
Architectural Patterns for Data Mediation
in Web-centric Information Systems

Jens H. Jahnke
Department of Computer Science

University of Victoria
PO Box 3055
Victoria B.C.

Canada V8W3P6

jens@cs.uvic.ca

Daniel M. German
Department of Computer Science

University of Victoria
PO Box 3055
Victoria B.C.

Canada V8W3P6

dmgerman@cs.uvic.ca

Jörg P. Wadsack1
Department of Mathematics and

Computer Science
University of Paderborn

Warburger Str. 100
33098 Paderborn, Germany

maroc@upb.de

ABSTRACT
For over two decades, Web-centric information management has
considerably changed business processes of organisations in the
private and public sector. The Web itself has emerged from a
fairly static collection of hypertext documents to a dynamic
network of objects providing information services, i.e., the so-
called Object-Web [6]. Today, many organisations provide access
to their information systems (IS) by means of Web services.
Moreover, the Web is no longer restricted to traditional
computing hardware but it invades the world of mobile and smart
devices. We can identify three main waves in the evolution of
Web-centric systems. The first wave had its peak in the mid 90’s;
Organisations discovered the Web as an environment for
marketing their products and publishing information to a growing
community of users. The second, still ongoing wave has been
focused on business-to-business e-commerce and federated Web
services. The third wave of connectivity is on the horizon and
targets the integration of “every-day-things” like cell phones,
PDAs, and household appliances as Web clients based on
emerging W3C standards like UDDI and SOAP. In this paper, we
discuss a collection of general architectural patterns that can be
applied to systematically building such “third generation” Web
information systems. We then specialize these patterns with
respect to current middleware solutions applied to a real world
case study of a third generation Web IS in the domain of Health
Care.

Keywords
Web engineering, design patterns, component-based software
development, connection-based programming, information
mediation, architectural evolution

1. INTRODUCTION
For over two decades, Web-centric information management has
considerably changed business processes of organisations in the
private and public sector. The Web itself has emerged from a
fairly static collection of hypertext documents to a dynamic
network of objects providing information services, i.e., the so-

called Object-Web [6]. Today, many organisations provide access
to their information systems (IS) by means of Web services.
Moreover, the Web is no longer restricted to traditional
computing hardware but it invades the world of mobile and smart
devices. We can identify three main waves in the evolution of
Web-centric systems. The first wave had its peak in the 90’s:
organisations discovered the Web as an environment for
marketing their products and publishing information to a growing
community of users. The second, still ongoing, wave has been
focused on business-to-business e-commerce and federated Web
services The third wave of connectivity is on the horizon and
targets the integration of “every-day-things” like cell phones,
PDAs, and household appliances as Web clients based on
emerging W3C standards like UDDI and SOAP.

It is widely anticipated that this third wave of Web-centric
information exchange will have much greater impact on our
societies than the recent two. The main reason for this prediction
is that the third wave of connectivity will include electronic
information management that works “under the hood” and
involves almost everybody—not only those working in particular
functions. Our experience with several industrial case studies
clearly indicates that future Web-centric systems have to integrate
the Web in the form of all three waves in order to be successful
and competitive. In this document, we refer to Web-centric
systems that integrate technologies from all three waves of
connectivity as third generation systems [9].

Information gathering, information publishing and information
mediation are common to all IS components participating in third
generation systems. In this paper, we discuss a collection of
general architectural patterns that can be applied to systematically
building third generation systems. We then specialize these
patterns with respect to current middleware solutions applied to a
real world case study of a third generation Web IS in the area of
Health Care. 1

In the next section, we introduce the concept of architectural
patterns in general and applied to Web-centric IS in particular. In
Section 3, we propose a pattern collection for Web-centric IS.
Section 4 discusses the application of these patterns to a case
study in the health care sector. We then relate our work to other

1 Jörg P. Wadsack has been a visiting researcher at the University of

Victoria from January to April 2002

research efforts in this area and close with our conclusions and
remarks about future work.

2. ARCHITECTURE OF WEB-CENTRIC
INFORMATION SYSTEMS

Modern “third generation” Web IS deal with large amounts of
information spread over multiple locations and heterogeneous
platforms. Different kinds of interfaces are needed to gather,
publish or mediate information for an organisation, among
organisations and between organisational IS and mobile devices.

