Structuring Complex Story Diagrams by
Polymorphic Calls
Technical Report tr-ri-11-323

Steffen Becker, Markus von Detten, Christian Heinzemann*, and Jan Rieke*

Software Engineering Group, Heinz Nixdorf Institute
University of Paderborn, Paderborn, Germany
[steffen.becker|mvdetten|c.heinzemann|jrieke] @uni-paderborn.de

Abstract. In model-driven software engineering, model transformations
occur frequently, e.g., to transform platform independent models into
platform specific models. Hybrid languages using imperative and declar-
ative elements seem to be a promising approach as they integrate explicit
control-flow with efficient matching. Story diagrams are such a hybrid
model transformation language that combines UML activity diagrams
and graph transformations in a graphical transformation language. Hith-
erto, story diagrams do not support structuring complex transformations
into several independent story diagrams which can be called in a well-
defined manner. This prevents rule reuse and hence significantly reduces
the maintainability of the transformations. In this paper, we therefore
extend story diagrams by explicit call activities that invoke other story
diagrams and support polymorphic dispatching. We evaluate the benefits
of such calls by revisiting an already implemented model transformation
and discussing improvements due to our new call concept.

Keywords: Visual Model Transformation, Graph Transformation, Con-
trol Flow, Polymorphic Dispatching

1 Introduction

In model-driven software engineering, model transformations play a central role
in transforming models of higher abstraction levels into more concrete models.
Such transformations are written in special purpose languages which offer ex-
plicit support for common transformation tasks like matching elements of the
source model. While the development of current model transformation languages
focused on those model transformation specific tasks, classical issues like inheri-
tance and structuring were neglected. As a result, the transformations are often
concise and efficient but hardly maintainable.

Story diagrams [5] form a special model transformation language. They fea-
ture declarative parts to specify object patterns which are matched and altered in

* supported by the International Graduate School Dynamic Intelligent Systems.

2 S. Becker, M. von Detten, C. Heinzemann, J. Rieke

the source model and combine them with an imperative part to specify the con-
trol flow of the transformation execution. The concrete syntax of story diagrams
extends the concrete syntax of UML activity diagrams. A specific challenge for
story diagrams is the missing support for the invocation of other story diagrams.
We require these invocations to account for aspects like the increased complex-
ity of binding parameters and result values in a graphical language as well as
dynamic dispatching of calls.

Some of the related transformation languages like ATL, QVT Operational,
or Henshin already offer some support for structuring transformations into sub
transformations. However, no existing hybrid and graphical transformation lan-
guages addresses all of the aforementioned challenges.

In this paper, we present an approach to tackle the lacking feature of invoking
story diagrams. Our solution supports binding the parameter values as well as the
result values of the invoked diagram. We also introduce polymorphic dispatching
in our solution, i.e., the invoked diagram is chosen at run-time based on the
actual types of the bound parameter values. Consequently, the story diagram
meta-model as well as the existing interpreter for story diagrams [8] have to be
extended to support the new concepts.

We show the effectiveness of our approach in a qualitative study of an ex-
isting transformation implemented in story diagrams. In the study, we estimate
the potential to reduce the total amount and size of the story diagrams in our
initial implementation. The results show a significant improvement in transfor-
mation size, leading to reduced complexity and thus an increase in the long-term
maintainability of the transformation.

The contribution of this paper is an approach to include invocations of other
story diagrams. We present a running example, necessary extensions of the story
diagram meta-model and a case study to show the effectiveness of our approach.

The paper is structured as follows. The following section presents an illus-
trative running example used throughout the paper to explain the new story
diagram concepts. Section 3 introduces the foundations of the story diagram
language. In Section 4, we extend these concepts and introduce calls to other
story diagrams. Section 5 presents an evaluation of the new concepts in the
context of a real transformation. After discussing related approaches in other
languages in Section 6, we conclude our paper and highlight open issues.

2 Illustrative Example

To illustrate our concept, we use a language transformation scenario: Suppose
we have a model representing the abstract syntax graph (ASG) of a program.
The ASG is language-specific, of course. If we want to generate code from the
ASG for a target language other than the language on which the given ASG is
based, one option is to transform the ASG first. One example of this would be
a transformation from Java to C++.

