
Integration of Legacy Components in
MechatronicUML Architectures∗

Christian Brenner, Stefan Henkler,
Martin Hirsch, and Claudia Priesterjahn

Software Engineering Group
University of Paderborn

Warburger Str. 100
D-33098 Paderborn, Germany

[cbr|shenkler|mahirsch|cpr]@uni-
paderborn.de

Holger Giese
System Analysis and Modeling Group

Hasso Plattner Insitute
University of Potsdam

Prof.-Dr.-Helmert-Str. 2-3
D-14482 Potsdam, Germany

holger.giese@hpi.uni-potsdam.de

ABSTRACT
One of the main benefits of the component-based develop-
ment paradigm is its support for reuse which is guided by the
interface description of the components. This facilitates the
construction of complex functionality by the flexible compo-
sition of components. However, the also required verification
of the resulting system often becomes intractable in practice
as no abstract model of the reused components, which can
serve the verification purpose, is available for the integrated
legacy components. In this paper, we present the integration
of legacy components in a Mechatronic UML model by an
incremental synthesis of the communication behavior of the
embedded legacy components combined with compositional
verification.

1. INTRODUCTION
One of the main benefits of the component-based develop-
ment paradigm is its support for reuse which is guided by
the interface description of the components (cf. [10, 2]). In
general, the proper composition of independent developed
components in the software architecture of embedded real-
time systems requires means for a sufficient verification of
the integration step either by testing or formal verification.
However, the overwhelming complexity of the interaction of
distributed real-time components usually excludes that test-
ing alone can provide the required coverage when integrating
legacy components.

Thus formal verification techniques seem to be a valuable
alternative. However, the required verification of the result-
ing system often becomes intractable as no abstract model
of the reused components which can serve the verification
purpose is available for legacy components.

A number of techniques which either use a black-box ap-
proach and automata learning [8] or a white-box approach
which extracts the models from the code [9, 1, 7] exists.
However, these approaches did not consider the specific con-
text for efficiently synthesizing the relevant behavior of the
legacy component, which is of paramount importance for
embedded systems. Further, these approaches are not capa-

∗This work was partly developed in the course of the Spe-
cial Research Initiative 614 – Self-optimizing Concepts and
Structures in Mechanical Engineering – University of Pader-
born, and was published on its behalf and funded by the
Deutsche Forschungsgemeinschaft.

ble of finding conflicts in early learning steps.
In this paper we present a tool support for the incre-

mental synthesis of communication behavior for embedded
legacy components by combining compositional verification
and model-based testing techniques based on [4, 6]. For the
exploration of the component’s behavior a formal model of
the component’s environment is applied. The environment
model is employed to derive known environment behavior
which is then used to systematically synthesize the relevant
behavior of the legacy component as well as a formal model
describing its communication behavior. While this formal
model is not a valid encoding of all possible behavior of the
legacy component, it is in fact a valid representation of its
communication behavior for the context relevant for its em-
bedding.

In the next section we present the incremental synthesis
approach. Afterwards we describe the implementation as
well as the evaluation. We finish the paper with the conclu-
sion and future work.

2. INTEGRATION OF
LEGACY COMPONENTS

Given a concrete context and a concrete component imple-
mentation with hidden internal details (legacy component),
the basic question we want to check is whether a given prop-
erty φ as well as deadlock freedom (¬δ) holds. We are in par-
ticular interested in a guarantee that both properties hold
or a counterexample witnessing that they do not hold. How-
ever, usually the legacy component cannot be employed to
traverse the whole state space as the state space of the com-
plete system is too large to directly address this question.
Before we answer the question, we discuss in the next sec-
tion the prerequisites our approach. Afterward, we present
an overview of our approach and discuss in more detail the
relevant technique in Section 2.3.

2.1 Prerequisites
The approach presented in this paper will only work, if cer-
tain prerequisites and constraints can be fulfilled by the
legacy component. The component must have neither non-
deterministic nor pseudo-nondeterministic behavior. For ex-
ample the firing of transitions must not directly depend on
variable values or timing constraints since they are currently
not explicitly captured. Such conditions will only be valid,

if they are encapsulated in the state information. All tran-
sitions must fire within a given timespan after the receipt
of a triggering message. That is to prevent that a test run
which leads to a deadlock will not terminate. This times-
pan also applies to ε-transitions. In this case the timespan
starts at the entry to the transition’s start state. To enable
the learning of the behavior the definitions of the compo-
nent’s interfaces muss be known, a start state must be given
and it must be possible to reset to this start state. Further,
the state changes (current state) must be observable at the
interface.