Figure 1 illustrates the architecture of a typical organisation
whose data is divided in different federated databases. The
organisation makes selected parts of this information available to
clients by means of Web browsers or to other organisations for
the purpose of electronic data interchange. Information from
different organisation may also be published in an aggregate
form, e.g., tickets offered by different airlines. This aggregation
can explicitly be visible to the client, e.g., different frames in a
Web browser, or transparent to the client, i.e., information is
merged and then published and looks as it stems from one single
source.

Traditional architectures for Web-centric information systems are
based on the procedure-call paradigm, i.e., clients call service
operations on server objects. This traditional development
paradigm implies that the client programmer knows about the
servers at the development time of the client software. This is

disadvantageous in case of rapidly evolving architectures such as
third generation Web IS. Therefore, software engineers have
recently started to migrate to a new paradigm called component-
oriented software development.

The component-oriented software development paradigm
promotes connection-based programming. This means that Web
components are defined with well-defined interfaces in partial
ignorance of each other. The actual connections among
components are instantiated and deployed later. In other words,
connections are now treated as “active” first-order citizens in
distributed architectures [8]. This supports networked evolution
because it facilitates adding and removing connections with little
changes to the components in a system. The patterns described in
this paper are component-based and promote connection-based
programming for distributed third generation Web IS.

In general, architectural patterns define the responsibility of
typical parts of a system. Furthermore, they provide rules and
guidelines for relationships between those components.
Architectural patterns express and separate the concerns of
fundamental structures in software systems [2].

We present four architectural patterns in this paper:

• Data Portal
• Data Connection
• Data Fusion
• Data Transducer

Figure 1 Third generation Web-centric information system

Figure 2 Architectural patterns: overview

Organisation

Data federation

Cell
phon

PDA

Organisation Web
browser

Organisation

Web
browser Data

mediation

Information flow

Data
Portal

connection A

connection B Data
Connection

Data
Component

2..n
input Data

Fusion
Data

Transducer

Their relationships are depicted in Figure 2, and in the next
section we describe these architectural patterns in detail.
Distributed information management components are connected
to the Web by means of the Data Portal pattern. The Data Portal
is just one of three general Data Component patterns that can be
connected through instances of the Data Connection pattern. The
Data Fusion pattern is used to merge information from separate
sources. Finally, the Data Transducer translates information into
a different structure. This pattern is used for mediating among
different data representations, as well as for rendering Web data
for presentation to human clients (e.g., in browsers)

3. ARCHITECTURAL PATTERNS FOR
WEB DATA MANAGEMENT

In this section, we refine the description of the four patterns
named in the previous section.

3.1 Data Portal
Name: Data Portal, (Export/Import)
Intent: A data portal is an interface between the world and the

IS subsystems of an organisational entity. Its purpose is to
make selected parts of the data (maintained within this
entity) accessible for authorized external clients (services
or users). There are two different versions of this pattern:
Export Data Portal, which is responsible for making
internal data available outside the organisation; and
Import Data Portal, which is used to import information
from external sources into the organisational databases. In
practical applications, a clear distinction between these
two patterns might not always be possible. The
combination of exporting internal data and importing
external data is an Export & Import Data Portal.

Motivation: Three main motivations exist for the data portal,
namely resolving heterogeneity, providing data security,
and increasing data availability. Heterogeneity reflects on
the fact that different organisational entities utilise various
heterogeneous platforms and technologies for their data
repositories. Interoperability between different
organisational entities requires that this heterogeneity be
resolved. The Data portal serves this purpose by

exploiting Web-interoperability standards. Second, the
requirement for data security stems from the fact that, in
many cases, external clients should not have access to all
the data stored in internal databases (e.g., for protecting
intellectual property, personal or sensitive information,
etc). The data portal provides a level of isolation
between the effective schema (as it is perceived by the
external client), and the source schemas of the internal
databases in question. Finally, the data portal facilitates
fast access to a unified view of internal data structures.
This is needed because data is often distributed among
various different transactional and analytical repositories
within organisations. The data portal serves as a façade
for these various data sources, in which the effective
schema is a buffered view of the collection of schemas of
all the involved databases.

Applicability: The data portal pattern can be used whenever the
organisation needs to make available part of its data to
entities outside its intranet. The export data portal
specializes in allowing external entities to query the
internal databases, while the import data portal is used
to update the internal databases with data from the outside
of the organisation.

