
Hybrid Model Checking with the FUJABA Real-Time Tool
Suite∗

Stefan Henkler, Martin Hirsch, Claudia Priesterjahn
Software Engineering Group

University of Paderborn
Warburger Str. 100

D-33098 Paderborn, Germany
[shenkler|mahirsch|cpr]@uni-paderborn.de

ABSTRACT
Advanced mechatronic systems use their software to exploit
local and global networking capabilities to enhance their
functionality and to adapt their local behavior. Such sys-
tems include complex hard real-time coordination at the net-
work level. This coordination is further reflected locally by
complex reconfiguration in form of mode management and
control algorithms. As such hybrid systems often contain
safety-critical requirements, a proper approach for the safety
analysis is mandatory. In former papers we have presented
a compositional verification approach for the real-time and
safety analysis. We present in this paper the integration of
the hybrid verification tool PHAVer in the FUJABA Real-
Time Tool Suite which enables also to consider hybrid re-
quirements.

1. INTRODUCTION
For mechatronic systems [2], which have to be developed

in a joint effort by teams of mechanical engineers, electrical
engineers, and software engineers, the advances in network-
ing and processing power provide many opportunities. The
development of such systems will therefore at first require
means to develop software for the complex hard real-time
coordination of its subsystems at the network level. Sec-
ondly, software for the complex reconfiguration of the local
behavior in form of mode management and control algo-
rithms is required, which has to proper coordinate the local
reconfiguration with the coordination at the network level.

The interplay between the discrete software models and
the continuous controllers is the cause for hybrid require-
ments. As such systems often contain safety-critical require-
ments, a proper approach for the safety and hybrid analysis
is mandatory.

In [3] and [5] we have presented the FUJABA Real-Time
Tool Suite which enables the model-based development of
mechatronic Systems as well as the formal verification of
the real-time coordination and the correct embedding of the
employed controllers. But, the current Tool Suite lacks in
the support for analyzing hybrid behavior.

We present in this paper the integration of the hybrid veri-
fication tool PHAVer [6] into the FUJABA Real-Time Tool
Suite based on the mappings from Real-Time Statecharts

∗This work was developed in the course of the Collaborative
Research Center 614 – Self-optimizing Concepts and Struc-
tures in Mechanical Engineering – University of Paderborn,
and was published on its behalf and funded by the Deutsche
Forschungsgemeinschaft.

to hierachical Timed Automata [7, 8]. In detail, we have
to map Hybrid Reconfiguration Charts (HRC), our model-
ing approach for hybrid systems, to Hybrid Input/Output
Automata (HIOA) [6], the input model of PHAVer.

In the remainder of this paper, we at first present in Sec-
tion 2 the conceptual integration of the PHAVer tool. Then,
we outline in Section 3 the tool support and evaluation. Fi-
nally, we conclude and present future work.

2. HYBRID MODEL CHECKING OF UML
MODELS

In this section the concept of the integration of the hybrid
model checker PHAVer and the necessary mapping rules are
presented. Figure 1 shows the actions that have to be per-
formed for the model checking of HRCs with PHAVer. The
main step is the transformation from the HRC model into a
HIOA. The HIOA and a specification to be checked build the
input for PHAVer. The model checker states if the model
fulfills the specification or not. In order that the verification

Model Checking with PHAVer

Hybrid

Mechatronic

UML Model

Specification

Error

Trace

Correct

Hybrid I/O

Automaton Hybrid

Model Checking

Map to

correct

error

Figure 1: Hybrid Model Checking with PHAVer

will perform correctly the mapping must keep the semantics
of the original model. Otherwise we might find false pos-
itives or false negatives during verification. The following
paragraphs introduce the mapping rules established in this
work.

Start State.
A start state in a HRC can embed configurations of the

component. The continuous values at the component’s ports
can thus be deployed in this state. However, in contrast to
HIOA reconfiguration charts can not specify their inital val-
ues or range of values. The start state of the HRC is mapped
to the start state of the HIOA consisting of a location and
variable allocations. Each continuous variable is assigned
the value 0 (Figure 2).

