
Towards Systematic, Comprehensive Trace Generation for
Behavioral Pattern Detection through Symbolic Execution

Markus von Detten
Software Engineering Group, Heinz Nixdorf Institute

University of Paderborn, Germany
mvdetten@upb.de

ABSTRACT
In reverse engineering, dynamic pattern detection is accom-
plished by collecting execution traces and comparing them
to expected behavioral patterns. The traces are collected by
manually executing the program under study and therefore
represent only part of all relevant program behavior. This
can lead to false conclusions about the detected patterns.
In this paper, we propose to generate all relevant program
traces by using symbolic execution. In order to reduce the
created trace data, we allow to limit the trace collection to
a user-selectable subset of the statically detected pattern
candidates.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Symbolic Execution; D.2.5 [Software Engineering]: Test-
ing and Debugging—Tracing ; D.2.7 [Software Engineer-
ing]: Distribution, Maintenance, and Enhancement—Re-
structuring, reverse engineering and reengineering

General Terms
Design, Documentation

Keywords
Pattern Detection, Execution Traces, Symbolic Execution

1. INTRODUCTION
In software engineering, reverse engineering is the analysis

of software for the purpose of understanding it or recovering
its documentation [2]. Pattern detection, i.e., the detection
of implementations of design patterns [4] or design deficien-
cies (e.g., anti patterns [1]), is an important part of reverse
engineering for which many approaches have been suggested.
While many early approaches only used static analyses of
the source code to detect patterns, there is an increasing
number of techniques which combines static and dynamic

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASTE’11, September 5, 2011, Szeged, Hungary.
Copyright 2011 ACM 978-1-4503-0XXX-X/11/09 ...$10.00.

analysis methods (e.g., [5, 11, 12]). They analyze the static
structure of the software as well as its dynamic behavior.
While the static structure is represented by the system’s
source code, the data documenting the behavior has to be
collected first: traces of concrete program executions have
to be recorded. This can be accomplished by instrumenting
the program or by monitoring the program execution, e.g.,
via a debugging interface. The collected traces can then be
compared to pre-defined behavioral patterns to draw con-
clusions about the behavior of pattern implementations in
the software.

A trace obtained by the execution of a program is depen-
dent on the input. It only documents one concrete execution
of the software. Similar to testing, it is not feasible to cover
all possible executions of the program manually and trace
them in a systematic way. This leads to a severe problem
for dynamic pattern detection approaches: while we want to
draw general conclusions about the behavior of pattern im-
plementations, the dynamic analysis is only based on a frac-
tion of the possible program behavior. A common heuristic
to circumvent this problem is to execute the software “long
enough” and collect multiple traces by trying different exe-
cutions. It is expected that traces collected in this way will
contain enough relevant information to allow a statement
about the patterns of interest.

This paper sketches an approach to obtain program execu-
tion traces in a systematic way by using symbolic execution
[6]. We explain how patterns candidates that have been de-
tected through static analysis with the Reclipse Tool Suite
[12] can be analyzed by the symbolic execution provided by
Java PathFinder [9].

The paper is organized as follows: Section 2 will briefly
present the existing pattern detection capabilities of the Re-
clipse Tool Suite. Section 3 sketches the extension of the ap-
proach, i.e., the systematic collection of traces by symbolic
execution. Section 4 discusses related work and Section 5
concludes the paper by outlining future work.

2. THE PATTERN DETECTION PROCESS
Reclipse is a reverse engineering tool suite that is being de-

veloped at the University of Paderborn [12, 13]. The pattern
detection process with Reclipse is illustrated in Figure 1. A
set of structural patterns and the source code of the system
under analysis are the input for the static analysis. It uses
graph matching in an abstract syntax graph of the software
[8] to identify pattern candidates, i.e., probable implementa-
tions of patterns based on the static structure of the system.

Source
Code

Behavioral
Patterns

Traces

Pattern
Candidates

Accepted / Rejected
Pattern Candidates

Static
Analysis

Dynamic
Analysis

Document

Process Step

Data Flow

Trace
Collection

TracesStructural
Patterns

Figure 1: The current pattern detection process in
Reclipse [12]

oSet:ObserverClassoSet:ObserverClasss:SubjectClass

Each update()

Loop(1,*) register()

notify()

Loop(1,*)

bp Observer

Figure 2: Observer behavioral pattern

Afterwards, traces for the candidates are collected and com-
pared to behavioral patterns in the dynamic analysis step.

The behavioral patterns in Reclipse are specified on the
basis of UML 2.0 sequence diagrams [13, 14]. Figure 2 shows
the behavioral pattern for the well-known Observer pattern
[4]. It describes the interaction of a subject class and a set of
observer classes which are monitoring the state of the subject
class. The behavioral pattern states that an observer class
can register for notifications from the subject by calling the
register method. Because multiple observers can register at
the same subject, this can happen one to many times as
indicated by the loop(1,*) fragment. Afterwards, when the
subject’s notify method is called, the pattern describes that
the update method of each of the registered observers has to
be called. This notify-update-cycle can also happen one to
many times. For details refer to [13].