Structure: Figure 3 shows the structure of the pattern.
Participants: Figure 4 shows the participants of the pattern.

• Source schemas. The schemas of the different data
sources that compose the information systems of the
organisation.

• External schema. The schema of the organisation data
as seen by the external clients.

• Mapping function. A function that converts the source
data (from the different source data sources and each
conforming to a different source schema) to the
effective schema.

Collaborations: Each of the internal data sources is described
with its own schema (a source schema). An external
client, however, is not expected to be able to see any of
these data sources. Instead, the client has access only to
the “view” that the organisation allows. This view is
described using the external schema. The mapping
function is responsible for resolving a request from the

Figure 3 Structure of Data Portal pattern

connection A

connection B

Export &
Import
Data
Portal Import

Data Portal

Export
Data Portal

Data Portal

client (based on the external schema) into a request to the
internal databases (described using the source schemas)
Figure 5 shows a sample instantiation of the pattern.

Consequences: There is a single entry point to external access
and updates to the internal databases of the organisation.
From the point of view of the external client, there is a
single schema that corresponds to a single data source.
The client does not have to worry about the different data
sources, their types (whether they are ODBC, file-based,
or other) nor how to query or update them individually.
The organisation, on the other hand, can filter and block
access to sensitive information in the source databases. A
disadvantage is the complexity of building this federative
layer is significantly higher than using direct access, e.g.,
by using JDBC.

3.2 Data Connection
Name: Data Connection
Intent: Proactive service for pulling data of interest from a given

data source and pushing this data to a given data sink.

 Motivation: Traditionally, data exchange has been controlled by
either the client or the server of a distributed IS. As
motivated earlier in this paper, this concept has limited
scalability and flexibility for the rapidly evolving
distributed architectures of third generation Web IS.
Therefore, Web engineers have begun to treat data
connections as first-order citizens in their architectural
designs. This trend is merely reflecting on a general trend
in current software engineering practice from the
traditional call-procedure paradigm to the new paradigm
of connection-based programming [8]. For the application
domain of engineering distributed Web IS, a Data
Connection is an instance that controls the exchange of
electronic data among several component IS.

Applicability: Whenever we need to constantly retrieve
information from a data source.

Structure: Figure 6 shows the structure of the pattern.
Participants:

• Server and Client Connections. These connections are
created from the instance of the data connection
pattern to the server and the client, and can be either

Figure 4 Inner-organisational view of Data Portal pattern

Figure 5 Data Portal pattern examples

data
source I

data
source IV

data
source III

data
source II

source
schema I

source
schema II

source
schema III

source
schema IV

external
schema

corresponds to

corresponds to

corresponds to

corresponds to

mapping
function Data

Portal

Information flow

book
database

client
database

sale
database

book DB
schema

client DB
schema

sale DB
schema

mapping
function

mapping
function

export
effective
schema

import
effective
schema

Export
Data
Portal

Import
Data

Portal

Data
Connection

Data
Connection client

Export &
Import
Data

Portal

A

B

A

Information flow
A, B connection A, B

B

Organisation

static or dynamic links. A static link assumes a reliable
connection between the client and the server, while a
dynamic link can handle a change in the IP address of
the client and temporal disconnection between client
and server (both situations common in mobile devices).

• Connection Policy. Indicates the properties of the data
connection. An updater data connection is only
concerned with handling continuous updates to the
client (stock market prices, news updates), while the
synchronizer assumes that the client has a copy of the
data and needs to synchronize it with the master copy in
the server.

• Server. The Web service to which the client wants to
connect.

• Client. The client’s Web IS, that needs to connect to the
Web Service.

Collaborations: When instantiated, the data connection pattern
creates communication links to both, the client and the
server. The instance of the data connection pattern,
according to its connection policy, receives requests from
the client and converts them into requests to the server.
The reply from the server is then translated and sent to the
client. The data connection is responsible for the issues
related to the connection to the service, such as
authentication, encryption, roaming, temporal
disconnection, etc.

Consequences: The main benefit of connection-based
programming is late binding of component IS. This means
that it becomes possible to develop component IS with
well-defined interfaces (data portals) more-or-less in
isolation from each other, and flexibly connect them at a
later point in time. The data connection pattern is also
responsible for handling the complexities of the

communication with the service, allowing the client to be
unaware of them.