Figure 1 shows a simplified meta-model for an ASG which acts as the source
meta-model for our exemplary transformation scenario. A SourceSystem consists

Structuring Complex Story Diagrams by Polymorphic Calls 3

classifiers

< CClassifier
A

SourceSystem l% Classifier | TargetSystem

—

head I
| Class | | PrimitiveType | Header Tecel = CClass ‘ ‘ DataType ‘
class |1 header] 1 class [1
methods |« declarations| « functions |«
. - declarations function] -
Method FunctionDeclaration [1 Function
Fig. 1. Source meta-model Fig. 2. Target meta-model

of a number of Classifiers which can either be PrimitiveTypes or Classes. Each Class
can have a number of Methods.

The target meta-model for the transformation, shown in Figure 2, is slightly
more complex. The TargetSystem consists of a number of CClassifiers which are
either DataTypes or CClasses. An CClass can contain a number of Functions. In
addition, each CClass has a corresponding Header which contains a FunctionDecla-
ration for each Function of the CClass.

transformSystem

For each Classifier in the source system:
transform the classifier, transform its functions,
and add them to the target system.

Generate Code for the target system @
o

Fig. 3. An activity diagram describing the example transformation

Create target system

Figure 3 shows an activity diagram which gives an overview of the trans-
formation from a source ASG to a target ASG. At first, the target system has
to be created. Each classifier in the source system has to be transformed into
a corresponding classifier in the target system. While primitive types can be
transformed easily, headers have to be created for all transformed classes. For
each method, a function has to be created and a corresponding function decla-
ration has to be added to the correct header. In the end, the target system can
be passed to the code generation mechanism.

3 Foundations

In this section, we will briefly introduce story diagrams and their current fea-
tures. Story diagrams combine UML activity diagrams and graph transforma-
tions by embedding graph replacement rules into the activities. This allows the

4 S. Becker, M. von Detten, C. Heinzemann, J. Rieke

activities in Figure 3 to be specified formally by graph replacements while pre-
serving the general control flow structure of the example transformation.

In terms of the classification of model transformations proposed by Czar-
necki and Helsen [3], story diagrams are an endogenous, in-place transformation
language. It has both declarative (pattern matching) and operational elements
(specification of control flow): Its control flow allows a deterministic selection of
the graph replacement rules to be applied, with a (non-deterministic) pattern
matching in the graph replacement rules. It can also be used for inter-model
transformations to create a new target model from a given source model, as seen
in the example given in this paper. In order to execute story diagrams, code
generation [6] and interpretation [8] are supported.

In the following, we will describe the graph transformations, the so-called
story patterns, in Section 3.1. Afterwards, we will explain how control flow can
be modeled by using elements from activity diagrams in Section 3.2.

3.1 Story Patterns

Story patterns describe graph replacement rules that can be embedded into the
activities of a story diagram. They are based on labeled, attributed graphs that
are extended by a type model [5]. The types and references that are specified in
the type model are used to type the nodes and edges within the story pattern.
Type models for story diagrams can be created, e.g., by using EMF Ecore [21].
In our example, we will use the meta-models shown in Figures 1 and 2 as type
models. The type model supports inheritance and polymorphism, i.e., a node
of type Classifier matches objects of types Classifier, Class, and PrimitiveType. This
allows specifying graph replacement rules for object-oriented models.

In order to provide a concise notation, story patterns apply a short-hand
notation depicting left-hand side and right-hand side in one graph. Nodes and
edges being created (or deleted) are annotated with <<create>> (or <<destroy>>,
respectively). The matching of story patterns in a host graph requires an isomor-
phic matching of the pattern’s left-hand side in the host graph, i.e., two nodes of
the pattern may not be matched to the same node in the host graph [5,19]. The
matching is performed with respect to the types of the type model. The deletion
of nodes is applied according to the Single Pushout Approach (SPO, [19]), i.e.,
dangling edges resulting from the deletion of nodes are deleted as well.

Figure 4 shows an example of a story pattern that simply adds a class to the
set of classifiers of the source system (cf. Figure 1).

3.2 Control Flow

Story diagrams are an extension of UML 1.4 activity diagrams [16] that em-
bed story patterns into the activities. That allows to model basic control flow
structures like branches or loops. Figure 5 shows a story diagram that embeds
the story pattern of Figure 4 into one of its activities. The purpose of the story
diagram is to create a new class in the source system if no class with the name
given by the parameter className already exists.

