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ABSTRACT

During the software lifecycle, software systems have to be
continuously maintained to counteract architectural deterio-
ration and retain their software quality. In order to maintain
a software it has to be understood first which can be sup-
ported by (semi-)automatic reverse engineering approaches.
Reverse engineering is the analysis of software for the pur-
pose of recovering its design documentation, e.g., in form
of the conceptual architecture. Today, the most prevalent
reverse engineering approaches are (1) the clustering-based
approach which groups the elements of a given software sys-
tem based on metric values in order to provide an overview
of the system and (2) the pattern-based approach which
tries to detect pre-defined patterns in the software which
can give insight about the original developers’ intentions.
In this paper, we present an approach towards combining
these techniques: we show how the detection and removal
of certain bad smells in a software system can improve the
results of a clustering-based analysis. We propose to in-
tegrate this combination of reverse engineering approaches
into a reengineering process for component-based software
systems.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Restructuring, reverse engineering, and
reengineering ; D.2.8 [Software Engineering]: Metrics—
product metrics; D.2.11 [Software Engineering]: Software
Architectures

General Terms

Design, Documentation, Measurement
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Reengineering, Software Architecture, Clustering, Bad Smell
Detection, Metrics
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1. INTRODUCTION
One of the most important and also most expensive phases

in the life cycle of a software system is its maintenance. It
is estimated that its cost can amount to as much as 80% of
the total cost of the system [27]. Typical maintenance tasks
such as the correction of bugs or the adaptation of function-
ality to new requirements slowly causes the architecture of
the system to deteriorate. The software ages [23]. To coun-
teract this aging effect, the software architecture has to be
renovated and restructured constantly [16, 9]. In some cases,
even the migration of a legacy system to a new paradigm like
Service-Oriented Architecture is required (e.g., [32]).

In order to perform these maintenance tasks, a reengineer
first has to understand the design of the software. Due to
incomplete or outdated design documentation, this can be a
tedious and very complicated task. Reverse engineering aims
to analyze the source code of a software system automati-
cally in order to recover its documentation [7]. In the past,
two general types of approaches for the reverse engineering
of software systems have been proposed: clustering-based
reverse engineering and pattern-based reverse engineering
[26].

Clustering-based reverse engineering approaches try to re-
cover a system’s architecture by grouping its basic elements
(throughout this paper we will refer to these elements as
classes) based on the values of certain code metrics. Exam-
ples of common metrics used for this purpose are coupling
and stability [18]. The result of a clustering-based analysis is
a set of components such as subsystems or modules and their
connectors, i.e. the relationships between them [29]. These
connected components represent a possible system architec-
ture. Because the calculation of metric values is relatively
easy for most metrics, a clustering-based analysis can be
carried out in short time frames, even for large systems. A
major drawback of this approach, however, is the high level
of abstraction that comes with the use of metrics. Some
complex architecture-relevant information cannot easily be
captured by metric formulas. In addition, this approach can
only recover the structure of the components but not their
purpose. The reverse engineer has to manually inspect the
elements in the detected components to get a feeling for what
the component is supposed to do.

Pattern-based reverse engineering approaches aim at the
detection of pre-defined structural or behavioral patterns in
the software. These pre-defined patterns exist for different
levels of abstraction, different domains and purposes but the
most famous collection of patterns are the Design Patterns
by Gamma et al. [13]. The rationale behind their detection is



class A implements IA {
  IB ib = … 

  m1() {
    …
    B b = (IB) ib;
    b.m3();
    …
  }
}

class B implements IB {
  m2() {…}

  m3() {…}
}

interface IA {
  m1();
}

interface IB {
  m2();
}
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Figure 1: Example of the bad smell Interface Violation affecting the clustering

class A implements IA {
  IB ib = …   

  m1() {
    …
    ib.m3();
    …
  }
}

class B implements IB {
  m2() {…}
  m3() {…}
}

interface IA {
  m1();
}

interface IB {
  m2();
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Figure 2: Refactored version of the example from Figure 1

that each design pattern has a specific intent that describes
in which situation the pattern should be applied. Hence,
the detection of a design pattern implementation in combi-
nation with the pattern’s intent can reveal the developer’s
design rationale and thereby foster the understanding of the
software. Another renowned category of patterns are design
deficiencies like Anti Patterns [6] or Bad Smells [12] which
describe frequently occurring bad solutions to common prob-
lems together with refactorings to correct them. Because
pattern detection often takes much more detailed informa-
tion like control and data flow into account than clustering-
based approaches, it is generally much slower. Moreover,
due to their usually low level of abstraction, an impracti-
cally large set of pattern implementations can be detected
even for medium-scale systems.