3.3 Data Fusion
Name: Data Fusion
Intent: To combine the data received from two or more data

sources, into a single, unified data source.
Motivation: One of the goals of the semantic Web (as defined by

the W3C) is the availability of a variety of data sources.
These data sources will be mined by intelligent agents,
which will understand their schemas and then manipulate
and combine their data, and then present it to the client as
a unified data source. The client does not need to deal
with these complexities, and instead, can assume a unique
data source.

Applicability: A distributed Web-IS often must combine and
aggregate data from several sources into a common data
stream. A travel agency Web-IS, for example, requires
access to all the different airlines data sources, in order to
present all the available flights to the potential traveller.

Structure: Figure 7 shows the structure of the pattern.

Participants:
• Server data connections. A data connection is created to

connect the data fusion to each of the servers.
• Client data connection. The data connection to the

client.
• Collector. Queries the different servers and receives

their results.
• Merger. It is responsible for merging the results from

the different data sources.
Collaborations: The instance of the data fusion pattern creates

data connections to each of the servers. When the instance
of the pattern receives a query, it translates it into a
sequence of queries, each intended for a different server.

Figure 6 Data Connection pattern

Synchronizer Updater

Connection
Policy

Dynamic
Link

Static
Link

Link

Data Connection

A:Link

B:Link

instance of

instance of

server connection client connection

The collector is then responsible for executing these
queries (using a data connection to the corresponding
server). The collector receives the results and passes them
to the merger, who proceeds to combine them. The
resulting data is then sent to the client using the client
data connection.

Consequences: The availability of information in XML from
different Web services requires the existence of data
fusion instances that merge these sources info a unified
data source. For example, combining air flights, hotels
and car rental reservations, for a travel agent Web-IS. A
client application that uses a data fusion pattern does not
need to worry about the complexities of accessing and
merging multiple data sources.

3.4 Data Transducer
Name: Data Transducer
Intent: To convert data in a given source format to data in

another target format.
Motivation: There are cases where the client might not be able to

interpret the data in its original format or schema. In that
case, the data transducer pattern converts the source data
into a target format that the client expects.

Applicability: Whenever an application requires data in a
different format than the one that the data source provides.
A client application might be designed with a given
schema in mind, but the server might provide data in a
different schema. Transducing the data from one schema
to another will allow both applications to interact without
changes in either one of them. For example, the client
expects data in a different DTD than the source produces.

Structure: Figure 8 depicts the structure of the pattern.

Participants:
• Source data connection. A data connection to the source

of the data.
• Output data connection. A data connection to the

consumer of the data.
• Source schema. The schema of the original source data.
• Result schema. The desired schema for the resulting

data.
• Transducing function. A function that converts the data

from the source schema into the result schema.
Collaborations: The producer of data is connected to the data

transducer using a source data connection; similarly, the
consumer of the data is connected to the data transducer
using an output data connection. The source data
connection pulls the data to be transduced. This data
conforms to the source schema and it is used as input to
the transducing function. The output data, which
conforms to the result schema, is then fed to the output
data connection.

Consequences: This pattern allows the interaction of two
applications, designed for different schemas, to
interoperate. The two applications do not need to be aware
that the schema of the other is different. The disadvantage
of this pattern is that the transduction could lose
information because the destination schema might not be
able to convey all the information of the source schema.

4. CASE STUDY: PALLIATIVE CARE WEB
In this section, we describe applications of the patterns introduced
above to an example case study of a third generation Web IS. This
case study is carried out in a collaborative effort of the
Department of Computer Science at the University of Victoria

Figure 7 Data Fusion pattern

Figure 8 Data Transducer pattern

Server Data
Connection

collector

merger

Data Fusion

2..n

packages

inputClient Data
Connection

connection A

Data
Transducer

Source Data
Connection

Output Data
Connection

connection B connection A

B.C. (UVic) with the UVic School for Health Information Science
and other medical centers, including a local cancer clinic. The
subject of the collaborative project is building a third generation
Web information system in the area of Palliative Care2. The
background for this project has been the ongoing initiative of
Health Canada to establish an integrated surveillance system for
key service areas in medical care, particularly end-of-life care.
Such a system would collect data about the clinical practice in
different medical centers, e.g., hospices, cancer clinics, etc. The
collection of data is done with PDAs (Victoria) or handheld input
tablets. The heterogeneous data sets at the different locations
would then be consolidated with respect a standard reference
structure. This reference structure is called the Palliative Data Set
(PDS) and is currently refined by a joint group of Health
researchers in Victoria and Center X3 [5]. The consolidated and
combined data would then be stored in a Data Warehouse at the
Ministry of Health, where it can be browsed and analysed for the
purpose of knowledge discovery and surveillance.

