
Roundtrip Engineering with FUJABA1

(Extended Abstract)

Ulrich A. Nickel, Jörg Niere, Jörg P. Wadsack, Albert Zündorf
AG-Softwaretechnik

University of Paderborn, Germany
[duke|nierej|maroc|zuendorf]@uni-paderborn.de

D-33095 Paderborn

1 Introduction
Typically, UML is used in the early software development phases. Use-case diagrams serve for
requirements analysis. During object-oriented analysis and design, the different use-cases are
refined by a number of scenarios using sequence diagrams, collaboration diagrams or activity
diagrams. In more elaborated cases, state-charts may be used to specify exact (object) beha-
viour. In addition to these scenarios one develops class diagrams specifying the static aspects
of the desired application like classes, attributes, associations, and method declarations. State-
of-the-art CASE tools like Rational Rose [4], TogetherJ [5], and Rhapsody [6], provide editors
for various kinds of UML diagrams. However, since most UML behaviour diagrams describe
only scenarios, code generation and round-trip engineering support is restricted to class dia-
grams and (in case of Rhapsody and Rational Rose RT) state-charts. In [1], [7], [8], [9], we pro-
pose to use the other UML behaviour diagrams for the specification of method bodies and for
code generation.
Altogether, our work allows to use UML class and behaviour diagrams as a very high-level vi-
sual programming language called Story-Diagrams. This paper focuses on round-trip enginee-
ring support for this visual programming language by the FUJABA environment. The concepts
for code generation have already been described in [1], [9]. This abstract illustrates the concepts
for recognizing class and behaviour diagrams from Java code.

2 Running Example
Figure 1 shows the structure
of a switch as part of a materi-
al flow system2, which we
specify by employing FUJA-
BA, currently. The switch has
a switch drive, which changes
its direction, some sensors,
which observe the environ-
ment and a LON3-node,
which is connected to a com-
munication network via a bus
interface. This LON-node
runs the actual application software.

3 Reconstruction of class diagrams
According to the generation of Java code out of specifications [1], [9], the reverse step is also
devided into two tasks. First, the static information, namely the class diagrams, will be re-

1.From UML to Java And BackAgain
2.The example stems form our ISILEIT project, funded by the German Research Foundation (DFG).
3.Local Operating Network

Control Node

Communication Bus

Driving Direction

Signal Direction

IU
ST
SD
PO

Identification Unit

Stopper

Switch Drive

Pass Observer

Process-
interface

Application Software
„Switch“

Bus Interface

ID SDST

Shuttle

PS

station

PS

Figure 1 The structure of a switch in the material flow system

constructed and in a second task, the story-diagrams are recognized.
Figure 2 shows a cut-out of the genera-
ted code of classSwitch andShut-
tle1. To reconstruct the class diagram
out of these two Java code fragments,
first, FUJABA uses a parser to construct
a syntax graph for the source code. The
parser is generated with JavaCC [10].
We added a back-end, such that the par-
ser is able to construct a rudimentary
class diagram out of the parsed informa-
tion. Such a rudimentary class diagram
consists of classes with attributes as well
as methods, either access methods for
attributes and associations and usual
methods. Also the inheritance relations
(line 1) are recognized directly in this
first step.
In a second step, the access methods
must be filtered out of the classes and as-
sociations have to be (re)constructed2.
Therefore, FUJABA contains an incre-
mental, generic annotation process.
Each element in the syntax graph is
passed to a set of annotation engines and can be annotated by them. Such an annotation is again
an element in the syntax graph and so, other annotation engines can annotate such annotations
[14]. An example of the annotation structure for the attributeshuttle_Id of classShuttle
is shown in Figure 3.
In the first level the
parsed declarations
(elements of the syn-
tax graph) are anno-
tated3. There are, for
example, the attribu-
te itself, annotated
with a private attri-
bute annotation and
the access methods,
classified in read and write access. The annotation process first uses naming conventions to re-
cognize access methods for attributes. Triggered by appropriate names, it checks the bodies of
candidate methods for read or write usage of the attribute. Identified access methods are marked
by read and write access annotations. Triggered by these annotations, another engine recognizes
that these first-level annotations form anencapsulated attribute. So the engine combines the
first-level annotations to a second-level encapsulated attribute annotation. To provide a quick
access for the connected annotations and diagram elements, the connectors may be tagged with
names e.gattr, read, write. Once the second-level annotation is constructed, and thereby, the

1.Only the necessary parts for the recognition process are shown.
2.Fujaba generates an attribute and appropriate access methods for an association as well as specified attributes.
3.The object structure is more complex, but this simplification sufficies for the understanding of the concepts.