The contribution of this paper is an approach for the
combination of clustering-based and pattern-based reverse
engineering techniques. It is an extension of the approach
that was sketched in [30]. We show how the occurrence
of bad smells can adulterate the architecture recovered by
clustering-based reverse engineering approaches. We explain
how these bad smells can be detected in the architecture and
we sketch the integration of the reverse engineering step into
an iterative reengineering process for component-based sys-
tems.

The paper is organized as follows. In Section 2, we illus-
trate the influence of bad smells on clustering-based reverse
engineering approaches in general. Section 3 sketches the
iterative reengineering process. It also explains the combi-
nation of clustering-based and pattern-based reverse engi-
neering techniques to identify these bad smells. Examples
of those bad smells are discussed in Section 4 while Section 5

presents early validation results for the bad smell detection.
Section 6 gives an overview of related work and Section 7
concludes the paper.

2. PROBLEM
The reengineering process for software systems consists of

reverse engineering and forward engineering. During the re-
verse engineering part, the software is analyzed, understood,
and problems are identified. The forward engineering phase
is concerned with changing the system, i.e., removing flaws,
restructuring, or adding functionality [9].

At the beginning of the reengineering activity, in many
cases, the reengineer will use clustering-based reverse en-
gineering to get a first overview of the system. The met-
rics used by clustering-based reverse engineering approaches
range from rather simple metrics like Coupling and Cohe-
sion [18] to more complex, aggregated metrics such as Slice
Layer Architecture Quality [8]. The measured metric val-
ues imply a certain clustering of the elements. For example,
classes which are strongly coupled will probably be grouped
together in the same component while uncoupled classes may
be placed in different components.

The metric values used for the architecture recovery are
based on the concrete architecture of the system, i.e., the
architecture which is implemented in the existing source
code. However, the concrete architecture is the result of a
possibly long software lifecycle and may therefore have de-
teriorated from the originally intended, conceptional archi-
tecture. Maintenance and extensions may have introduced
design flaws like bad smells into the code or may have led
to other changes which are not in line with the conceptual
architecture [23].
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Figure 3: Sketch of the proposed reengineering process

Many bad smells lead to a high coupling of system ele-
ments. In this they contrast with design patterns, which for
the most part strive to produce a modular, uncoupled archi-
tecture. Because bad smell occurrences in a system lead to
strongly coupled classes they will cause them to be clustered
together by an architecture recovery approach. Although
they may not belong together conceptually, the classes are
assigned to the same component due to the bad smell oc-
currence.

As an example, consider part a) of Figure 1: The classes A
and B implement the interfaces IA and IB, respectively. Fol-
lowing the design principle “Program to an interface, not an
implementation” [13], the classes are expected to communi-
cate through their interfaces. However, A calls the method
m3() from B. Because m3() is not provided by the interface
IB, A downcasts the object ib to the concrete type B in order
to access m3(). This intentional bypassing of an interface is
called Interface Violation. It leads to a direct coupling of A

and B as shown in the class diagram in part b). The cou-
pling between A and B is calculated as the ratio between the
number of accesses from A to B and the number of accesses
from A to all classes in the system. In this simple example,
the metric evaluates to Coupling(A,B) = 1

1
= 1.0 (Note

that the Coupling metric does only take classes into account
but not interfaces).

For a clustering-based analysis, the high coupling between
A and B is a strong indicator to place the two classes to-
gether in one component as shown in part c) of Figure 1.
The downcast of the object ib to the concrete type B is an
example for the occurrence of a bad smell. It may have been
introduced by an inexperienced developer who did not know
that the classes were not supposed to communicate directly.
It is also possible that the declaration of m3() was omitted
from the interface IB by an oversight.

The bad smell in the example can easily be removed by
adding the declaration of m3() to the interface IB. This leads
to the situation depicted in Figure 2 a). Since m3() is now de-
clared in IB, the downcast to B becomes unnecessary. There
is no direct reference from A to B, anymore. Thus, the cou-
pling metric for the two classes evaluates to 0 (Figure 2 b))
and the clustering algorithm would recover an architecture
similar to the conceptual architecture in Figure 2 c).