Our experiences showed us that the prerequisites, besides
the state information, are realistic for mechatronic systems,
as this are reactive systems. As discussed in the future work
we have to extend our black-box approach with additional
white-box information, to abandon on the state information
at the interface of the legacy component.

2.2 Sketch of the Proposed Approach
Given a Mechatronic UML architecture which embeds a
legacy component and behavioral models for all other com-
ponents building the context of the legacy component, the
basic question of correct legacy component integration is
whether for the composition of the legacy component and
its context all anomalies such as deadlocks are excluded or
all additionally required properties hold. However, it is usu-
ally very expensive and risky to reverse-engineer an abstract
model of the legacy component to verify whether the inte-
gration will work.

To overcome this problem we suggest employing some
learning strategy via testing to derive a series of more de-
tailed abstract models for the legacy component. The spe-
cific feature of our approach will be that we exploit the
present abstract model of the context to only test relevant
parts of the legacy component behavior. The approach de-
pends only to a minimal extent on reverse engineering re-
sults.

We start with synthesizing a model of the legacy compo-
nent behavior based on known structural interface descrip-
tion. As shown in [4] we use a safe over approximation.
Then, we check whether the context plus the model of legacy
behavior exhibit any undesired behavior taking generic cor-
rectness criteria or additional required properties into ac-
count. If not, we use the resulting counterexample trace to
test the legacy component. If the trace can be realized with
the legacy component, a real error has been found. If not,
we first enrich the trace with additional information using
deterministic replay [3] and then merge the enriched trace
into the model of the legacy component behavior. We re-
peat the checks until either a real error has been found or
all relevant cases have been covered.

Execute legacy

component

Produce

output

Synthesize

behavior

Extract behavioral

model of context

1

(Input vector)

Counterxample

[Counterexample confirmed]

[Properties satisfied]

Observed behavior

2

3

4

Check combination

Mlegacy Mcontext

Mcontext Mlegacy

Figure 1: Sketch of the approach

Figure 1 illustrates our process with a summary of the over-
all approach. 1) Initially, we synthesize an initial behavior
model for the legacy component based on known structural
interface description and derive a behavioral model of the
context from the existing Mechatronic UML models. 2)
We check the combination of the two behavioral models and
either get a) a counterexample or b) the checked properties
are guaranteed. In the latter case we are done. 3) If we have
a counterexample, we use this as test input for the legacy
component. Deterministic replay enables us to enrich the
observable behavior with state information by monitoring.
If the tested faulty run is confirmed, we have found a real
counterexample. If not, we can use the new observed be-
havior to refine the previously employed behavior model of
the legacy component. We repeat steps 2) to 4) until one of
the described exits occurs.

The approach can be extended to multiple legacy com-
ponents, by using the parallel combination of multiple be-
havioral models. The iterative synthesis will then improve
all these models in parallel. While theoretically possible, we
can currently provide no experience whether such a parallel
learning is beneficial and useful for multiple legacy compo-
nents. Our expectation that it depends on the degree in
which the known context restricts their interaction which
determines which benefits our approach may show also for
this more advanced integration problems.

2.3 Chaotic Closure
For our approach it is necessary that the model checker
takes into account every behavior which is possible accord-
ing to our current knowledge about the system. To ac-
complish this, the already known parts of the system are
extended with chaotic behavior, resulting in a new model
called chaotic closure. The latter is then, in combination
with a model of the context, subject to model checking.
Namely, for all so far unknown behavior it is assumed that
on the one hand any possible interaction may occur but on
the other hand a deadlock is possible at any time as well.
Therefore, the chaotic closure is an over approximation of
the real system: It always models at least all of the sys-
tem’s behavior, but not all of the modeled behavior has to
be possible in the system.

For modeling chaotic behavior a chaotic automaton, a
non-deterministic finite automaton consisting of two states,
can be used: The state sδ with no outgoing transitions rep-
resents the case of the system being in a deadlock, neither
receiving nor sending any messages. The state s∀ on the
contrary represents the case where all inputs being possible
for the system are enabled and all outputs can occur. This
is modeled by one self-transition and one transition to sδ

for each possible input (with no output) and each possible
output (with no input). For creating these transitions the
input- and output-alphabets of the system must be known.
Both states of the chaotic automaton are initial states.

The chaotic closure is a combination of the synthesized
model with the chaotic automaton for the system, mapping
all unknown behavior to a chaotic one. Figure 2 shows as
an example the Chaotic Closures (on the right side) for a
trivial first conjectured behavior model and for a slightly
more advanced one.