� � � � � � � � � � � 	 	
 � � � � � � � � � � 	 � � � � � � � � � � � � �
� � � � �
� �
 � � � �
! � � � � � � � � " � � � � � �
 � � � � � # � � � � � � � � $ � � � " � � � � � �
 � � � � %
& � � � � � � � � � � � � � � � 	 ' � (� � # � � � � � � � � �
 � � � � � � � � � � � � � � �
) � 	 " * (� � # � � � � � � � � � � � � � � �
+ � � � � � � � � � � � � � � � � (� � # � � � � � � � � �
 � � � � � � � � � � � � � � �
, � � � � � � � � � � � � � � � � � - � � � (� � # � � � � � � � � �
 � � � � � � � � � � � � � � �

� . � � � � � � � � � � 	 � / � " * (� � # � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � # � � - � � � (� � # � � � � � � � � � � � � � � �
� � � � � �
� � � � 0 0 � � � 	 	
 � � � �
� �
� ! � � � � � � � � � � 	 	
 � � � � �
� & � � � �
�) � � � � � � � � � � � 	 � � � � � 1 ' � %
� + � � � � � � � � � � 2 � �
 � � � � � 1 ' � � � � � � � �
� , � � � � � � � � � � � 	 � �
 � � � � � 1 ' � � � � � 	 � � � � � 1 ' � � � � � � �
� . � � � �
� � � � � � � � � �
 � � � � � � � � � � � � � %
� � � � � � � � �
 � � � � 2 � � # � � � � � � � � � � � � � � �
� � � � � � � � � � � � � 	 � � # � � � � � � � � �
 � � � � � � � � � � � � � � � � � � �
� � � � �
� ! � � 0 0 � � � 	 	
 � � � � �

Figure 2 Java code for class Switch and Shuttle

private int shuttle_Id;

public int getShuttle_Id () {
return shuttle_Id; }

public void setShuttle_Id (int shuttle_Id) {
this.shuttle_Id = shuttle_Id; }

write
access

attr

read

write

Figure 3 Annotation structure for encapsulated attributes

private
attribute

encapsulated
attribute

read
access

attribute and the methods have been classified as an encapsulated attribute, the annotation en-
gine marks the methods as hidden and derives the visibility of the attribute from its access me-
thods.
In case of attributes and methods, which serve as access methods for associations, the corres-
ponding annotation structure is more complex, but looks like the above. We assume, that bi-di-
rectional associations are implemented as pairs of forward and backward pointers. Thus, write
access methods encapsulating an association should manipulate both pointers in order to gua-
rantee the consistency of all pointer pairs. This habit serves as an indicator for the detection of
associations and their access methods. Associations are oftenimplemented using generic con-
tainer classes. In order to identify the entry type of such containers, we look for calls to their
add methods and try to identify the type of the inserted elements, statically. We use traditional
compiler techniques to extract these informations, cf. [13].
Figure 4 shows the class diagram after the an-
notation process has been finished. The access
visibility of the attributeshuttle_Id of
classShuttle has been set topublic and the
access methods either of the attribute and of
the associationannounced are hidden as
well as the attributes for the association. The
described annotation process also works for e.g aggregation, composition, and qualified asso-
ciations. Class diagrams can be recognized from Java code if the code is generated from FUJA-
BA itself, or a developer uses the naming conventions and implementation concepts of FUJA-
BA.