This simple but illustrative example shows that the pres-
ence of bad smells in a system can adulterate the metric
values used by the clustering and thereby can gradually ob-
fuscate the original, conceptual architecture. Removing the
occurrences from the code would improve the implemented,

concrete architecture and lead to a better modularization of
the system.

3. REENGINEERING PROCESS
In this section, we describe a process for the iterative

reengineering of software architectures. It combines cluster-
ing-based and pattern-based reverse engineering techniques.
In Section 3.1, we give an overview of the complete reengi-
neering process. Section 3.2 deals with the analytic part of
the process and explains our combination of reverse engi-
neering techniques in detail.

3.1 An iterative reengineering process for com-
ponent-based software architectures

In Section 2, we showed that bad smells can have a signif-
icant influence on the architecture recovered by clustering-
based reverse engineering approaches. Thus, it stands to
reason that bad smells should be detected and removed be-
fore a clustering is executed. This can be accomplished by a
pattern detection which searches for a number of pre-defined
bad smells and a subsequent manual removal of the detected
bad smells.

However, because bad smells are usually defined on a
rather low abstraction level, a pattern detection on a com-
plete system can take a long time and yield a large number
of results [31]. Therefore, we propose the approach which is
sketched in Figure 3.

The starting point of the process is the source code of
the software system. In a first step, the system is clustered
to obtain an initial architecture. On the one hand, this can
give the reengineer a first impression of the analyzed system.
On the other hand, it allows the detection of bad smells for
each of the initially inferred components. In contrast to a
pattern detection in the complete system, the detection per
component reduces the search space and thus the run time
of the pattern detection.

In addition, the reengineer can focus the pattern detec-
tion on a subset of all detected components. If the initial
clustering, for example, recovers an especially large compo-
nent, this could be a promising starting point for a pattern
detection because the removal of bad smells in this compo-
nent might reveal a possibility to break up the component.
Hence, the initial clustering enables the reengineer to manu-
ally steer the process in a direction which seems to promise
the best results.

After the pattern detection step, the reengineer has to de-



f(x) = … f(x) = … f(x) = … 

Weighted
Metrics

Recovered Architecture

!

Detected Bad Smells
per Component

!

Source Code
GAST

Bad Smell Specifications

Figure 4: Combination of clustering and pattern detection as part of the reengineering process

cide which occurrences of bad smells have to be removed and
how this can be accomplished. Some bad smell occurrences
may be more critical than others which depends heavily on
the context in which the bad smell occurs. For example,
an Interface Violation (cf. Section 2) between two classes in
the same component may be acceptable while it would be a
major problem between two classes from completely differ-
ent parts of the system (e.g., business logic and persistence
layer). At this stage of our research, the reengineer has to
inspect the bad smell occurrences manually and decide what
to do with them on a case-by-case basis. An automated rel-
evance analysis of the detected bad smell occurrences and
support for their automated refactoring is subject to future
work.

After the reengineer has refactored the critical bad smell
occurrences, the system can be clustered again. Because it
now contains fewer bad smells which can affect the cluster-
ing, the recovered architecture may contain different (usu-
ally smaller) components than the initial architecture. The
reengineer may then focus his attention on another part of
the system and try to detect and remove bad smells there.

Each iteration of the process improves both, the quality
of the concrete system architecture (because bad smells are
removed) and the reengineer’s understanding of the system
(because the clustering result reflects the improved archi-
tecture). Note that only the first clustering and pattern
detection is real reverse engineering because the following
iterations are already based on the refactored system. How-
ever, the subsequent iterations also improve the reengineer’s
understanding of the system because they reveal a clearer,
albeit reengineered, architecture.

3.2 Combination of clustering and bad smell
detection

This section describes in more detail how the combina-
tion of clustering and pattern detection is realized in our
approach. Figure 4 shows an overview of this part of the
process which was first sketched in [30].

For the clustering, we use the tool SoMoX (Software Model
Extractor) which was developed at the FZI Karlsruhe [5].
The pattern detection is carried out by the tool Reclipse
which was developed at the University of Paderborn [33, 34,
35].

Clustering with SoMoX.
SoMoX and Reclipse do not analyze the source code of the

software directly but instead process a graph representation,

the generalized abstract syntax tree (GAST). SoMoX calcu-
lates a number of metrics such as name resemblance, cou-
pling, cohesion, and slice-layer architecture quality for the
elements of the GAST. These metric values are weighted and
aggregated to serve as input for the clustering algorithm. If
the aggregated metric value for two elements exceeds a cer-
tain threshold, the two elements are clustered together in
the same component. One important indicator for the clus-
tering is the coupling of two elements.