Structuring Complex Story Diagrams by Polymorphic Calls 5

sourceSystem

«create»
classifiers
«create»
c: Class

Fig. 4. Simple story pattern

3 addClass(sourceSystem : SourceSystem, className : String)

CheckForExistingClass CreateNewClass
. [failure] «create»
classifiers classifiers
«create»
c:Class c:Class

name == className name := className

[success]
(J

Fig. 5. Control flow in story diagrams

In the first activity, the embedded story pattern tries to bind a class with the
respective name in the source system. The sourceSystem is given as a parameter
to the story diagram and can be used as a bound node by referring to the name
of the parameter. A bound node is signified in the concrete syntax by omitting
its type information. Then, the story pattern tries to bind an object of type Class
to the unbound node named c such that the attribute condition is fulfilled. If this
pattern can be matched successfully, i.e., the class already exists, the activity is
left via the [success] transition and the story diagram terminates. If no such class
can be found, the matching fails and the activity is left via the [failure] transition.
Then, the second activity creates the class, links it to the source system, and
sets the respective name. Additionally, it is possible to add boolean conditions
and an [else] to the transitions to model more specific conditions.

In general, an initial matching is established by the parameters. This match-
ing is extended by the story patterns in the activities. Then, the matching is
propagated to the next activity along the transitions. If a story pattern fails, the
current matching is not changed. In subsequent activities, an object previously
bound to a node ¢ can be referenced using a bound node with name c.

The specification of the transformation outlined in Figure 3 can only be
accomplished by specifying loops because it requires iterating over all classifiers
of the system and all methods of the classes. Loops can be modeled using forEach
activities. The story patterns in forEach activities are matched as long as new
matchings can be found. They are visualized by a double border line as depicted

6 S. Becker, M. von Detten, C. Heinzemann, J. Rieke

in Figure 6. The transformation formalizes the informal description of Figure 3
using the current features of story diagrams.

transform(sourceSystem : SourceSystem) : TargetSystem

BindCl f CreateTargetClassAndHeader
CreateTargetSystem indClasses .
[each time]
«create» | sourceSystem | targetSystem
«create»
g 'k : e
targetSystem classifiers «create» |classifiers
TargetSystem “ﬁfe?jte” «create»
: eader ———
tgtClass : CClass header : Header
BindMethods
[end]
[end]
methods
m : Method
BindPrimitveTypes
[each time]
]

[each time]

classifiers

CreateTargetMethodAndDeclaration

«create» «create»
o ¢ declarations
[end] «create» |functions «createy SCreate»

declaration decl

fun: Function ———— FunctionDeclarat
InvokeCodeGen e | PunctionDeclaration |
1. CodeGenerator.generateCode(targetSystem)

Cg return targetSystem

Fig. 6. Example of a complex transformation including several forEach activities

The story diagram creates a target system in its first activity. Then, all
classes of the source system sourceSystem are matched. For each match that has
been found, the forEach activity is left via the [each time] transition. Then, the
third activity creates a respective class and its header in the target system.
Afterwards, all methods of the class ¢ of the source system are matched. Again,
the forEach activity is left for each new match using the [each time] transition.
After all methods have been transformed, the control flow returns to the activity
Bind classes to bind the next class. It is required that a control flow that has left
a forEach activity eventually returns to this activity to obtain a correct story
diagram.

After transforming the classes, all primitive types of the source model have
to be transformed. We omit the details here due to space limitations. Finally, the
target system object targetSystem is returned by the story diagram as indicated
by the annotation return targetSystem on the stop node.

Structuring Complex Story Diagrams by Polymorphic Calls 7

Hitherto, story diagrams only support proprietary calls to library functions
called collaboration statements. In Figure 6, the activity InvokeCodeGen contains
such a call to the code generator. The call only is a string expression that does
neither allow type checking of the input parameters nor getting a matching of
return values, i.e., the return values cannot be used in the story diagram.