 Architecture
The following figure shows the main components of the Palliative
Care Web architecture. The architecture integrates three main
organisational sites, namely in Victoria, Center X and Y. Each
organisational site has its own proprietary IS infrastructure in
terms of different kinds of databases and repositories. Two portals
per site hide the complexity and heterogeneity of these
idiosyncratic infrastructures. For increased clarity, we refer to

2 Palliative care deals with the treatment of pain and the

prescription of pain relieving drugs.
3 For political reasons, we are not able to make public the names
of the involved centers.

these portals as ubiquitous portal and mediation portal,
respectively. The ubiquitous portal interfaces to handheld and
embedded devices for the purpose of viewing and collecting data
from clinical practice. This interface is realized by means of a
Data Connection and Data Transducer pattern (for rendering
clinical data on the embedded device. Both pattern instances
reside on the embedded device. The link from the Data
Connection to the ubiquitous portal is a dynamic link and the
connection policy is a Synchronizer since the embedded handheld
devices can be used off-line (see the Data Connection pattern).

Furthermore, Figure 9 shows that the Data Fusion pattern is used
for combining the palliative data sets from the different
organisational sites. In cases where data sets are not structurally
compliant to the standard PDS format, a Data Transducer pattern
is instantiated to provide the structural translation. All instances
of Data Connection deployed between the Palliative Warehouse
and the organisational sites enact an Update policy, because
information is communicated only in one direction (to the
Palliative Warehouse).

Implementation Details
The current implementation status of the described case study is
as follows. The ubiquitous portals are in place at the
organisational sites. The mediation portals are not yet in place at
the actual organisational sites. However, the joint UVic group
(composed of the Computer Science and the Health Information
Science departments) has set up distributed Web servers that
simulate these organisational sites. The Data Portal (mediation
portal) has been implemented based on IBM Alphaworks XML
Lightweight Extractor (XLE) [10]. XLE can query any ODBC
data sources and emit the result in XML. How XLE works can be
customised by an annotated DTD that defines the mapping

Figure 9 Palliative Care Web

data portal

data portal

Palliative care
Victoria

data portal

Palliative care
Toronto

data portal

data portal

Palliative care
Edmonton Palliative Data

Warehouse
Knowledge

and Data
Mining

PDA Tablet

Data
Transducer
(Renderer)

Data
Connection

(static)

Data Connection
(static)

Data
Connection

(static)

Data
Connection

(static)

Data
Transducer
(Translator)

Data
Connection

Data Transducer
(Renderer)

Data Transducer
(Renderer)

Tablet
Tablet

PDA
PDA

Data
Connection Data

Transducer
(Renderer)

static
dynamic

static

dynamic

static

dynamic

Data Connection (static)

data portal

Data Fusion

Data
Connection

Data
Connection

(static)

between ODBC data and the XML representation. Web access
(via HTTP) is provided using a Tomcat Apache Web server. This
service allows instances of the Data Connection patterns to pull
XML data by using the Simple Object Access Protocol (SOAP).
Data Transducer and Data Fusion patterns are implemented
based on XSLT technology. Finally, we are currently evaluating
MicroStrategy as a browsing and analysis tool for mining the
Palliative Warehouse.

5. RELATED WORK
The idea of component-based software development has become
an important part of modern software engineering methods.
Component-based software systems are assembled from a number
of pre-existing pieces of software called software components
(plus additional custom-made program code). Software
components should be (re)usable in many different application
contexts. Rather than being an independent paradigm in its own
right, the introduction of connection-based programming [8] has
been driven mainly by the introduction of component-based
software engineering. In this paper, we combine ideas of
component-oriented software engineering with our experiences
about the architectural requirements of third generation Web IS,
in order to develop a catalogue of component patterns that
facilitate the construction of such systems.