TestResult TestListener

+ addListener (l : TestListener)
+ addError (test: Test, t : Throwable)

+ addError (test: Test, t : Throwable)

Observer

subject observer

Figure 3: Candidate for an occurrence of the Ob-
server pattern in JUnit 4

Figure 3 shows a candidate for the occurrence of an Ob-
server pattern in JUnit. The static analysis detected that
the class TestResult seems to play the role of the subject and

the class TestListener seems to be the Observer class. The
depicted methods are the relevant methods for this pattern
candidate, i.e., they play the part of register (addListener),
notify (TestResult::addError), and update (TestListener::addError)
from the pattern.

The program is then executed in order to collect traces.
However, tracing all method calls in an executed system
would yield way too much data. Therefore, Reclipse only
traces a filtered subset of all method calls. Only meth-
ods which appear in the behavioral patterns of the pattern
candidates are traced [7] (in this case TestResult::addListener,
TestResult::addError, and TestListener::addError). In the dynamic
analysis step, the collected trace is compared to the behav-
ioral patterns [15].

The dynamic analysis checks if the candidates behave ac-
cording to their behavioral patterns. This analysis is based
entirely on the collected traces. If the traces contain ev-
idence that a candidate behaves only as specified by the
pattern, i.e., the relevant method calls occur in an order
that matches the pattern, the candidate is accepted as a
true positive. If the trace shows that a candidate behaves
not in accordance with the behavioral pattern, the candi-
date is rejected (i.e., it is assumed to be a false positive). If
the trace does not contain conclusive evidence of either of
these behaviors, the dynamic analysis cannot determine if
the candidate is a true or a false positive.

Shortcomings of the trace collection.
Because the program execution can only cover part of all

possible behavior, the collected traces do not necessarily con-
tain behavioral data on the interesting candidates. In this
case, it is very difficult to actively obtain that data because
there is no straightforward way to get the system to be-
have as desired. The actual system behavior can normally
be influenced by the input or by direct interaction with the
system, e.g., via a graphical user interface. The reverse engi-
neer on the other hand only knowns the classes and methods
which play a part in the corresponding pattern candidate.
Without an in-depth analysis of the system’s source code,
it is not possible to determine which interaction with or in-
put into the system will trigger the execution of a particular
candidate.

If the collected trace does not contain behavioral data for
a certain candidate, the reverse engineer has no choice but
to collect more data. He can either interact randomly with
the system to trigger the desired behavior by chance, or he
systematically tries to cover as much interaction as possible.
Neither of these heuristics guarantees to produce the desired
data. In addition, the first approach does not allow to re-
peat the data collection in a systematic way. The second
approach requires meticulous logging of the user interaction
and input data to be repeatable.

Furthermore, the current way of collecting traces does not
allow definitive conclusions about the candidates. The only
conclusion the reverse engineer can draw is that a given can-
didate behaves according to the behavioral pattern for the
part of the program that was actually executed. The candi-
date might violate the pattern for another execution. The
reverse engineer, however, would never know because he can
only base his judgment on the collected trace data.

So, a more systematic and comprehensive way to collect
the trace for the dynamic analysis could greatly improve the
pattern detection process.

3. SYSTEMATIC AND COMPREHENSIVE
TRACE GENERATION WITH JPF

Symbolic execution as proposed by King allows to reason
about classes of program executions instead of individual,
concrete executions [6]. This is accomplished by assigning
symbolic values instead of concrete values to variables and
evaluating the different possible control flows. Monitoring a
symbolic execution of a program can therefore yield a num-
ber of traces that cover the complete possible program be-
havior.

public void m1(int x) {
i f (x == 5) m2() ;
else m3() ; }

Consider this simple program. A concrete execution of m1

would lead to either m2 or m3 being called, depending on the
value of x. Hence, the collected trace would either contain
m1 and m2 or m1 and m3. Executing m1 symbolically instead
(with x as a symbolic variable) would generate two traces:
One with x= 5 and one with x �= 5. In the first case m1 and
m2 would appear in the trace, in the second case m1 and m3

would be traced.
Symbolic PathFinder, an extension for the Java Source

Code model checker Java PathFinder (JPF), allows the sym-
bolic execution of Java code [9]. We propose to use Sym-
bolic PathFinder to generate traces for pattern candidates
detected by Reclipse.