4 Calls in Story Diagrams

Our concept introduces two variants of calls to story diagrams: Story diagram
calls and opaque calls. Story diagram calls represent the invocation of other
story diagrams at some point in the control flow of a given story diagram. This
is done by inserting a special activity, the Story Diagram Call. In other cases,
it may be necessary or more convenient to reuse existing functionality, e.g.,
from a library. Because these are external operations which are not modeled
as story diagrams, we refer to these calls as opaque calls. Both types of calls
share common concepts like in- and out-parameters and are described in detail
in Section 4.1. Story diagram calls allow for the polymorphic dispatching of calls
based on the concrete types of their arguments. This is explained in Section 4.2.

4.1 General properties of calls

The introduction of calls to story diagrams requires an extension of the existing
meta-model which we explain in this section. Afterwards, we show how calls are
integrated into the example transformation from Figure 6.

OpaqueCallable OpaqueCall
Callabl collee Invocati
allable b nvocation
1 L=
invocation| 1
StoryDiagram StoryDiagramCall

iny|/* outy|, * parameterBindings| *

parameter L argument
Parameter T ParameterBinding e Argument

Fig. 7. The meta-model for calls in story diagrams

Figure 7 gives an overview of the (simplified) meta-model which realizes calls
in story diagrams. The two elements which can be invoked in story diagrams
(other StoryDiagrams and OpaqueCallables) share the common super class Callable.
A Callable can be invoked by an Invocation which is either a StoryDiagramCall or
an OpaqueCall.

A Callable can have arbitrarily many in- and out-parameters. When invoked,
a concrete Argument is assigned to each parameter via a ParameterBinding. Within

8 S. Becker, M. von Detten, C. Heinzemann, J. Rieke

a story diagram, nodes can be referenced by their name (cf. Section 3). Con-
sequently, if an object is bound to a node named n somewhere in the story
diagram, the identifier n can be used to pass this object as an argument to a
call.

In contrast to QVT [18], we do not explicitly model inout-parameters. In-
stead, we allow the same objects which are passed as in-parameters to be also
returned as out-parameters.

transformSystem(sourceSystem : SourceSystem) : void

LinkClassifierToNewSystem

BindClassifier

sourceSystem

classifiers

CreateTargetSystem

«create»

targetSystem
TargetSystem

targetSystem

[each time] («Story Diagram Call»
transformclassifier(c) : newClassifier

«create»| classifiers

newClassifier

[end]
«Opaque Call»
CodeGenerator.generateCode(targetSystem)

Fig. 8. A story diagram with a story diagram call and an opaque call

The story diagram in Figure 8 realizes the complex transformation depicted
in Figure 6 in a concise manner by using call activities. First, a new TargetSys-
tem object is created and bound to the node targetSystem. Then, the activity
BindClassifier successively matches all Classifier objects which are connected to the
sourceSystem. For each Classifier ¢, the story diagram transformClassifier is invoked
by the Story Diagram Call. The object bound to c is passed as an argument and the
returned object of the call is bound to the node newClassifier. This node is reused
in the following activity LinkClassifierToNewSystem in which an edge is created
between the newClassifier and the targetSystem. In contrast to the story diagram
in Figure 6, we can handle all classifiers in a uniform way due to the use of
polymorphic dispatching (cf. Section 4.2).

When all classifiers of the sourceSystem have been transformed, the control
flow continues via the [end] transition of the BindClassifier activity and the code
for the target system can be generated. This is achieved by an Opaque Call to the
method CodeGenerator.generateCode. The object bound to the node targetSystem is
passed as an argument and no value is returned by the call.

4.2 Polymorphic Dispatching of Calls

The concept presented in this paper also offers the possibility to dispatch the in-
vocation of story diagrams to different story diagrams with matching signatures
based on the concrete types of the passed arguments. This is usually referred to
as polymorphic dispatching or multiple dispatch. This allows for more compact

Structuring Complex Story Diagrams by Polymorphic Calls 9

specifications by reducing their conditional complexity. Consider the invocation
of transformClassifier in Figure 8. According to the source meta-model from Fig-
ure 1, a Classifier can either be a Class or a PrimitiveType. Depending on this, the
transformation of the classifier has to be carried out differently.

transformClassifier(c : Classifier) : CClassifier
when c.ocllsTypeOf(Class)

CreateTargetClassAndHeader

c

BindMethods

[}
o
&
2

«create»

return newClass

newClass :
CClass

method : Method

«create» | header
«create»

header :
Header

e

[each time]