State

HIOA

State

RTS

x := 0

y := 0

Figure 2: Mapping a start state

Clocks and Clock Resets.
Each clock tk of the original timed automaton is mapped

as a continuous variable tk such that for each location of the
HIOA ṫk = 1 is satisfied.

Further in HIOA discrete assignments can be assigned to
transitions. Therefore a clock reset can simply be modeled
by assigning 0 to the clock to be reset (Figure 3).

HIOARTS

{t0} t0 := 0

Figure 3: Mapping clock resets

Time Invariants and Time Guards.
Because of the direct mapping of clocks to continuous vari-

ables both time invariants and time guards can directly be
taken over to the HIOA (Figure 4).

HIOARTS

S1

t < 5
S2

t > 3
S1

t < 5

 = 1

S2

 = 1

t > 3

t
t

Figure 4: Mapping guards

Urgent and Non-Urgent Transitions.
As HIOA allow only urgent transitions, all non-urgent

transitions of the hybrid reconfiguration chart are mapped
to urgent-transitions. Thus the original semantics are kept
since ”non-urgent” says that a transitions does not need to
fire immediately after its activation. In case such a transi-
tion would actually fire immediately no unexpected behavior
would result [12].

Synchronous Communication.
The mapping for synchronous communication is depicted

in Figures 5 and 6. Figure 5 shows the synchronization
modeled by a HRC. Parallel states of hybrid reconfiguration
charts synchronize via synchronization channels. Each syn-
chronization contains exactly one sender and one receiver.
At the starting point the HRCs as depicted in Figure 5 start
with states S1 and S3. When the event e is activated the
statecharts switch to S2 and 4 synchronously.

Figure 6 shows the same synchronization modeled by two
HIOA. Generally transitions of two parallel HIOAs will fire
simultaneously, if they are labeled with the same synchro-
nization marks and are activated at the current moment.
S1 is the source of the transitions sending messages. That
is why all incident transitions have to contain the variable
e send representing the sender. For all incoming transi-
tions e send is set to 1. All outgoing transitions must reset
this value to 0 - the initial value. The receiving transition

S1

S2

S3

S4

e! e?

State

RTS

Figure 5: Synchronous communication modeled by
hybrid reconfiguration chart

(S3, S4) will only be fired, if e send is set to 1 and another
transition also marked with the label e is activated. Thus
sender and receiver can only fire synchronously and the orig-
inal semantics of synchronous communication in HRCs are
kept.

S1 S2

S3 S4

HIOA

e_send := 1

e_send :=
 1

e_send :=
 0

e_send := 0

e_send := 0

e_send == 1

e

e

Figure 6: Synchronous communication modeled by
HIOA

Embedding of Component Instances.
In HRCs the behavior of controllers is described by dif-

ferential equations over the incoming and outgoing signals.
The same applies to the component instances embedded in
states of hybrid reconfiguration charts. As the continuous
dynamics of hybrid systems in PHAVer is also described by
differential equations they can be directly applied to HIOA.

Application Order.
The existing XML exchange format for the transforma-

tion of Mechatronic UML models to the UPPAAL input
format [8] has been extended by continuous parts to enable
the verification of continuous parts of mechatronic systems.
Also the transformation of Real-Time Statecharts into hier-
archical Timed Automata has been extended by continuous
parts. In that way the following subset of the needed map-
pings can already be performed: stop states, entry()-, do()
and exit()-methods and the history operator.

Afterwards the mapping rules presented in this paper are
applied. To guarantee the correctness of the resulting mod-
els the mapping steps have to be applied in a defined order.
For instance the mapping rule for clocks demands that all
locations of the resulting model satisfy a certain property.
Therefore it must not happen that one of following mapping
steps adds a location that does not satisfy this property.

The following list shows the appropriate application order
of the transformation steps.

1. First apply the rules presented in [8].

2. Map the synchronous communication.

3. Map the non-urgent transitions, since following map-
pings can not add new locations or transitions to the
model.

4. Map the clocks.

5. Map time guards, time invariants and clock resets.

3. TOOL SUPPORT AND EVALUATION
In this section we explain the implementation of the ap-

proach. First, we describe the implementation as a plugin
for FUJABA. Thereafter we give an evaluation example and
point out the adaptability of the verification to real world
examples.

