
Selective Tracer for Java Programs

Lothar Wendehals
Software Engineering Group

Department of Computer Science, University of Paderborn
Warburger Straße 100, 33098 Paderborn, Germany

lowende@upb.de

1. Introduction
Reverse engineering based on dynamic analyses often uses

method traces of the program to be analyzed. Recording all
method traces during a program’s execution produces too
much data, though for most analyses, a “slice” of all method
traces is sufficient. Furthermore, the monitoring of a com-
plete program extremely reduces the runtime performance.

Our tool JavaTracer records method traces during the
execution of a Java program. To reduce the amount of data,
the JavaTracer is able to record calls of selected methods
only. In comparison to the Java Debugging Interface (JDI)
[2] that also provides a native tracing of a Java program, the
JavaTracer is much more efficient.

The JavaTracer is used in our tool-supported semiauto-
matic approach to design recovery [1] within our UML Case
Tool Fujaba Tool Suite [3]. This approach facilitates the
recognition of design pattern instances in the source code of
a system. We combine static and dynamic analysis [4, 5]. The
static analysis identifies pattern instance candidates, where-
as the subsequent dynamic analysis verifies the candidates.
Therefore, only methods of pattern instance candidates have
to be monitored by the JavaTracer.

2. The JavaTracer
The JavaTracer gets a list of classes and selected me-

thods that have to be monitored during the program’s exe-
cution. It executes the program, called the debuggee, by
connecting to the debuggee’s virtual machine. For each se-
lected method, two breakpoints are set at the beginning and
at the end of the method body.

Abstract methods of interfaces or abstract classes can also
be selected. The JavaTracer is able to record all calls of
methods implementing those abstract methods. Even over-
ridden methods can be monitored, such providing analyses
that include polymorphism and dynamic method binding.

When the debuggee reaches a breakpoint, the JavaTra-
cer will be informed. It halts the debuggee and asks the de-
buggee’s virtual machine for additional information about
the method call. This includes information about the me-
thod name, the time stamp for the method call, the names
and unique identifiers of the caller and callee objects, the
identifiers of objects passed as arguments as well as the cur-
rent thread. Then the debuggee’s execution is continued.

The debuggee is controlled either manually by the reen-
gineer or by automated tests. The output consists of a list
of method entry and exit events in the order of their occur-
rence which can be further analyzed, e.g. by the dynamic
pattern analysis.

3. Performance
Table 1 shows the performance of different executions of

the Fujaba Tool Suite. In the first scenario, the duration
of starting Fujaba was measured1. In the second and the
third scenario, a project was opened in Fujaba. The first
project consists of a class diagram with 12 classes, the se-
cond one of a class diagram with 27 classes and 178 activity
diagrams. Four major classes were monitored.

Scenario tw/o tbreak tevents

Starting Fujaba 5,39 sec. 8,4 sec. 103,37 sec.
Open Project I 2,85 sec. 20,65 sec. 241,78 sec.
Open Project II 6,28 sec. 49,58 sec. 923,03 sec.

Table 1: Duration of program tracings

The program was executed without any tracing (tw/o),
using our breakpoint approach (tbreak) and using the nati-
ve MethodEntry and MethodExit event mechanism of JDI
(tevents). JDI was configured by filters to monitor the same
methods as the JavaTracer. Even though the JavaTra-
cer uses JDI for setting breakpoints, it improves the per-
formance of method tracing significantly compared to the
native tracing provided by JDI.

References
[1] J. Niere, W. Schäfer, J. P. Wadsack, L. Wendehals, and

J. Welsh. Towards pattern-based design recovery. In
Proc. of the 24th International Conference on Software
Engineering (ICSE), Orlando, Florida, USA, pages
338–348. ACM Press, May 2002.

[2] Sun Microsystems. Java Platform Debugger
Architecture. http://java.sun.com/products/jpda.

[3] University of Paderborn, Germany. Fujaba Tool Suite.
http://www.fujaba.de.

[4] L. Wendehals. Improving design pattern instance
recognition by dynamic analysis. In J. Cook and
M. Ernst, editors, Proc. of the ICSE 2003 Workshop on
Dynamic Analysis (WODA), Portland, USA, pages
29–32, May 2003.

[5] L. Wendehals. Specifying patterns for dynamic pattern
instance recognition with UML 2.0 sequence diagrams.
In E.-E. Doberkat and U. Kelter, editors, Proc. of the
6th Workshop Software Reengineering (WSR), Bad
Honnef, Germany, Softwaretechnik-Trends, volume
24/2, pages 63–64, May 2004.

1The analysis was done on 1GHz Athlon, 640MB RAM,
Windows 98 2nd edition, JDK 1.4.2