CreateFunctionAndDeclaration

header
newClass

K «create»| declarations
«create»| functions «create»
«create»

«create» declaration :

function : Function -
declarations| FunctionDeclaration

Fig. 9. Story diagram for the transformation of classes

Figures 9 and 10 show two story diagrams for the transformation of classi-
fiers. The story diagram in Figure 9 handles the transformation of a class while
the sketched diagram in Figure 10 shows the beginning of the transformation of a
primitive data type. The concrete type for which a story diagram is executable is
specified by an OCL statement [17] in the when clause underneath the signature.
Both transformations have the same signature: transformClassifier(c : Classifier) :
CClassifier. The story diagram call in the story diagram in Figure 8 refers to this
signature and passes an argument of the common supertype Classifier. At execu-
tion time, the call is dispatched to the first story diagram when the argument c
is a Class and to the second story diagram when c is a PrimitiveType.

When clauses can concretize the types of all parameters. A story diagram is
only executable for a given set of arguments, when the complete when clause is
satisfied. Once a story diagram with a matching when clause has been found, it
is executed with the given arguments. The when clauses are assumed to specify
disjoint conditions so there can only be one suitable story diagram for any given
set of arguments. This behavior is similar to the disjoint mapping operations in
QVT Operational [18]. If no suitable story diagram can be found, the call cannot
be executed and the calling story diagram fails.

10 S. Becker, M. von Detten, C. Heinzemann, J. Rieke

transformClassifier(c : Classifier) : CClassifier
when c.ocllsTypeOf(PrimitiveType)

CreateTargetDataType

PrimitiveType) ¢

«create»

newDataType
: DataType

Fig. 10. Story diagram for the transformation of primitive types

In the current version of our dispatching strategy, we restricted ourselves to
dispatching based on the type of the parameters. This still allows us to implement
a static check ensuring all that all when statements are disjoint and all cases are
covered. In the future we could allow arbitrary OCL expressions in when clauses.
However, in this case we could only test disjunction and coverage during run-
time.

5 Qualitative Evaluation

In our evaluation, we considered a model transformation which was specified
with story diagrams. It transformed statecharts into story diagrams to support
the analysis of a dynamic communication system in [10]. The communication
protocol was given in terms of a statechart while the dynamic changes of the
system topology were modeled by in-place model transformations using story
diagrams. For an analysis, the statechart was transformed into a graph repre-
senting the states and several story diagrams executing the transitions. This
transformation was extended to real-time statecharts [7], an extension of state-
charts by features from timed automata [1], to support the analysis introduced
in [9].

The transformation consists of 20 story diagrams with a total of 147 activities
containing 620 nodes. The core of the transformation, however, is contained
in four story diagrams translating the states and transitions. These four main
story diagrams contain 40 activities with 330 nodes. Due to their size, they
are very hard to understand and, what is more, they contain a lot of duplicate
functionality. Figure 11 shows an excerpt from one of these story diagrams. In the
activity, there exist four nodes on the left side that were created in the preceding
activity. The purpose of the activity is to create six edges which are represented
by the green UMLLink nodes marked with <create>> and shall connect the four
nodes. Obviously, the repeated creation of such nodes can be moved to a helper
function by using calls.