A Chaotic Closure is constructed as follows: First, the
chaotic automaton for the input- and output-alphabets of

Figure 2: Example for a chaotic closure

the system is constructed. Then the states and transitions
of the chaotic automaton are added to the incomplete au-
tomaton modeling the behavior that has been learned until
now. For every combination of a state and an incoming or
outgoing event for which a transition neither has been de-
fined nor excluded, a new transition is created from that
state to both the s∀ and the sδ state. Contrary to the syn-
thesized behavior, the chaotic closure constructed for it is
non-deterministic.

The explicit deadlock state sδ in the chaotic hull makes
sure that as long as there still is behavior left to learn, the
model checker will be able to find a deadlock. The result
is that in every iteration of our approach at least one new
transition is learned. However this only applies to behavior
of the system which can be reached in combination with the
model of the context. Any other behavior is not considered
to be relevant in the context the system is integrated into,
and therefore no time needs to be wasted with testing it.

3. IMPLEMENTATION AND EVALUA-
TION

As the aim of our synthesis approach is to allow to
safely integrate legacy components into existing Mecha-
tronic UML contexts, it has been implemented in a way
that it is on the one hand compatible to models created with
the Fujaba Real-Time Tool Suite and on the other hand does
not rely on a specific testing framework. The latter is im-
portant because it depends on the legacy component, which
testing framework can be used. To accomplish this, the be-
havior synthesis step, being the core of the approach, was
implemented in Java as a command-line tool. For the ver-
ification step, the model checker verifyta of the integrated
tool environment UPPAAL has been chosen.

In the synthesis tool automata are saved as Extended Hi-
erarchical Timed Automata (ExHTA), which have the same
semantics as Fujaba Real-Time Statecharts (RTSCs), in a
tool-independent XML-format. This has several advantages:
As RTSCs can be exported into this format, it is possible
to use a context which has been modeled in Fujaba using
Mechatronic UML. Also the Uppaal Plugin provides a
way to convert ExHTA to Timed Automata which can be

validated using verifyta. It is possible to enable support for
other model checkers as well, by implementing additional
mappings to the formats they are using. Finally, the model
synthesized by our approach also is saved in ExHTA. This
should simplify implementing a method for loading it as a
RTSC in Fujaba1.

The first execution of the synthesis tool creates the
first trivial behavior model, it constructs the correspond-
ing chaotic closure by using the system’s i/o-interface and it
combines it with the model of the context. The subsequent
execution of the (slightly modified) Uppaal Plugin converts
this combination from ExHTA to the Uppaal XML-format.
Then verifyta is used for model checking it against the prop-
erties defined in a certain CTL dialect. The resulting coun-
terexample (if any) is then used on the one hand by a testing
framework to execute it as a test case, on the other hand
it is used by the synthesis tool for comparing it against the
trace resulting from those tests. If trace and counterexam-
ple conform, a message will be issued by the tool. Otherwise
the trace is used for learning new behavior (and so on).

Shuttle 1 Shuttle 2

Distance
Coordinationcontext

(Fujaba)

legacy component
(MATLAB/Simulink)

frontRole rearRole

Figure 3: Component diagram for the scenario used
for evaluation of our approach

Using the synthesis tool, our approach has been evalu-
ated within a MATLAB simulation for the case of a MAT-
LAB/Simulink legacy component being integrated into an
existing Mechatronic UML system model. Figure 3 shows
a component diagram picturing the scenario considered for
this. The components in this diagram are two Rail Cab
Shuttles, safety critical mechatronic systems, communicat-
ing with each other within a collaboration pattern. One of
these Shuttles, the one that made the decisions, was the con-
text in our approach. The other one, which was a reactive
system, was the system to be integrated.

To realize the evaluation, a simple testing framework was
implemented within MATLAB/Simulink. The main task of
this framework is the execution of the counterexamples pro-
vided by the model checker as test cases: It sends a message
to the system whenever the context would send one accord-
ing to the counterexample and it logs all communication and
all state changes of the system. Additionally, by calling the
synthesis tool and the model checker it is able to execute
our approach automatically for this scenario.

The evaluation showed that our approach is able to suc-
cessfully synthesize a correct model for the given scenario.
Also a simple error that had been added to the simulation
could be found. However, it turned out that the synthesis
needed quite a few steps, especially for learning the complete
correct model. This was due to the model checker return-
ing only very short counterexamples which lead to only one
transition being learned in each iteration of the approach.

1An implementation for this is currently under development.

The total amount of testing necessary was greatly increased
by this because to reach a new transition, often much of the
already known behavior had to be tested again.