The component definition that forms the basis for the clus-
tering in SoMoX is in line with [28]. That means, e.g., that
components are solely communicating via their interfaces,
that interfaces define a number of services, and that services
use data type arguments only.

The clustering algorithm starts by clustering the low-level
system elements (e.g., classes) into basic components. It
then proceeds to calculate new metric values for the de-
tected basic components and continues to cluster them to-
gether into composite components. New metric values for
the composite components are calculated, etc., until a sta-
ble architecture is achieved, i.e., until no combination of
detected components has an aggregated metric value that
exceeds the clustering threshold. The result of the clus-
tering process is a mapping of the system elements to a
number of reverse engineered components together with the
connections between those components. SoMoX also allows
to exclude certain classes from the clustering. This is useful
when dedicated data classes like transfer objects or events
are used in the system (see Section 4). For details on the
metrics and the clustering refer to [8] and [17].

Pattern Detection with Reclipse.
The Reclipse Tool Suite [34] offers functionality for the

specification and detection of structural and behavioral pat-
terns. In this paper, we focus on the structural pattern spec-
ification and detection capabilities. Reclipse uses a graph
matching approach for the detection of structural patterns
[22]. The GAST of the software system is the host graph for
this matching. The reengineer uses a graphical DSL to spec-
ify an arbitrary number of structural graph patterns which
are to be detected by Reclipse.

Figure 5 shows a (slightly simplified) specification of the
Interface Violation pattern introduced in Section 2. The
specification shows the object structure that constitutes an
occurrence of the pattern, i.e., a method call between two
classes although the called class provides an interface. In
the example, a Class c1 contains a Method m1 and a Class



pattern specification Interface Violation

c1 : Class

m2 : Method

:InterfaceViolation

method

called
Method

interface
caller callee

«create»

«create» «create»

c2 : Class

i : Interface

m1 : Method call : MethodCall

method

accesses

Figure 5: Structural specification of an Interface Vi-
olation pattern in Reclipse

c2 contains a Method m2. c2 also implements an interface i.
The method m1 contains a method call. The called method
is m2. This structural pattern can be enhanced further by
constraints to ensure, e.g., that m2 is not an implementation
of a method that was declared by the interface i. A more
detailed explanation of the DSL and more example patterns
can be found in [33] and [35].

When Reclipse detects a pattern occurrence in the host
graph, i.e., the GAST, it creates an annotation (the green
ellipse marked with �create� in Figure 5) which marks
the pattern occurrence. The result of the pattern detection
is a ranked list of bad smell occurrences. The ranking is
computed automatically by relating the matched parts of the
pattern to the total number of elements in the specification.
For further details refer to [35].

Because we focus the pattern detection on the components
recovered by SoMoX, the recovered architecture, i.e., the
mapping of system elements to components, is also an input
for the pattern detection (cf. Figure 4).

Note that a pattern detection which is carried out for each
of the recovered components does not detect all patterns
that a pattern detection run on the complete system would
yield. Patterns whose elements are distributed over several
components are missed by our combined detection approach.
If, for some reason, the classes c1 and c2 from Figure 5 would
be assigned to different components by the clustering, a
component-by-component pattern detection would not de-
tect the interface violation. However, the bad smells which
we present in this paper increase the coupling of classes and
therefore usually lead to classes being clustered together in
large components. One primary goal of the reengineering
approach is to break up these large components. Because
the bad smells presented in this paper can successfully be
detected within single components, we accept that patterns
which are distributed across components are missed. In the
future, we plan to extend the pattern detection from single
components to pairs of components which are directly con-
nected. This way, more patterns can be detected while un-
connected components are not considered. Thus, the search
space would still be smaller than for a pattern detection on
the complete system.

4. EXAMPLE PATTERNS
In this section, we present several bad smells whose pres-

ence in a system increases the coupling between the involved
classes and thereby can influence the clustering. We also
point out possible refactorings to remove the bad smells.

4.1 Interface Violation
An example of the Interface Violation pattern was already

shown in Section 2, so we only discuss the rationale behind
the pattern here.

