
Component Templates for Dependable Real-Time Systems ∗

Matthias Tichy, Basil Becker, and Holger Giese
Software Engineering Group, University of Paderborn, Warburger Str. 100, Paderborn, Germany

[mtt|basilb|hg]@uni-paderborn.de

ABSTRACT
A general trend towards more complex technical systems can
be observed which results in an increasing demand for meth-
ods and tools to develop dependable, high quality software
for embedded systems. The UML in principle provides the
essential concepts which are required to model such complex,
safety-critical software systems. In this paper, we describe a
component template plugin for the Fujaba Real-Time Tool
Suite which has been especially tailored to support fault-
tolerance templates such as triple modular redundancy. We
report about the underlying concepts and the application of
the plugin by means of an example.

1. INTRODUCTION
Due to the trend that more and more ambitious and com-
plex technical systems are built today, an increasing demand
for dependable, high quality software can be observed. This
trend is characterized in [11] by very complex, highly inte-
grated systems of systems with subsystems that must have
a great degree of autonomy and, thus, are very demanding
w.r.t. safety analysis. The New Railway Technology (Rail-
Cab) project1 tackled by our efforts for the Fujaba Real-
Time Tool Suite is one very extreme example for such com-
plex systems of systems with very demanding safety require-
ments.

In such engineering projects, most often the involved engi-
neers are not safety experts and, thus, sophisticated, appli-
cation specific fault-tolerance techniques can often not be re-
alized. Systematic fault-tolerance approaches such as triple
modular redundancy (TMR), n-version programming, hot
stand-by, etc. [14] can in contrast be employed by non ex-
perts.

However, in practice the additional complexity and pit-
falls during their implementation are often a hindrance to
finally achieving the intended improved dependability. We
therefore propose to support the design of fault-tolerant sys-
tems by means of templates and automate the code genera-
tion for the additional logic. The templates permit to reuse
well analyzed and understood solutions for systematic fault-
tolerance and therefore minimize the risk that inadequate
and error prone ad hoc solution are invented. The automatic
generation of the glue logic can further exclude coding faults

∗This work was developed in the course of the Special Re-
search Initiative 614 – Self-optimizing Concepts and Struc-
tures in Mechanical Engineering – University of Paderborn,
and was published on its behalf and funded by the Deutsche
Forschungsgemeinschaft.
1http://www-nbp.upb.de

and therefore exclude that the additional complexity which
results from the application of systematic fault-tolerance ap-
proaches themselves deteriorates the dependability of the
resulting system in practice.

The UML as an object-oriented technology is one candi-
date to handle these safety-critical systems with software
and overwhelming complexity. However, the current and
forthcoming UML versions do not directly support the de-
sign of fault-tolerant designs for safety-critical system de-
velopment. The presented approach tries to narrow the de-
scribed gap between safety-critical system development and
available UML techniques. As there is little value in propos-
ing extensions to UML if they are not accepted by the com-
munity and tool vendors (cf. [11]), we instead propose to
use only a properly defined subset of the UML 2.0 [12] com-
ponent and deployment diagrams and templates for fault-
tolerance to ease the task of integrating systematic fault-
tolerance techniques into a UML design.

After reviewing related work in Section 2, we present our
approach for component templates for fault-tolerance in Sec-
tion 3. The provided tool support and application of the
Fujaba Real-Time Suite Plugin are described in Section 4.
We finally present some conclusions and give an outlook to
planned future work.

2. RELATED WORK
Templates are a standard approach used in many differ-

ent application areas. Constructs like C++ templates [15]
and Java Generics [16] offer templates for programming lan-
guages. In the modeling domain templates are available in
a number of different contexts.

For multimedia artifacts Cybulski [6] presents the Tem-
plate pattern. The Template pattern is a solution to the
”[. . .] need to produce a collection of composite artifacts
similar in structure and contents.” The Template pattern
provides support for (1) the structural specification of a col-
lection of composed artifacts and (2) the instantiation of
the template by replacing template artifacts by concrete ar-
tifacts. Although destined for the use in multimedia ap-
plications, the Template pattern can be tailored to the use
in real-time component-based applications. Our component
template plugin implements an extended variant of this pat-
tern.

The UML [12, p.541 ff.] includes a Template package.
This Template packages provides Metaclasses, which allow
the specification of TemplateElements which have a num-
ber of TemplateParameters. A TemplateBinding “specifies the
substitution of actual parameters for the formal parameters

of the template”. The general UML template approach al-
lows template applications with meaningless template bind-
ings. While such an approach is possible for modeling stan-
dard software, we target the domain of safety-critical em-
bedded systems. Thus, a more strict template mechanism
is required. The presented template mechanism is similar
to the general one in the UML, but includes special sup-
port for real-time component templates in contrast to the
general UML template mechanism. Here special support
means, that e.g. if a component has been used in the appli-
cation of a template, only ports of this component and not
arbitrary ones can be used.