3.1 Dealing with the complexity
The most straightforward approach for the generation of

execution traces is the symbolic execution of the system’s
main method. This way, all possible paths through the sys-
tem are evaluated and all possible traces for the detected
pattern candidates can be collected. This approach obvi-
ously suffers from a high computational complexity and also
generates extremely large amounts of trace data. In addi-
tion, the symbolic execution of programs with graphical user
interfaces is problematic. Therefore, we propose the follow-
ing ideas to refine the straightforward approach.

Preselecting pattern candidates.
During the static analysis, a large number of pattern can-

didates can be detected by Reclipse. As explained in Sec-
tion 2, only method calls that are part of the behavioral
patterns are recorded in the traces. Still, generating all pos-
sible traces for every candidate will most certainly yield an
impractically large amount of data. Hence, we allow the re-
verse engineer to select a subset of the statically detected
pattern candidates. During the symbolic execution, only
methods of these selected candidates are recorded in the
traces which reduces the trace files to manageable sizes.

Loops.
A common problem for symbolic generation of test data

is the execution of loops which obviously has to be limited
for symbolic execution. This, however, is not a concern for
our purpose of behavioral pattern detection. During the
dynamic analysis, we only consider the execution order of
methods and not the state of the program which may depend
on the number of loop iterations. The behavioral pattern in
Figure 2, for example, has two loop fragments. Each exe-
cution trace that contains between one and arbitrary many

executions of these loops conforms to the pattern. Thus, it
is sufficient to limit the symbolic execution of loops to one
iteration.

Using partial symbolic execution.
Symbolic PathFinder allows to limit the symbolic execu-

tion to a number of methods and variables which can be de-
fined by the user. The program is executed normally until
one of the selected methods or variables is reached. Sym-
bolic PathFinder then switches to symbolic execution and
calculates all possible execution paths for the different vari-
able values [10]. Because we know the pattern candidates,
we can infer the methods which play a part in their execu-
tion, e.g., methods that call methods from the corresponding
behavioral patterns. Thus, we can limit the symbolic exe-
cution to those methods that actually have an influence on
particular pattern candidates.

User interaction.
User interaction constitutes a challenge for symbolic ex-

ecution. While textual interaction via a command line can
still be covered by treating the textual input as a symbolic
variable, graphical user interfaces cannot be simulated eas-
ily. JPF offers the library jpf-awt to abstract away the ren-
dering aspects of the GUI and still preserve the control flow
of AWT- and Swing-based GUIs. The implementation is
still rudimentary though, so the library does not work for
all applications. However, it generally allows to apply our
approach to GUI-based systems.

3.2 Interpreting the generated traces
Until now, the concrete execution of programs only al-

lowed for very imprecise conclusions about the pattern can-
didates. Whether a candidate was a true or false positive
could only be answered with regard to the actually executed
part of the system. The use of symbolic execution enables
the reverse engineer to get a much clearer picture.

Because (at least in theory) all possible behavior of the
system is executed and the relevant parts are traced, a more
definite statement can be made for each candidate. Even if
abstraction and inaccuracy of the symbolic execution may
miss some execution paths, the data is much more compre-
hensive than for concrete execution. The following three
cases can be distinguished:

If a candidate’s traces only show behavior which complies
with the corresponding pattern, it is a true positive.

If at least one trace violates the behavioral pattern, a can-
didate has the potential to behave incorrectly. This means it
is either a false positive or at least a flawed implementation
of the pattern in question.

In the third case, no trace complies with the behavioral
pattern but no trace violates it either. This can happen
when, e.g., only one of the candidate’s methods is executed
at all. This may be allowed by the pattern but because no
other relevant methods are executed afterwards, the pattern
behavior is neither completed nor violated. For instance, the
behavioral pattern in Figure 2 would not be violated if ob-
servers would register without ever being notified of a change
(of course, this hints at an implementation problem). In this
case, the candidate can also be regarded as a false positive
because it never shows the complete correct behavior.

3.3 Validation of the approach
We validated the approach for a number of small self-

made example programs with only few classes. These initial
experiments showed that Symbolic PathFinder can easily
be integrated with Reclipse and generates the desired traces
which can then be processed by Reclipse’s dynamic analysis.
We were able to reliably distinguish implementations of the
State, Strategy and Observer patterns.

The application of our prototype to a realistic example
failed though. We tried to use our approach to generate
the traces for Observer candidates in JUnit 4.8.2 (cf. Fig-
ure 3) and JRefactory 2.6.24. Much to our regret, we could
not achieve results for these examples. Both programs use
AWT/Swing-based user interfaces. The symbolic execu-
tion of that part of the software lead to errors in Symbolic
PathFinder. As these are known errors which are currently
being fixed, we are optimistic that we will soon be able to
validate our approach for these examples.

4. RELATED WORK
Symbolic execution is applied for a multitude of problems

in different domains. While the method was originally con-
ceived for the generation of test input [6], it is now also
applied in fields like the behavioral verification of safety-
critical, embedded systems. The Java PathFinder extension
Symbolic PathFinder [9] was developed for test generation
and correctness checking of multi-threaded programs.