Components in a good component-oriented architecture
are supposed to communicate exclusively via their interfaces
[28]. Thus, if two classes are part of different components,
they can only invoke operations of each other which are pro-
vided by their counterpart’s interfaces. This leads to a good
decoupling of the components. Only classes which reside in
the same component can directly access each other’s (public)
operations and attributes which results in a high coupling.
If classes from different components invoke operations which
are not part of their corresponding interface, this is called
an interface violation [8].

An existing interface violation has a direct impact on the
clustering. Two classes which communicate with each other
in a way that violates their interfaces are strongly coupled.
Hence, they are probably assigned to the same component
by a clustering-based reverse engineering approach.

A variant of this pattern is a direct access to a public at-
tribute between two classes. This also bypasses the interface
of the class that contains the attribute and creates a high
coupling.

Refactoring.
There are different possibilities to remove an interface vi-

olation. The trivial solution would be to delete the violating
method (or attribute) access. This would obviously reduce
the coupling but also change the behavior of the system.

Another solution would be to extend the interface of the
accessed class as shown in the example in Figure 2. This
would decouple the two classes while preserving the behav-
ior. On the other hand, all other classes which implement
the same interface would have to be changed, too. In case of
the interface violation variant by attribute access, one solu-
tion would be to provide an access method to the attribute
and include that into the interface.

Third, a new interface that contains only the accessed
method (m3() in Figure 1) could be introduced. This solu-
tion would avoid the deletion of behavior and the modifica-
tion of existing interfaces.

4.2 Undercover Transfer Objects
Transfer objects are objects which serve as data contain-

ers for the communication between components. Transfer
objects are “filled” with data by one component and then
passed to another component which needs that data. Be-
cause they only serve as data containers, transfer objects
are not really a part of the system architecture. Neverthe-
less, they are used by the sending and the receiving class
and therefore may lead to a high coupling between them.

Due to their role as data containers which do not take
part in the system behavior, transfer objects should be ig-
nored by the clustering. Transfer objects are often specif-
ically marked to be distinguishable from “normal” classes.
The Common Component Modeling Example CoCoME [14]
is an exemplary realization of a component-based trading
system which we used for our validation (cf. Section 5). In



CoCoME, transfer objects are identified by the suffix TO
and, thus, can be filtered out before the clustering. How-
ever, transfer objects which are not easily identifiable by a
naming convention have to be detected and kept out of the
clustering process.

The structure of transfer objects can be described by the
bad smell Data Class [12]. Fowler describes data classes as
classes which “have fields, getting and setting methods for
the fields and nothing else”. If this bad smell is discovered in
a component, it may indicate that a transfer object was as-
signed to this component. This could mean that the classes
which communicate by the this transfer object are also part
of the component although they are not linked otherwise.
Consequently, the transfer object should be excluded from
the clustering in future iterations of the reengineering pro-
cess.

4.3 Communication via Non-Transfer-Objects

A

B

IB

AtoBTO

C

m1()

m2()

C1 C2

Figure 6: Conceptual architecture for communica-
tion via the transfer object AtoBTO

As defined by Szyperski [28] and pointed out in Section 4.2,
two components should exchange data via transfer objects.
Communication through objects which are not transfer ob-
jects should be avoided. For instance, instead of passing
a certain object to another component to give the receiv-
ing component access to the object’s data, a transfer object
should be filled with the data.

Consider the conceptual architecture in Figure 6. The two
components are connected via the interface IB and should
exchange their data via the transfer object AtoBTO. In a
flawed implementation, A could also pass a reference to C to
B instead of populating a transfer object with data from C.
This way, the coupling of A and B would be increased and B

would have access to all the functionality of C although this
is not intended by the conceptual architecture.

Refactoring.
To remove this bad smell, it is necessary to analyze the

data that is really used by the called method. Afterwards,
an appropriate transfer object can be prepared that is then
used passed between the classes instead of the non-transfer-
object. That way, the called method is prevented from ac-
cessing parts of the system that should be unknown to it.

4.4 Unauthorized Call
In contrast to an interface violation, an unauthorized call

is an invocation of an operation which is provided by an
interface but which is still prohibited because the calling
component is not connected to the called component. In
Figure 6, method m1() is allowed to call m2() provided m2()

is part of interface IB and there are matching assembly and

Bad Smell Detected
occurrences

True posi-
tives

Interface Violation 11 11
Undercover Transfer
Object

26 8

Non-TO Communi-
cation

32 7

Unauthorized call 3 3

Table 1: Validation results for CoCoME

delegation connectors. On the other hand, m2() may not call
m1() because component C2 does not require an interface
from C1.