Structuring Complex Story Diagrams by Polymorphic Calls 11

4
create links for activity
statelnScAssoc ;= transAsso: = e_in_Statechart”)
«Creates 5
4 instance0
scObj | redTarast prre,
N ccreatoe | inLinkl: UMLLink := project.getFromFactories(UMLLink.class).create() zcreates
‘ _reviargegreates ftype := UMLLink.MULL e elements
—a—resSaurce__|modifier := UMLLinkNONE iy
| i - =creates elements S
‘ inLink2: UMLLink := project.getFromFactories{UMLLink.class).create) | ——— “a *
wereates [type i= UMLLink.NULL
revSource _——|modifier := UMLLink NOMErezte U
| - instanceQf | # elerre-n
‘ i | «creates asInScAssoc ;= transAssocs.get(”ActiveState_in_Statechart”)
_
[T veSource creates [/]
’A&"PE'—P” |‘ » \ L3 7| activelink: UMLLink := project.getFromFactories(UMLLink.class).create) ~pcreates / /
i/ i
rfvTaraet v fypei= MLk NOLL pements /p
‘ \ modifier := UMLLink.NORE =" / [
‘ "| «createn - L _.'/
| V| reuTarget ‘ activeStateAssoc := transAssocs.get{"ActiveState active State”) /
o — fresten
“JF'EE'—E” | clockLink1: UMLLink := project.getFromFactories{UMLLink.class).create() _/element
erestes '?‘-‘TE'GE' | ccresten ltype = UMLLink.NULL /
. reveoures o —|modifieri= UMLLinkNONE f
revTarget ‘ {;_E-E = ,;Lc.,_,' v ‘I.l‘ y | ecrestes
| ereates | clockAssoc := transAssocs.get(”Clockinst_hasMode_Node™) { elements
| GiObj |revSource T / -
| \ e ecreblagtancees I.'
‘ - —\i — | dockLink2: UMLLink := gmiect.qetfmfi‘ﬁlﬁ-ﬁﬁrigswMllink.clas;l.create(] !
\ “cre{Rtodifier ;= UMLLink.NONE e
1\ revSolien = UMLLink.NULL
\L | «Creates
clocklink3: UMLLink := project.getFromFactories{lUMLLink.class).create() 1

modifier ;= UMLLink.NOMNE
[type := UMLLink.NULL

Fig. 11. Complex story diagram before using calls

We performed a qualitative evaluation on how this complex transformation
can be restructured using the calls concept introduced in this paper. Table 1
summarizes the results of this restructuring. It compares the numbers of story
diagrams, story activities, calls activities, nodes, and the ratio of nodes per

activity before and after introducing calls.

Table 1. Reduction of the rule sizes

without calls # with calls
main story diagrams|total|main story diagrams| total
Story Diagrams 4 20 4 1947
Story Activities 40 147 28 145
Call Activities 0 0 78 78
Nodes 330 620 74 444
@ Nodes per story activity 8.25 4.22 2.64 3.06

In detail, we restructured the transformation by the following steps. Initially,
one story diagram with five activities containing a total of 20 nodes became

12 S. Becker, M. von Detten, C. Heinzemann, J. Rieke

obsolete immediately without any structural changes to the transformations as
such. Additionally, the four main transformation rules can be modularized such
that we obtain smaller transformations which are easier to create and to main-
tain. From the main transformations rules, we can move 12 activities containing
85 nodes to four new story diagrams which are then called by the main trans-
formations.

The use of transformation calls also enables us to introduce helper trans-
formations for the repeated creation of objects of the same kind. We identified
three possible helper transformations for the creation of objects, links, and at-
tribute assignments in the target model. Figure 12 shows how calls to these
helper functions can be utilized to reduce the visual complexity of the trans-
formation depicted in Figure 11. They enable us to remove 171 nodes from the
story diagrams and to replace them by 74 calls to these helper functions.

After all these modifications, there is no duplicate functionality in the story
diagrams. The number of used objects in the four main transformation rules can
be decreased from 330 to 74 by introducing another 78 calls.

In summary, the usage of calls reduces the visual complexity of the main
transformation rules by reducing the average number of objects per activity
from 8.25 objects to 2.64.

\

/ «Story Diagram Call» / «Story Diagram Call»
createlLink(stateObj, scObj, createLink(asObj, scObj,
,State_in_Statechart”, NULL, NONE) ,ActiveState_in_Statechart”, NULL,
inLink NONE) : inLink2
I I
/ «Story Diagram Call» / «Story Diagram Call»

createLink(asObj, stateObj,
,ActiveState_active_State“, NULL,
NONE) : activeLink

N2
/ «Story Diagram Call»
createLink(ciObj, stateObj,
,Clockinst_hasNode_Node*, NULL,
NONE) : clockLink2

createLink(ciObj, asObj,
,Clockinst_hasNode_Node”, NULL,
NONE) : clockLink1
I

/ «Story Diagram Call»
createLink(ciObj, scObj,
,Clockinst_hasNode_Node*, NULL,
NONE) : clockLink3

TITIT

AddLinksToStoryPattern

L «create» «create» L
inLink inLink2
elements elements
S «create» «create» .

‘ activelink ‘—‘ sp ‘—{ clockLinkl ‘
elements| elements|

X r X
clockLink2 «create» «createn clockLink3
elements elements

Fig. 12. Complex story diagram after using calls

Structuring Complex Story Diagrams by Polymorphic Calls 13

6 Related Work

Model transformation has become an important research topic during the last
years. Several concepts and tools with different scopes and applications have
been proposed.