Most dynamic pattern detection approaches rely on the
concrete execution of programs for the collection of traces
[5, 11]. De Lucia et al. [3] apply a systematic approach for
the checking of behavioral patterns. Similar to our approach,
they begin with a structural analysis to identify pattern can-
didates. Then, they use the model checker SPIN to analyze
whether the candidates can possibly show the desired behav-
ior. This way, false negatives can be removed from the set
of candidates. Afterwards, a straight-forward dynamic anal-
ysis is carried out for the remaining candidates to verify if
they actually show the expected behavior at run-time. This
last step has the same disadvantages as other approaches
which employ concrete execution for the collection of traces.

5. CONCLUSION AND FUTURE WORK
We presented an approach to use symbolic execution for

the systematic and comprehensive generation of program
traces. We discussed that these generated traces will greatly
improve the quality of dynamic pattern detection results. In
addition, we pointed out possible problems of our method
and sketched a number of heuristics to alleviate them.

Our research is still in its early stages. Our prototype
implementation worked well for very small examples. A
broader validation is impeded by problems in JPF at the mo-
ment which will hopefully be fixed soon. We are optimistic
that the partial symbolic execution for selected candidates
will reduce the complexity sufficiently to be applicable to
realistic systems.

Acknowledgments
Our thanks go to Andreas Volk and Marie Christin Plate-
nius for their ideas and their efforts in implementing the
prototype.

6. REFERENCES
[1] W. J. Brown, R. C. Malveau, H. W. McCormick, and

T. J. Mombray. Anti Patterns: Refactoring Software,
Architectures, and Projects in Crisis. John Wiley and
Sons, Inc., 1998.

[2] E. J. Chikofsky and J. H. Cross, II. Reverse
Engineering and Design Recovery: A Taxonomy.
IEEE Software, 7(1):13–17, 1990.

[3] A. de Lucia, V. Deufemia, C. Gravino, and M. Risi.
Improving Behavioral Design Pattern Detection
through Model Checking. In Proc. of the 14th Conf.
on Software Maintenance and Reengineering, pages
179–188. IEEE, 2010.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[5] D. Heuzeroth, T. Holl, G. Högström, and W. Löwe.
Automatic Design Pattern Detection. In Proc. of the
11th Int. Workshop on Program Comprehension, pages
94–103. IEEE, 2003.

[6] J. C. King. Symbolic execution and program testing.
Communications of the ACM, 19(7):385–394, 1976.

[7] M. Meyer and L. Wendehals. Selective Tracing for
Dynamic Analyses. In Proc. of the 1st Workshop on
Program Comprehension through Dynamic Analysis,
pages 33–37, 2005.

[8] J. Niere, W. Schäfer, J. P. Wadsack, L. Wendehals,
and J. Welsh. Towards Pattern-Based Design
Recovery. In Proc. of the 24th Int. Conference on
Software Engineering, pages 338–348. ACM, 2002.

[9] C. S. Păsăreanu and N. Rungta. Symbolic PathFinder:
symbolic execution of Java bytecode. In Proc. of the
Int. Conf. on Automated Software Engineering, pages
179–180. ACM, 2010.

[10] C. S. Păsăreanu, P. C. Mehlitz, D. H. Bushnell,
K. Gundy-Burlet, M. Lowry, S. Person, and M. Pape.
Combining Unit-Level Symbolic Execution and
System-Level Concrete Execution for Testing NASA
Software. In Proc. of the 2008 Int. Symp. on Software
Testing and Analysis, pages 15–26. ACM, 2008.

[11] K. Sartipi and L. Hu. Behavior-Driven Design Pattern
Recovery. In Proc. of the Int. Conf. on Software
Engineering and Applications, pages 179–185, 2008.

[12] M. von Detten, M. Meyer, and D. Travkin. Reverse
Engineering with the Reclipse Tool Suite. In Proc. of
the 32nd Int. Conf. on Software Engineering,
volume 2, pages 299–300. ACM, 2010.

[13] M. von Detten and M. C. Platenius. Improving
Dynamic Design Pattern Detection in Reclipse with
Set Objects. In Proc. of the 7th Int. Fujaba Days,
pages 15–19, 2009.

[14] L. Wendehals. Specifying Patterns for Dynamic
Pattern Instance Recognition with UML 2.0 Sequence
Diagrams. In Proc. of the 6th Workshop Software
Reengineering, volume 24 of Softwaretechnik-Trends,
pages 63–64. GI, 2004.

[15] L. Wendehals and A. Orso. Recognizing behavioral
patterns at runtime using finite automata. In Proc. of
the 4th Workshop on Dynamic Analysis, pages 33–40.
ACM, 2006.