In programming languages which do not explicitly sup-
port the concept of components, e.g. plain Java, it is easy
to introduce unauthorized calls accidentally because strict
interface communication is not enforced by the language.

Refactoring.
Similar to the Interface Violation bad smell, the easiest

solution is to delete the unauthorized call. However, in most
cases the reengineer will have to analyze the reason for the
unauthorized call. If, for example, a helper class is called, it
may be a good idea to move that class to another component
where it can be accessed by all classes that need it.If that is
not possible, the needed functionality can either be sourced
out into a separate component or it could be duplicated
(although this obviously has other drawbacks).

5. VALIDATION
To validate our approach, we tried to detect the bad smells

presented in Section 4 in the reference implementation1 of
the Common Component Modeling Example CoCoME [14].
CoCoME describes the architecture of a component-based
trading system and is intended to illustrate good component-
oriented design. The conceptual architecture is well-doc-
umented by use cases, component diagrams and sequence
diagrams. The reference implementation was created manu-
ally by computer science students without component frame-
works which makes it vulnerable to typical design flaws. The
reference implementation consists of over 5000 lines of code
in 127 classes.

5.1 Bad Smells in CoCoME
Table 1 shows the bad smell detection results for Co-

CoME. Column 1 shows the different bad smells introduced
in Section 4. While the second column shows the number
of occurrences that were reported by Reclipse, the third col-
umn shows the number of true positives among the detection
results. The true positives were identified by manual in-
spection. We detected eleven Interface Violations and three
Unauthorized Calls which were all true positives. In addi-
tion, eight Undercover Transfer Objects and seven Non-TO
Communications were identified. The large number of false
positives for the two patterns Undercover Transfer Object
and Non-Transfer Object Communication can be explained
by insufficient precision of our pattern specifications: Based
on the detection results, we could improve the Reclipse spec-

1Available online at http://agrausch.informatik.uni-
kl.de/CoCoME/downloads



ifications for these two patterns with further constraints in
order to avoid most of the detected false positives.

Reclipse identified a number of classes as transfer objects
which exhibited characteristic traits of transfer objects but
were intended to model system events. Because they have a
similar structure and purpose as the transfer objects, they
should also be ignored by the clustering. Similar to transfer
objects, the event classes can be filtered out by their suffix.
So while they are false positives in the sense that they are no
transfer objects, their detection is still valuable information
for the reengineer. Similar to transfer objects, the system
events can affect the clustering and this insight can be used
to improve the preprocessing filters of SoMoX in subsequent
iterations.

The Non-Transfer Object Communication pattern speci-
fies a call with parameters which are not transfer objects.
In our detection results, however, the pattern was also de-
tected for parameter types from native Java libraries, e.g.,
java.util.Date. This could also be remedied by applying an
appropriate filter.

In the following, we present details on the detected bad
smell occurrences.

Figure 7 shows an excerpt from the conceptual architec-
ture of CoCoME as documented in [14]. According to the
documentation, the component TradingSystem::Inventory::Ap-

plication contains the sub components Store and ProductDis-

patcher. Store can communicate with ProductDispatcher via
the Interface ProductDispatcherIf. The component TradingSys-

tem::Inventory::Data consists of the three sub components En-

terprise, Persistence, and Store which are not supposed to com-
municate with each other. Store and ProductDispatcher from
the Application component can access the Store sub compo-
nent of the component Data via the interface StoreQueryIf.
The sub components Enterprise and Persistence are used by
other components which have been omitted in this example.

We detected 11 Interface Violations between the sub pack-
ages of the TradingSystem::Inventory::Data component: two be-
tween the subpackages Persistence and Enterprise and the other
nine between Persistence and Store. This increases the cou-
pling between the three sub components and prevents them
from being distinguished clearly by the clustering.

We could identify eight Undercover Transfer Objects, i.e.,
data classes which only contain attributes and access meth-
ods. They were not marked with the name suffix “TO” al-
though they are used as transfer objects. This is probably
due to an oversight by the developers.