Several model transformation approaches exist which are similar to story di-
agrams. Here, we focus on those solutions that have a reasonable documentation
available. For a more comprehensive overview of transformation approaches see,
for example, [3]. Current transformation tools can, for instance, be found in [14].

Henshin [2] is a model transformation language for in-place transformations
of EMF-based models. It uses pattern-based rewrite rules (called “transforma-
tion rules”) and control-flow-based operational semantics (called “transforma-
tion units”) on top of it. Transformation units can also be called by other trans-
formation units, also including parameters. MOLA [12] is an in-place model
transformation language with graphical syntax similar to story diagrams. Trans-
formation rules may consist of multiple matching and modification patterns, and
the control flow inside a transformation rule can be specified, with a focus on the
loop construct. Furthermore, it also allows calling other transformations rules.
VIATRA [22], a textual language, uses abstract state machines to specify the
control flow and graph transformation rules for elementary model manipulations.
It also addresses modularization by reusable patterns that are called from the
graph transformation rules.

Although most of the story-diagram-like transformation languages include
means for specifying control flow (including calling other transformation units),
none of them supports polymorphic dispatching. (Note that in most cases poly-
morphic dispatching can be emulated using other means, but doing so would
result in a more complex and less maintainable rule set.)

However, looking at other transformation language types, there are some
approaches that support polymorphic dispatching. For instance, Xpand [4], a
model-to-text transformation language based on templates, uses “polymorphic
template invocation” where the most specialized template available is used. How-
ever, it only supports single dispatch, i.e., only one parameter is used to deter-
mine the used template.

Considering exogenous, inter-model transformations, QVT Operational [18]
is an operational language that also allows polymorphic dispatching by its dis-
juncts keyword. A QVT-O mapping operation can declare that a call to it should
be dispatched to other mappings. In this case, the invocation of that mapping
operation results in the execution of the first mapping whose signature fits the
concrete parameters and whose when clause evaluates to true. This is a more pow-
erful construct than our solution, as it not only allows dispatching based on the
actual type, but arbitrary constraints. However, there must be a base rule where
all dispatching possibilities are listed; in our solution, all signature-compatible
transformations with the same name are automatically used in dispatching, al-
lowing a better modularization as well as an easier extension of the rule set.
Furthermore, QVT-O is a textual transformation language which may not be
well-suited in many cases [15].

14 S. Becker, M. von Detten, C. Heinzemann, J. Rieke

In declarative inter-model transformation languages like Triple Graph Gram-
mars (TGGs) [20], the control flow cannot be defined explicitly. Instead, the
order of the rule application is implicitly defined by preconditions of the trans-
formation rules. However, when more than one rule has a fitting precondition,
the rule to be applied is selected non-deterministically, dependent on the con-
crete transformation tool implementation, or by a given rule priority. Klar et al.
[13] proposed a rule generalization concept with a precedence for the most re-
fined rules, a solution similar to polymorphic dispatching. In QVT Relations [18],
which is similar to TGGs, control flow may also be explicitly specified by using
where clauses.

The Atlas Transformation Language (ATL) [11] is a hybrid inter-model trans-
formation language, integrating declarative and operational aspects. It is similar
to QVT, but only has a textual representation of the transformation rules.

7 Conclusions and Future Work

The specification of control flow has always been an integral part of story dia-
grams. However, story diagrams did not support structuring complex transfor-
mations into several independent story diagrams up to now. In this paper, we
described an extension of the existing formalism for the control flow to allow
the invocation of other story diagrams, including parameters and return values.
Furthermore, we introduced a concept to polymorphically dispatch a call to the
story diagram which matches the actual run-time types of the bound parameters.

By this means, story diagrams become more flexible and reusable and allow
a better structuring of the rule set. In a qualitative evaluation, we have discussed
that these new features can help to reduce the size of the rule set and increase
its maintainability.

As future work, we plan to investigate whether and how the polymorphic dis-
patching can be extended, for example, to allow arbitrary dispatching conditions
similar to QVT-0O. We also plan to evaluate the maintainability, conciseness, and
understandability of our approach in comparison to other model transformation
languages in an empirical study.