3.1 The Plugin
In Figure 7 the architecture of the required FUJABA plu-

gins is depicted. The three plugins HybridComponenent,
UMLRT2, and RealtimeStatechart allows us to model the
behavior as well as the structure of hybrid systems. The plu-
gins on the bottom left side realize the integration of model
checker. The UMLRTModelchecking provides an interface
for model checker which allows to export the model and add
constraints to the model [4]. The actual model checking en-
gine is provide by the specific model checker, in our case the
PHAVer-Plugin.

<<requires>>

<<requires>>

<<requires>>

<<
re
qu
ire
s>
>

<<
re
qu
ire
s>
>

<<requires>>

<<
re
qu
ire
s>
>

Modeling

Model Checker

Figure 7: Architecture of the plugin

Figure 8 shows the transformation steps taken by the im-
plemented FUJABA plugin. First the hybrid reconfigura-
tion chart is exported to the XML exchange format provided
by the UMLModelChecking Plugin. This action is followed
by the transformation into an intermediate format and the
transformation into the final PHAVer input format the hy-
brid input output automata.

3.2 Evaluation
As an evaluation example we take the AHCS case study

from [10]. We consider the model of a central controller
for a automated highway and analyze the controller itself
for safety properties, particularly for the specification that

Hybrid

Reconfiguration

Chart

XML Exchange

Format

PHAVer Input

Language

(HIOA)

Intermediate

Format

Result

Export to XML

PHAVer
Transform to

PHAVer input

language

Transform

based on RTSC

-> HTA

Hybrid Model Checking in FUJABA

Figure 8: Hybrid Model Checking in FUJABA

no two vehicles on the automated highway collide with each
other. The controller enforces speed limits on vehicles on the
automated highway to achieve this purpose. In Figure 9 the
hybrid reconfiguration chart to which realizes the behavior
of the AHCS for four vehicles is depicted. xk is the distance
of one vehicle k to the beginning of the highway and ẋk the
velocity of the vehicle. At the beginning (state ”‘Fahrt”’) the
velocity for each vehicle is in the interval ẋ ∈ [a, b]. When
two vehicles i, j come within a distance α (xi − xj < α) of
each other, we call this a ”‘possible”’ collision event and the
controller switches to the ”‘Risiko i j”’ state. The controller
asks the approaching vehicle to slow down by reducing the
upper bound to ẋi ∈ [a, c′] and asks the leading vehicles to
speed up by increasing the lower bound to ẋj ∈ [c, b], c > c′;
it also requires that all other cars not involved in the pos-
sible collision slow down to a constant velocity β for vehi-
cles behind the critical region and β′, β′ > β for vehicles
in front of the critical region. When the distance between
the two vehicles involved in the possible collision exceeds α,
the controller switches to the ”‘Fahrt”’ state . Otherwise the
”‘Error”’ state will be reached, if xj − xi < α′, alpha′ < α

Figure 9: Evaluation example

To ensure that no collision between the vehicles happen we
have to check that the ”‘Error”’ state will be never reached
as long as the systems runs. To check this constraint we
have to compute the followings steps in PHAVer:

• compute all reachable state: Reach = Sys-
tem.reachable

• define the forbidden states: Forbidden = Sys-
tem.{Error? & True}

• compute the set Reach ∩ Forbidden:
bad.intersection assign(Forbidden)

In Figure 10 a screenshot of the constraint is depicted. For
the evaluation of the example, we chose the following param-
eterization of the variables. WE set the number of vehicles

Figure 10: Specification of the constraint

to 4, 6, 8, 12, 14, and 16. The other variables are set to:

a = 0, b = 100, c = 70, c′ = 50, α = 100, α′ = 10, β = 40, β′ = 80

.
The results of the evaluation are presented in Table 3.2

as well as a visualization of the results is given in 11. In
detail the time and memory consumption are analyzed. One
result is that the runtime of the model checker exponentially
increase with the number of vehicles. The same holds for
the memory consumption. It is to be noted that although
PHAVer is more efficient than other model checkers [6] the
runtime exponentially increase with the number of variables
used in the HIOAs [11]. Hence it can take a long time to get
a result if any result is computed.