There are seven occurrences of the bad smell Communi-
cations via Non-Transfer Objects in the CoCoME reference
implementation. Five of these communications take place
between the components Tradingsystem::Inventory::Application::

Store and Tradingsystem::Inventory::Data::Store. Two more oc-
currences of this bad smell were detected between the sub
components ProductDispatcher and Store in the Application com-
ponent.
We also detected three occurrences of the Unauthorized

call bad smell. The subcomponent ProductDispatcher calls a
method of the class FillTransferObjects in the sub component
Store in two different places in the code. This is not allowed
since Store requires the interface ProductDispatcherIf which is
provided by ProductDispatcher but not the other way round.
The same occurs between the sub components Tradingsys-

tem::Inventory::Data::Store and Tradingsystem::Inventory::Applica-

tion::Store. An inspection of the corresponding classes showed

that the class FillTransferObjects from the sub component Store
is a helper class that is also accessed from the sub compo-
nent ProductDispatcher. This access was probably introduced
when the developers realized that they needed the function-
ality of FillTransferObjects in the other component as well.
Because Java does not enforce interface communication be-
tween components, the unauthorized call could be added
unnoticed.

5.2 Discussion
Although our validation only is a first experiment on a

comparably small system, it shows that the bad smells pre-
sented in this paper do occur in practice. The reference
implementation of CoCoME was created manually and al-
though the design documentation is very detailed and clear,
numerous bad smells exist in the implementation. It stands
to reason that this problem will be even more significant in
larger, more complex systems.

A clustering-based analysis of CoCoME with SoMoX was
already performed [8, 17]. It showed that 9 of the 14 docu-
mented components could be recovered. However, the sub-
component Tradingsystem::Inventory::Application::Store which is
a part of several bad smell occurrences could not be recov-
ered by SoMoX. This leads us to believe that the bad smells
are actually responsible for SoMoX missing the sub compo-
nent.

In addition to the reference implementation, there are a
number of other CoCoME implementations which make use
of different component frameworks like SOFA or FRACTAL
[24]. These frameworks are intended to support the creation
of a good component-oriented design, e.g., by prohibiting the
external access to methods which are not part of a compo-
nent’s interface. In this context, it would be interesting to
analyze these implementations and compare if they contain
significantly fewer bad smells than the reference implemen-
tation and how this affects the clustering.

6. RELATED WORK
In this section, we present related work from different ar-

eas of research. First, we give a short overview of clustering-
based and pattern-based reverse engineering techniques. Af-
terwards, we discuss approaches which combine different re-
verse engineering techniques to improve the detection re-
sults.

Clustering-based Reverse Engineering.
Architecture recovery is a wide field of research for which

Ducasse and Pollet [11] attempt to present a taxonomy and
give an overview of different approaches.

Müller et al. [21] were among the first to present an au-
tomated architecture recovery approach which groups basic
system building blocks based on metrics like coupling and
cohesion. Their approach is implemented in the Rigi tool.

Koschke [16] analyzes and compares different architecture
recovery techniques and proposes a framework to combine
the different approaches in order to achieve a better recov-
ery result. The approaches used in the combination all are
clustering-based. The way in which the different recovery
approaches are combined is comparable to the combination
of metrics used by SoMoX. Koschke suggests in his paper
that more detailed and precise information than the one used
by the clustering-based approaches should be taken into ac-
count in order to achieve even better recovery results.
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Figure 7: An excerpt from the conceptual architecture of CoCoME [14]

Pattern-based Reverse Engineering.
Similar to clustering-based reverse engineering, many ap-

proaches for detection of software patterns exist. Here we
only discuss a few select publications which are close to our
approach because they are concerned with components or
the detection of design flaws. An exhaustive overview of
different approaches in pattern-based reverse engineering is
given by Dong et al. [10].

Keller et al. [15] describe an approach to detect “design
components” in source code. However, they refer to a de-
sign component as “a package of structural model descrip-
tions together with informal documentation, such as intent,
applicability, or known-uses.” Hence, they detect design pat-
terns rather than components. In contrast, the components
recovered by SoMoX [5] in our approach are in line with the
component definition by Szyperski [28].

Sartipi [26] uses data mining techniques to structure a
graph representation of a program and then defines archi-
tectural patterns (or, as he calls them, queries) on the re-
sulting graph which are evaluated by graph matching. The
queries are focused on simple architectural properties like
the number of relations to a certain component and are not
as expressive as the structural patterns used in our approach.

In [31], Trifu et al. detect and remove design flaws with
respect to a user-selected quality goal, e.g., performance.
They detect those flaws by using graph matching in combi-
nation with basic metrics. However, the authors point out
that this leads to a large number of detection results which
have to be manually validated by the user. In our approach,
we propose to cluster the system before anti patterns are de-
tected to speed up the detection and also reduce the number
of results.