A way to force the model checker to create longer coun-
terexamples is instrumenting the Chaotic Closure and mod-
ifying the temporal logic formula used by the model checker.
These changes can be used together with certain command
line options to make verifyta try to maximize the number
of some transitions in the counterexamples. Three different
modifications of this kind have been tried: One possibility
is to increase the number of self-transitions of s∀ up to a
maximum value. However this has the drawback that ver-
ifyta usually uses several iterations of one loop to achieve
this. Another option is to make the model checker try to
use every self-transition of s∀ at least once in each coun-
terexample. Finally, the model checker can also be driven
to try to let every counterexample contain every transition
of the context’s model. Each of these possibilities has been
tested for our evaluation scenario, in several cases resulting
in a much smaller amount of iterations and a smaller to-
tal amount of testing steps as well. However the success of
each of these modifications is likely to depend heavily on the
specific scenario they are used in.

In addition to the evaluation with MATLAB/Simulink we
also consider using our approach with the IPANEMA frame-
work. Using our synthesis approach within this framework
would have the advantage of being able to use the model of
the context on the one hand for exporting it to ExHTA and
on the other hand for automatically generating code from it
which can be compiled to run on the framework. A testing
framework for model based testing [5] already exists which
can be adapted to work in conjunction with the synthesis
tool. Also a Test Case Generator exists which can be used
for converting counterexamples to test cases.

4. CONCLUSION AND FUTURE WORK
In this paper we have presented a tool support for the incre-
mental synthesis of communication behavior for embedded
legacy components by combining compositional verification
techniques and model based testing. It enables context spe-
cific learning with conflict detection in early learning steps.
The employed learning strategy provides options for opti-
mization as shown in the evaluation. The interplay between
the formal verification and the test could be improved when
a number of counterexamples instead only single one could
be derived from the model checker. This is achieved by using
specific strategies of the model checker to derive counterex-
amples.

Next, we want to combine the presented dynamic analy-
sis with a static analysis to extend the applicability of the
approach. E.g., the parts of the code which are responsible
for the current state or internal variable values and depen-
dencies could be detected by a static analysis and used by
the dynamic analysis.

5. REFERENCES
[1] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach,

C. S. Păsăreanu, Robby, and H. Zheng. Bandera:
extracting finite-state models from java source code.
In International Conference on Software Engineering,
pages 439–448, 2000.

[2] I. Crnkovic. Building Reliable Component-Based

Software Systems. Artech House, Inc., Norwood, MA,
USA, 2002.

[3] H. Giese and S. Henkler. Architecture-driven platform
independent deterministic replay for distributed hard
real-time systems. In Proceedings of the 2nd
International Workshop on The Role of Software
Architecture for Testing and Analysis
(ROSATEA2006), pages 28–38, New York, NY, USA,
July 2006. ACM Press.

[4] H. Giese, S. Henkler, and M. Hirsch. Combining
Compositional Formal Verification and Testing for
Correct Legacy Component Integration in
Mechatronic UML. In R. de Lemos, F. D.
Giandomenico, C. Gacek, H. Muccini, and M. Vieira,
editors, Architecting Dependable Systems V, volume
5135 of LNCS, pages 248–272. SPRINGER, 2008.

[5] H. Giese, S. Henkler, M. Hirsch, and C. Priesterjahn.
Model-based testing of mechatronic systems. In
L. Geiger, H. Giese, and A. Zündorf, editors, Proc. of
the 5th International Fujaba Days 2007, Kassel,
Germany, pages 1–4, September 2007.

[6] S. Henkler and M. Hirsch. Compositional validation of
distributed real time systems. In OMER4 -
Object-oriented Modeling of Embedded Real-Time
Systems, pages 1–6, 2007. accepted.

[7] G. J. Holzmann and M. H. Smith. A practical method
for verifying event-driven software. In ICSE ’99:
Proceedings of the 21st international conference on
Software engineering, pages 597–607, Los Alamitos,
CA, USA, 1999. IEEE Computer Society Press.

[8] H. Hungar, O. Niese, and B. Steffen. Domain-specific
optimization in automata learning. In In Proc. 15 Int.
Conf. on Computer Aided Verification, 2003.

[9] D. Lucio, J. Kramer, and S. Uchitel. Model extraction
based on context information. In ACM/IEEE 9th
International Conference on Model Driven
Engineering Languages and Systems, LNCS. Springer,
2006.

[10] C. Szyperski. Component Software and the Way
Ahead. In G. T. Leavens and M. Sitaraman, editors,
Foundations of Component-Based Systems,
incollection 1, pages 1–20. Cambridge University
Press, New York, NY, 2000.