3. COMPONENT TEMPLATES
In the following, we will present the Fujaba real-time com-

ponent diagrams. Thereafter, we will show how component
templates are specified and how they can be applied.

The Fujaba real-time component diagrams [5, 8] are based
on concepts originally proposed in ROOM and UML 2.0 [12,
13]. They are used for the specification of system structure.
Component diagrams specify components and their inter-
action in form of connectors. We differentiate component
types and their instances during runtime. Connectors model
the communication between different components via ports
and interfaces. Ports are distinct interaction points between
components and are typed by provided and required inter-
faces. Behavior of components is specified by real-time stat-
echarts [3]. As this paper deals with structural templates,
we will, in the following, not consider the behavioral aspect
of components and component templates. As example, we
will use the triple-modular-redundancy (TMR) fault toler-
ance technique.

3.1 Template specification
In a first step, the structure of the fault-tolerance tech-

nique must be specified. This is done by creating a compo-
nent template specification. This specification is merely a
standard real-time component diagram.

Figure 1: Component template specification for
TMR

Figure 1 shows the component template specification for
the triple modular redundancy fault tolerance technique. A
triple modular redundancy system uses a multiplier compo-
nent which triples the input received and forwards it to the
three services ComputingUnit1 . . . 3, which actually perform
the computation. The voter compares the different results
and chooses the result which at least two of the components
returned. Thus, a triple modular redundancy system can

tolerate one crashed or malfunctioning service. The ports
and interfaces attached to the left of the MultiplierTMR com-
ponent and right of the VoterTMR component are not part
of the fault tolerance pattern but are important for connect-
ing the using and used components during application of the
component template.

3.2 Application
The specified fault tolerance component templates are

later used to build more robust applications by applying
them to the component structure of a system. First, an
appropriate component template is selected and added to
the component structure. Then, the different parts of the
component template must be replaced by the actual im-
plemented parts. The different parts here are components,
ports, and interfaces. Thus, a mapping must be defined by
the user between the components of the component template
and implemented components. Thereafter, the ports of this
template component and the ports of the implemented com-
ponent are mapped. Finally, the interfaces attached to the
ports are mapped. The mapping of interfaces must respect
the type of the interfaces, e.g. required interfaces of the tem-
plate component must be mapped to required interfaces of
the implemented component. In addition the interface of
the implemented component must be a subclass of the in-
terface of the template component. This constraint offers
support for more application specific templates where con-
sistency between interface types is required. However, this
constraint can be relaxed for broader usage of the compo-
nent template.

Figure 2: Application of the TMR template

Figure 2 shows the application of the TMR component
template. The TMR template is applied for the sensor con-
trol software as well as for the actuator control software as
shown on the bottom of each component in Figure 2. The
different parts of the TMR template are already mapped to
implemented components, ports, and interfaces.

After all parts of the template are mapped to implemented
parts, the template in the component diagram is replaced
by the template structure (cf. Figure 1) using the mapped
implemented parts. This replacement, thus, makes the fault
tolerance techniques explicit in the design of the system.
After this step, the standard code generation of the Fujaba
Real-Time Tool Suite can be employed to synthesize the
source code for the fault-tolerance enhanced system.

3.3 Multistage arrangement
A fault tolerance template like TMR can be employed

multiple times in the component structure of an embedded
system. A naive usage of this template would result in a
situation where three redundant components are connected
to three other redundant components by single voter and
multiplier components. Thus, the redundancy gained by the
application of the TMR template is defeated by the single-
point-of-failure voter and multiplier components.

A better approach is the usage of a multistage arrange-
ment. A multistage arrangement uses redundant voter and
multiplier components in contrast to the mentioned single
voter and multiplier approaches. Thus, a transformation of
multiple applications of TMR or other templates to a multi-
stage arrangement is important for the fault-tolerance of the
system. Using the Story-Pattern language [7, 10] of Fujaba,
it is possible to specify an accordant transformation from a
multiple application of TMR to a multistage arrangement.

After this description of component templates, we present
in the next section the tool support offered by the compo-
nent template plugin.

4. TOOL SUPPORT
We have developed a Fujaba plugin that provides tool sup-

port for the mentioned component template specifications
and the mappings between template components, ports and
interfaces and implemented ones. In the following, we high-
light the plugin dependencies, the meta-model extension,
and special mapping support.

