerPeer Delegation Composite 20% FlowLayout
E Collapsed
Collapsed 20% 70% ollapse
| IT 3% MEyte of 61 MEyte allocated

Figure 7 AWT analysis result as a class diagram
implementation styles. This paper presents an approach of fuzzy valued pattern match-
ing applied to the reverse engineering of design patterns introduced by Gamma et al.
We propose a semi-automated process to manage the large variety of implementation
styles and to tune a pattern-catal ogue to be able to analyse a huge software size.

We are confident that our approach scales to even larger legacy systems. This is
achieved by employing arule set and an inference process that works quite “locally”.
In bottom-up mode, only the neighbourhood of a certain trigger needs to be examined
and in top-down mode, the provided context restricts the pattern matching task to a
small fragment of the whol e abstract syntax graph. However, to achievethis, the pattern
catalogue needs to be carefully designed.

We employ somewhat imprecise pattern detection rules in order to cover a large
number of implementation variants with a small number of simple rules. On the one
hand, this impreciseness implies many false-positives, but on the other hand the analy-
sisis done more quickly. Alternatively, more precise rules produce less fal se-positives
but more rules and more complicated rules may be required and the analysis takes long-
er, or may fail to detect unusual implementation variants. During the semi-automatic
process, the re-engineer is ableto tune the inference process modifying, deleting or add-
ing rulesintherule catalogue. More easily, the re-engineer may changethefuzzy values

14.

of certain rules and thereby lower or raise the influence of the corresponding sub-pat-
terns, e.g. due to their appropriateness for the current legacy system. Similarly, per-
formance may be improved by raising the rule thresholds in order to restrict rule appli-
cation to very reliable inputs. However, this may cause that certain design pattern oc-
currences are not found. Thus, tuning the fuzzy values and thresholds improves the
inference process alot. However, thisis atedious task requiring alot of trial and error.
A fuzzy learning component providing (semi-)automatic support for thistuning process
is current work.

Note, the proposed fuzzy layered graph grammar approach is not restricted to design
pattern detection. The approach isuseablefor variouskinds of reverse engineering tasks
and in many other application areas. For example, we currently investigate the usage of
our fuzzy layered graph grammars for the reverse engineering of story diagrams, i.e.
programmed graph rewrite rules from legacy Java code.

8 References

[FNTZ98] T. Fischer, J. Niere, L. Torunski, and A. Zindorf. Sory Diagrams: A new
Graph Rewrite Language based on the Unified Mo%eling Language. In
G. Engels and G.Rozenberg, editors, Proc. of the 6t International Work-
shop on Theory and Application of Graph Transformation (TAGT), Pader-
born, Germany, LNCS 1764. Springer Verlag, 1998.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Ele-
ments of Reusable Object Oriented Software. Addison-Wesley, Reading,
MA, 1995.

[HN9O] M. T.Hanrandi and J. Q. Ning. Knowledge Based Program Analysis. IEEE
Transactions on Software Engineering, 7(1):74-81, |IEEE Computer Socie-
ty Press, 1990.

[JCC] SUN Microsystems. JavaCC, the SUN Java Compiler Compiler. Online at
http: //mww.suntest.conm/JavaCcC.

[JZ98] J.H. Jahnke and A. Zindorf. Using Graph Grammars for Building the Var-
let Database Reverse Engineering Environment. Technical Report tr-ri-98-
201, University of Paderborn, Paderborn, Germany, 1998.

[KP96] C. Krémer and L. Prechelt. Design recovery by automated search for struc-
tural design patternsin object-oriented software. In Proc. of the 3"% work-
ing Conference on Reverse Engineering (WCRE), Monterey, CA, pages
208-215. IEEE Computer Society Press, November 1996.

[KSRPI9] R.K. Keller, R. Schauer, S. Robitaille, and P. Page. Pattern-Based Reverse-
Engineering of Design Components. In Proc. of the 217 I nternational Con-
ference on Software Engineering, LosAngeles, USA, pages 226-235. IEEE
Computer Society Press, May 1999.

[Meh84] K. Mehlhorn. Graph Algorithms and NP-Completeness. Springer Verlag,
1% edition, 1984.

15.

[MOTU93] H.A. Mller, M.A. Orgun, S.R. Tilley, and J.S. Uhl. A Reverse Engineering

Approach To Subsystem Sructur e | dentification. Journal of Software Main-
tenance, 5(4):181-204, John Wiley and Sons, Inc., December 1993.

[NSW+02] J. Niere, W. Schéfer, J.P. Wadsack, L. Wendehals, and J. Welsh. Towards

[RS95]

[SWZ99]

[Wil96]

[ZUnO1]

Pattern-Based Design Recovery. In Proc. of the 24t International Confer-
ence on Software Engineering (ICSE), Orlando, Florida, USA, May 2002.

J. Rekersand A. Schiirr. A Graph Grammer Approach to Graphical Parsing.
|EEE Symposium on Visual Languages (VL'95), Darmstadt, Germany,
1995.

A. Schiirr, A.J. Winter, and A. Zindorf. The progres approach: Language
and environment. In H. Ehrig, G. Engles, H.-J. Kreowski, and

G. Rozenberg, editors, Handbook of Graph Grammars and Computing by
Graph Transformation, volume 2 - Application, L anguagesand tools., pages
487-546. World Scientific, Singapore, 1999.

L.M. Wills. Using Attributed Flow Graph Parsing to Recognize Programs.
In Proc. of International Workshop on Graph Grammars and Their Applica-
tion to Computer Science, LNCS 1073, Williamsburg, Virginia, 1994, No-
vember 1996. Springer Verlag.

A. Zindorf. Rigorous Object Oriented Software Development. University
of Paderborn, Germany, 2001.