Number of vehicles Runtime [s] Memory [MB]
4 0, 16 3 MB
8 2, 6 11 MB
10 11, 34 16 MB
12 156, 7 37 MB
14 5120, 3 112 MB
16 14092, 34 354 MB

Table 1: Evaluation results

rru
n
ti
m

e
[s

]

number of cars

Figure 11: Evaluation results

4. CONCLUSION AND FUTURE WORK
In this paper, we have presented the integration of the

hybrid verification tool PHAVer in the FUJABA Real-Time
Tool Suite. We have shown the mapping of our hybrid mod-
eling approach, Hybrid Reconfiguration Charts, to the input
model of PHAVer (Hybrid Input/Output Automata). In
the evaluation, we have shown that, in principle, the model
checking of hybrid systems does not scale. Therefore, appro-
priate abstractions are required as shown in [9]. In the fu-
ture, we want to consider a better integration of the PHAVer
tool in the compositional verification approach by using the

assume/guarantee approach of PHAVer [1] which enables a
better scalability.

5. REFERENCES
[1] S. Berezin, S. Campos, and E. M. Clarke.

Compositional reasoning in model checking. Lecture
Notes in Computer Science, 1536:81–102, 1998.

[2] D. Bradley, D. Seward, D. Dawson, and S. Burge.
Mechatronics. Stanley Thornes, 2000.

[3] S. Burmester, H. Giese, S. Henkler, M. Hirsch,
M. Tichy, A. Gambuzza, E. Müch, and H. Vöcking.
Tool support for developing advanced mechatronic
systems: Integrating the fujaba real-time tool suite
with camel-view. In Proc. of the 29th International
Conference on Software Engineering (ICSE),
Minneapolis, Minnesota, USA, pages 801–804. IEEE
Computer Society Press, May 2007.

[4] S. Burmester, H. Giese, M. Hirsch, and D. Schilling.
Incremental design and formal verification with
UML/RT in the FUJABA real-time tool suite. In
Proceedings of the International Workshop on
Specification and vaildation of UML models for Real
Time and embedded Systems, SVERTS2004, Satellite
Event of the 7th International Conference on the
Unified Modeling Language, UML2004, October 2004.
to appear.

[5] S. Burmester, H. Giese, M. Hirsch, D. Schilling, and
M. Tichy. The fujaba real-time tool suite:
Model-driven development of safety-critical, real-time
systems. In Proc. of the 27th International Conference
on Software Engineering (ICSE), St. Louis, Missouri,
USA, pages 670–671. ACM Press, May 2005.

[6] G. Frehse. Phaver: Algorithmic verification of hybrid
systems past hytech. pages 258–273. Springer, 2005.

[7] H. Giese and S. Burmester. Real-Time Statechart
Semantics. Technical Report tr-ri-03-239, University of
Paderborn, Paderborn, Germany, June 2003.

[8] M. Hirsch. Effizientes Model Checking von UML-RT
Modellen und Realtime Statecharts mit UPPAAL.
Master’s thesis, University of Paderborn, June 2004.

[9] M. Hirsch, S. Henkler, and H. Giese. Modeling
Collaborations with Dynamic Structural Adaptation
in Mechatronic UML. In Proc. of the ICSE 2008
Workshop on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS’08),Leipzig,
Germany, pages 1–8. ACM Press, May 2008. to
appear.

[10] S. K. Jha, B. H. Krogh, J. E. Weimer, and E. M.
Clarke. Reachability for linear hybrid automata using
iterative relaxation abstraction. In A. Bemporad,
A. Bicchi, and G. C. Buttazzo, editors, HSCC, volume
4416 of Lecture Notes in Computer Science, pages
287–300. Springer, 2007.

[11] X. Li, S. J. Aanand, and L. Bu. Towards an efficient
path-oriented tool for bounded reachability analysis of
linear hybrid systems using linear programming.
Electron. Notes Theor. Comput. Sci., 174(3):57–70,
2007.

[12] A. Steinke. Integration Hybrider Rekonfigurations-
charts mit Matlab/Simulink-Modellen. Master’s thesis,
University of Paderborn, 2007.