Our work is related to the notion of architectural styles [7].
Architectural styles do not result in a complete architecture but
can rather be seen as an architectural framework. Architectural
styles are specific views for one subsystem at different level of a
system. In contrast, architectural patterns [2] are problem
oriented. They express and separate the concerns of fundamental
structures in software systems

The Façade pattern defines and provides a unified interface to a
set of interfaces in a subsystem [3]. The presented Data Portal
pattern is an architectural variant of the Façade design pattern.
Data Portals provide unified interfaces to components of the
system. A possible technology-driven instantiation of Data Portal
is the Abstract Database Interface pattern [1]. Abstract Database
Interface makes an application independent from the underlying
database platform.

Buschmann at al. [2] define two architectural patterns that are
related to Data Connection. The first pattern is called Broker and
coordinates communication of decoupled components that interact
by remote services invocations. Second, Pipes and Filters
provides filter components which encapsulate processing steps for
data streams. The pipes pass through the data between adjacent
filters. Further, Gomaa, Menascé and Shin [4] described
component interconnection patterns for synchronous,
asynchronous and brokered communication. A designer of new
distributed application can use their patterns for appropriate
component interaction. In contrast to those communication centric
patterns, Data Connection mediates data and can be compared to
the Mediator pattern [3] at architectural level.

6. CONCLUSIONS AND FUTURE WORK
The World-Wide Web has evolved from predominantly being a
hypertext system to being a global network of dynamically
interacting information services. Architectures of third generation
Web information systems are increasingly complex and integrate

all types of devices, ranging from large server back-ends down to
embedded household appliances and wearable computers. A key
challenge in realising such systems is the management of their
evolution: architectures of modern distributed Web IS are
constantly in flux and organisations have to be able to respond
quickly to changing requirements. We believe that the paradigm
of connection-based programming combined with the idea of
recurring architectural patterns can be used to facilitate
development and evolution of third generation Web IS. The
patterns discussed in this paper can be identified in many modern
Web IS. However, they often interleave and the separation of
concerns is not quite as clear as described in this paper. Making
these patterns explicit helps us to engineer and evolve third
generation Web IS in a more systematic and efficient way.
Preliminary results of our Palliative Care case study indicate the
validity of this assumption. Our current and future work is on a
more thorough evaluation of this thesis and on exploring the
limitations of our pattern catalogue.

7. ACKNOWLEDGEMENTS
This research has been supported in part by the National Science
and Engineering Research Council of Canada (NSERC) and the
Advanced Systems Institute of British Columbia (ASI). We thank
Francis Lau and Craig Kuziemsky from the UVic School of
Health Information Science for many fruitful discussions on the
Palliative Care project.

8. REFERENCES
[1] A. Aarsten, D. Brugali and G. Menga. Patterns for Three-

Tier Client/Server Applications. In Pattern Languages of
Programs (PloP96), Monticello, Illinois, 1996.

[2] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal. Pattern Oriented Software Architecture. John Wiley
& Sons, Inc.1996.

[3] E.Gamma, R. Helm, R. Johnson and J. Vlissides, Design
Pattern: Elements of Reusable Object Oriented Software.
Addison-Wesley, Reading, MA.1995.

[4] H. Gomaa, D. A. Menascé, M. E. Shin. Reusable component
interconnection patterns for distributed software
architectures. In Proceedings of the Symposium on Software
Reusability20, Toronto, Ontario, Canada. ACM Press. May
2001.

[5] C. Kuziemsky 2002 Palliative Care Project Report. Internal
Report - University of Victoria School of Health Information
Science. March 2002

[6] R. Orfali, D. Harkey, J. Edwards. Client/Server Survival
Guide. Third Edition. Wiley. 1999.

[7] M. Shaw and D. Garlan. Software Architecture: Perspectives
on an emerging Discipline. Prentice Hall, 1996.

[8] C. Szyperski. Component Software Beyond Object-Oriented
Programming. Boston, MA, Addison-Wesley and ACM
Press. 1998.

[9] M. Viveros, Pervasive Computing Solutions at IBM TJ
Watson. Blue Space. Keynote at the Annual Conference of
the IBM Center of Advanced Studies (CASCON’01).
Toronto. November 2001.

[10] IBM Alphaworks XML Lightweight Extractor (XLE).
http://www.alphaworks.ibm.com/tech/xle.