Munro [20] as well as Salehie et al. [25] use a combination
of metrics to detect occurrences of different design flaws in a
system. In contrast to our approach they do not use metrics
to recover an architecture but employ the metric values as
indicators for the existence of anti patterns.

Moha et al. [19] present an approach for the specifica-
tion and detection of bad smells in code. They provide

a method to derive consistent specifications from textual
descriptions and generate detection algorithms from these
specifications which take metrics values as well as struc-
tural aspects into account. However, they do not employ
clustering-based techniques in their approach. They also do
not consider the removal of bad smells but focus on their
detection.

Arendt et al.[2] present a quality assurance process which
uses a combination of metrics and structural patterns to
identify model smells. They combine the bad smells with
pre-defined graph transformations to provide an automated
refactoring for identified bad smells. They use their ap-
proach for the quality assurance in an industrial context,
so they assume that the analyzed models already exist and
do not have to be recovered.

Combination of reverse engineering approaches.
Bauer and Trifu [4] use a combination of pattern detec-

tion and clustering to recover the architecture of a system.
They detect so-called architectural clues with a Prolog-based
pattern matching approach and use these clues to compute
a multi-graph representation of the system. The weighted
edges in this representation indicate the coupling of the sys-
tem elements and are used by a clustering algorithm to ob-
tain an architecture of the system. In contrast to our ap-
proach, the clustering is completely based on the informa-
tion gathered by the pattern detection. Thus, the pattern
detection has to be carried out first which can take very
long for large systems. Our approach applies the clustering
first to reduce the search space for the pattern detection. In
addition, Bauer and Trifu focus on the detection of design
patterns and do not consider the impact of bad smells on
the clustering.

Basit and Jarzabek [3] identify clone patterns in programs
and then apply a data mining approach to cluster clones
which occur together frequently. However, they apply the
clone detection and the clustering consecutively and do not
consider relation between the two parts nor do they suggest



multiple iterations of their approach. The detection of pre-
defined patterns is not addressed.

Similar to our approach, Arcelli Fontana and Zanoni [1]
use an AST representation of a system as a common basis
for pattern detection and architecture recovery. However,
they use the two techniques in parallel but do not combine
them.

7. CONCLUSION AND FUTURE WORK
In this paper, we presented an approach for the combina-

tion of clustering-based and pattern-based reverse engineer-
ing approaches. We showed that the presence of bad smells
in the code of a software system can adulterate the results
of a metric-reliant clustering and that it is therefore sensible
to detect and remove the bad smell occurrences before the
system is clustered. To mitigate the usually high run-time
of the pattern detection and allow a more focused detection
of bad smells, we also proposed to start with the clustering
and thus obtain an initial decomposition of the system. Af-
terwards, the pattern detection is applied to each detected
component to detect bad smells which prevent a further de-
composition by the clustering algorithm.

As a starting point, we identified several bad smells that
have an impact on the coupling metric which is a key indi-
cator for the clustering. We also presented first experimen-
tal validation results for different component-based software
systems which showed that the identified bad smells really
occur in these systems.

In the future, we plan to extend our approach by a rele-
vance analysis for bad smell occurrences which takes addi-
tional metric values into account. This will help to distin-
guish bad smells which should be removed from those which
do not have a negative influence on the architecture. We
also want to analyze, if and how the detection design pat-
terns can be incorporated into our approach. It would also
be interesting to examine which other metrics besides cou-
pling are influenced by patterns. Finally, we plan to add tool
support for the removal of bad smells which is done manu-
ally at the moment. Presenting the reengineer with sensible
refactoring options can prevent the accidental introduction
of new bad smells during the removal of existing ones.
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Pattern-Based Reverse-Engineering of Design
Components. In Proc. of the 21st International
Conference on Software Engineering, pages 226–235.
IEEE Computer Society Press, May 1999.

[16] R. Koschke. Atomic Architectural Component
Recovery for Program Understanding and Evolution.
In Proceedings of the International Conference on
Software Maintenance, pages 478 – 481. IEEE, 2002.

[17] K. Krogmann. Reconstruction of Software Component
Architectures and Behaviour Models using Static and
Dynamic Analysis. PhD thesis, Karlsruhe Institute of
Technology (KIT), Karlsruhe, Germany, 2010. to
appear.



[18] R. Martin. OO Design Quality Metrics - An Analysis
of Dependencies. In Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA),
1994.
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