Plugin structure
The developed RealtimeComponentTemplate plugin (RCT
plugin) depends on two other plugins developed at the Uni-
versity of Paderborn. First it depends on the RealtimeCom-
ponent (cf. [5]) plugin. We use the RealtimeComponent plu-
gin’s component diagrams for the specification of component
templates. As the RealtimeComponent plugin depends on
the RealtimeStatechart plugin [3] our RCT plugin depends
on it, too.

Meta-model extension
How are the mappings between components, interfaces and
ports realized? At first sight one might think that this won’t
be a problem, because all used classes are defined in one
plugin - the RealtimeComponent plugin. The easiest way
would be to define one-to-many self-associations between the
component, port, and interface classes. But then we would
have to change the RealtimeComponent plugin which we
wanted to avoid. Fortunately, Fujaba provides the ASG
mechanism [4] to avoid these problems. In the following
paragraphs, we will restrict our explanations to the mapping
of components. The mapping of ports and interfaces is done
analogously.

Each mapping between components is represented by an
instance of RTCompMapping. This mapping has two ref-
erences to an extension of ASGElementRef; one for the in-
coming and one for the outgoing mapping. These exten-
sions of ASGElementRef have a one-to-one ASG reference
to the Component class. As we need one-to-many associ-
ations between Component and RTCompMapping (e.g. one
component from a given specification is used in more than
one template application), however ASG only provides one-

to-one associations, we implemented the one-to-many asso-
ciation between RTCompMapping and the ASGElementRef
extensions. The ASGElementRef extensions have the role of
a proxy for the Component class. This means we displaced
the one-to-many association needed in our plugin. As men-
tioned earlier the interface and port mapping is implemented
in the same way.

A few words on the hierarchy of the different mapping
types: Each template has a set of component mappings to
implemented components. Since every port is owned by ex-
actly one component, the port mappings are stored in each
component mapping. The same argumentation applies for
interface mappings.

Mapping support
In the following, we present the way in which the plugin
supports the mapping specification. Tool usability2 is a ma-
jor factor for the acceptance of an approach and its sup-
porting tool. Therefore, we explicitly emphasized usability
especially for the mapping specification.

Figure 3: Interface mapping dialog

As mentioned, interface mapping is subject to constraints
regarding the type of the interfaces (required/provided) and
the subclass relation between template interfaces and imple-
mented interfaces. To improve the usability of this interface
mapping the interface mapping dialog produces immediate,
easy to understand feedback. This means every time you
select two interfaces you want to map, the plugin checks
whether this mapping will be correct or not. A mapping
of interfaces is correct if both interfaces are of the same
type (provided or required interface) and the interface de-
clared in the implementation is a subclass of the interface
in the specification. This direct feedback is realized either
by a red crossed out or by a green checked off interface icon
(cf. Figure 3). If the mapping is incorrect the tooltip of the
interface in the implementation gives a short explanation
why the mapping is wrong.
2To introduce our understanding of usability we will first
give a short definition of it found in [1]: “Usability is the
ease with which a user can learn to operate, prepare inputs
for and interpret outputs of a system or component.”
The expression usability is used in different contexts. In our
context, i.e. software development, usability is often called
software ergonomics. Ergonomics is the conformity of tech-
nology (i.e. software) to human psychophysical capabilities.
For further details on ergonomic and usable software see [2].

Concerning the order of the different mappings, the stan-
dard order would be mapping components, then ports, and
then interfaces. We provide a small shortcut for this map-
ping based on the fact that a interface can only be connected
to exactly one port, i.e. if you know the interface, you know
the corresponding port. The plugin exploits this property
and allows you to map the interfaces without mapping the
ports. Every time you map an interface, the corresponding
port mapping is automatically determined.

5. CONCLUSION AND FUTURE WORK
We presented an approach for specification of dependable,

component-based, embedded systems. We aim for improv-
ing the fault tolerance of distributed systems by the applica-
tion of fault tolerance component templates. Tool support
for specification and application of component templates has
been developed including special care for the usability of the
mapping.

Currently, the component templates only cover the struc-
tural parts of fault tolerance techniques. In the future, we
will also consider the glue logic resulting of the behavior
of voter and multiplier components. We believe, that the
behavior of these two component types can in principle be
synthesized based on the behavior of the other components.

In the future, we will consider the deployment issues of
fault tolerance templates. Fault tolerance templates typi-
cally employ redundancy to enhance fault tolerance. If the
redundant components of a fault tolerance template are de-
ployed to the same host, there is no fault tolerance w.r.t. fail-
ures of this host. Thus, appropriate deployment constraints
must be specified for fault tolerance templates. These con-
straints would specify that each of the redundant compo-
nents must be deployed to different hosts.