References

1. R. Alur. Timed Automata. In Proceedings of the 11th International Conference on
Computer Aided Verification (CAV ’99), volume 1633 of Lecture Notes in Computer
Science (LNCS), pages 8-22. Springer, 1999.

2. E. Biermann, C. Ermel, J. Schmidt, and A. Warning. Visual Modeling of Controlled
EMF Model Transformation using Henshin. In Proceedings of the 4th International
Workshop on Graph-Based Tools (GraBaTs 2010), 2010.

3. K. Czarnecki and S. Helsen. Feature-based Survey of Model Transformation Ap-
proaches. IBM Systems Journal, 45:621-645, July 2006.

4. Eclipse Modeling Project. Model To Text (M2T) - Xpand.
http://www.eclipse.org/modeling/m2t/?project=xpand.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Structuring Complex Story Diagrams by Polymorphic Calls 15

. T. Fischer, J. Niere, L. Torunski, and A. Ziindorf. Story Diagrams: A New Graph

Rewrite Language Based on the Unified Modeling Language and Java. In TAGT
'98 Selected papers, volume 1764 of Lecture Notes in Computer Science (LNCS),
pages 296-309. Springer, 2000.

. L. Geiger, T. Buchmann, and A. Dotor. EMF Code Generation with Fujaba. In

Proceedings of the 5th International Fujaba Days, 2007.

. H. Giese and S. Burmester. Real-Time Statechart Semantics. Technical Report

tr-ri-03-239, Software Engineering Group, University of Paderborn, Germany, 2003.

. H. Giese, S. Hildebrandt, and A. Seibel. Improved Flexibility and Scalability by

Interpreting Story Diagrams. In Proceedings of the 8th International Workshop on
Graph Transformation and Visual Modeling Techniques (GT-VMT ’09), volume 18
of Electronic Communications of the EASST, 2009.

. C. Heinzemann, J. Suck, and T. Eckardt. Reachability Analysis on Timed Graph

Transformation Systems. In Proceedings of the 4th International Workshop on
Graph-Based Tools (GraBaTs 2010), 2010.

C. Heinzemann, J. Suck, R. Jubeh, and A. Ziindorf. Topology Analysis of Car
Platoons Merge with FujabaRT & TimedStoryCharts - a Case Study. In Trans-
formation Tool Contest 2010, 2010.

F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. Atl: A model transformation
tool. Science of Computer Programming, 72(1-2):31 — 39, 2008.

A. Kalnins, J. Barzdins, and E. Celms. Model Transformation Language
MOLA. 1In Proceedings of Model-Driven Architecture: Foundations and Applica-
tions (MDAFA) 2004, 2004.

F. Klar, A. Konigs, and A. Schiirr. Model Transformation in the Large. In Proceed-
ings of the the 6th Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC-FSE ’07), pages 285-294. ACM, 2007.

S. Mazanek, A. Rensink, and P. van Gorp, editors. Transformation Tool Contest
2010, Malaga, Spain, 2010.

D. L. Moody. The ”Physics” of Notations: Toward a Scientific Basis for Con-
structing Visual Notations in Software Engineering. Software Engineering, IEEE
Transactions on, 35(6):756 —779, 2009.

Object Management Group. Unified Modeling Language (UML), Specification,
Version 1.4, 2001. OMG document formal/2001-09-67.

Object Management Group. Object Constraint Language (OCL), Version 2.2,
2010. OMG document formal/2010-02-01.

Object Management Group. Query/View/Transformation (QVT), Version 1.1,
2011. OMG document formal/2011-01-01.

G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph
Transformation: Vol. I. Foundations. World Scientific Publishing Co., Inc., 1997.
A. Schiirr. Specification of Graph Translators with Triple Graph Grammars.
In 20th International Workshop on Graph-Theoretic Concepts in Computer Sci-
ence, volume 903 of Lecture Notes in Computer Science (LNCS), pages 151-163.
Springer, 1994.

D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF': Eclipse Modeling
Framework. The Eclipse Series. Addison-Wesley, 2nd edition, 2008.

D. Varré and A. Balogh. The model transformation language of the viatra2 frame-
work. Science of Computer Programming, 68(3):214 — 234, 2007. Special Issue on
Model Transformation.