In [9], an approach for a compositional hazard analysis
of component-based systems is presented. The knowledge
about the employed fault tolerance provided by the tem-
plates could be exploited in the hazard analysis.

Currently, the user can use arbitrary components in the
application of the fault tolerance template. Fault toler-
ance techniques like n-version programming explicitly re-
quest heterogeneous components in order to tolerate system-
atic implementation errors. Adding appropriate constraints
to component templates would ease the use of component
templates for heterogeneous fault tolerance techniques.

REFERENCES
[1] IEEE Standard Computer Dictionary: A Compilation

of IEEE Standard Computer Glossaries. Institute of
Electrical and Electronics Engineers, New York, 1990.

[2] A. Brenneke, R. Keil-Slawik, and W. Roth.
Designorientierung und Designpraxis - Entwicklung
und Einsatz von konstruktiven Gestaltungskriterien.
In U. Arend, E. Eberleh, and K. Pitschke, editors,
Software-Ergonomie ’99 Design von
Informationswelten, pages 43–52. B. G. Teubner
Stuttgart, 1999.

[3] S. Burmester and H. Giese. The Fujaba Real-Time
Statechart PlugIn. In Proc. of the Fujaba Days 2003,
Kassel, Germany, October 2003.

[4] S. Burmester, H. Giese, J. Niere, M. Tichy,
J. Wadsack, R. Wagner, L. Wendehals, and
A. Zündorf. Tool Integration at the Meta-Model Level

within the FUJABA Tool Suite. International Journal
on Software Tools for Technology Transfer (STTT),
2004. (accepted).

[5] S. Burmester, M. Tichy, and H. Giese. Modeling
Reconfigurable Mechatronic Systems with
Mechatronic UML. In Proc. of Model Driven
Architecture: Foundations and Applications (MDAFA
2004), Linköping, Sweden, June 2004.

[6] J. L. Cybulski and T. Linden. Composing Multimedia
Artifacts for Reuse. In Proc. of the 1998 Pattern
Languages of Programs Conference, Monticello,
Illinois, USA, August 1998.

[7] T. Fischer, J. Niere, L. Torunski, and A. Zündorf.
Story Diagrams: A new Graph Rewrite Language
based on the Unified Modeling Language. In G. Engels
and G. Rozenberg, editors, Proc. of the 6th

International Workshop on Theory and Application of
Graph Transformation (TAGT), Paderborn, Germany,
LNCS 1764, pages 296–309. Springer Verlag,
November 1998.

[8] H. Giese, M. Tichy, S. Burmester, W. Schäfer, and
S. Flake. Towards the Compositional Verification of
Real-Time UML Designs. In Proc. of the European
Software Engineering Conference (ESEC), Helsinki,
Finland, pages 38–47. ACM Press, September 2003.

[9] H. Giese, M. Tichy, and D. Schilling. Compositional
Hazard Analysis of UML Components and
Deployment Models. In Proc. of the 23rd International
Conference on Computer Safety, Reliability and
Security (SAFECOMP), Potsdam, Germany, Lecture
Notes in Computer Science. Springer Verlag,
September 2004. (to appear).

[10] H. Köhler, U. Nickel, J. Niere, and A. Zündorf.
Integrating UML Diagrams for Production Control
Systems. In Proc. of the 22nd International
Conference on Software Engineering (ICSE),
Limerick, Ireland, pages 241–251. ACM Press, 2000.

[11] J. A. McDermid. Trends in Systems Safety: A
European View? In P. Lindsay, editor, Seventh
Australian Workshop on Industrial Experience with
Safety Critical Systems and Software, volume 15 of
Conferences in Research and Practice in Information
Technology, pages 3–8, Adelaide, Australia, 2003.
ACS.

[12] Object Management Group. UML 2.0 Superstructure
Specification, 2003. Document ptc/03-08-02.

[13] B. Selic, G. Gullekson, and P. Ward. Real-Time
Object-Oriented Modeling. John Wiley and Sons, Inc.,
1994.

[14] N. Storey. Safety-Critical Computer Systems.
Addison-Wesley, 1996.

[15] B. Stroustrup. The C++ Programming Language.
Addison-Wesley, 1991. Second Edition.

[16] M. Torgersen, C. P. Hansen, E. Ernst, P. von der Ahé,
G. Bracha, and N. Gafter. Adding wildcards to the
java programming language. In Proceedings of the
2004 ACM symposium on Applied computing, pages
1289–1296. ACM Press, 2004.