4 Reconstruction of Story-Diagrams
FUJABA uses Story-Diagrams for the specification of dynamic aspects. Story-Diagrams are a
combination of UML activity diagrams and UML collaboration diagrams. We have defined
some abbreviations allowing to use collaboration diagrams like graph rewrite rules [3]. Activity
diagrams are used to specify the control flow and each activity can contain either pure Java sour-
ce code as well as a graph rewrite rule. The control flow can be reconstructed directly out of the
syntax graph. Each activity contains exactly one Java statement and branches and loops are dis-
played as transitions with guards.
Like for the recognition of class diagrams such rudimentary activity diagram are annotated in
order to reconstruct the graph rewrite rules (collaboration diagrams). If no graph rewrite rule
can be recognized in the whole or in parts of the activity diagram, it is left untouched. This might
be the case if the method does not contain a rewrite rule or a developer has made changes in the
source code in such a way that the rewrite rule cannot be recognized any more.
Figure 5 shows the
annotation structure
and the annotated
source code for the
first reconstructed
activity. The top-le-
vel annotation is the
graph rewrite rule
annotation, which si-
gnals that all contai-
ning annotations re-
fer to a graph rewrite
rule. Such a graph re-

Figure 4 Class diagram after annotation process

Switch
- welcome (int id)

Shuttle
+ shuttle_Id

announced

n0..1

TrackElement

� & � � � �
�) � 0 0 � � � � � � � � � � �
� + � 	 � � � � � " � 3 � � � $ � � 	 � 2 � � - � � � 4 � 	 � 5 	 � � � � � � 5 � %
� , � 6 � � �
 7 8 � � � 	 � � � � 	 � � � � � " � 3 � � � 9 $ � � � � : : 	 � � � � � " � 3 � � � � � 	 � � � � � � * � � � � � %
� . � � � $ � � � � � � 	 � � � � � " � 3 � � � %
� � �
� � � 0 0 � � � � � � ; � ' � � � � � * � � � � � � � ; � � �
� � � � � ; $ � � 	 � 2 � � (� � ' � � � � � * � � � � � � � � � %
� � 6 � � �
 7 8 � � � 	 � � � � � � ; 9 $ � � � � � %
� ! �
� & � 0 0 � � � � 	 �
 � � � � �
�) � � � � � � � � � � � � � � � � $ � � � � � � � � � � 	 " * (� � < � � � 	 1 � � � � %
� + � � � �

Figure 5 Java code for the first reconstructed activity

bind
object

bind
object

iterate
container

graph re-
write rule

look-up
modifi-
cations

transition

write rule annotation replaces all activities and transitions reffering to that graph rewrite rule in
the activity diagram by one activity containing the corresponding rule. Thus, the reconstructed
Story Diagram is shown, cf. Figure 6.
Using similar concepts, FUJABA is able to
provide support of recognition, creation
and completion of design patterns [2]. The
round-trip engineering also works if a deve-
loper makes manual changes in the source
code as long as she/he uses the naming con-
ventions and implementation concepts of
FUJABA. To provide a more flexible re-
cognition, we investigate the use of generic
fuzzy reasoning nets (GFRN) [11]. We
hope that we will be able to reengineer ’le-
gacy’ Java code then. For example, the
SWING library [12] contains many methods that look like a kind of graph rewrite rule. To deal
with vague situations, GFRN’s provide a percentual uncertainty. In these cases the reengineer
can decide if a part of a source code corresponds to a graph rewrite rule or not.
The recognition of state-charts has not been mentioned here, because it works like the described
process, as well. Since we use state-tables to implement state-charts, it is only necessary to ana-
lyze the setup method of the state-table to recognize the information.
References
[1] T. Fischer, J. Niere, L. Torunski, A. Zündorf.Story Diagrams: A New Graph Grammer Language based on

the Unified Modelling Language and Java, in Proc. of TAGT ’98 (Theory and Application of Graph Trans-
formations), LNCS 1764, pp. 296-309, ISBN 3-540-67203-6, Springer 1999.

[2] E. Gamma, R. Helm, R. Johnson, J. Vlissides.Design Patterns. Addison-Wesley, 1995.

[3] G. Rozenberg (ed).Handbook of Graph Grammars and Computing by Graph Transformation. World Sci-
ence, 1997.

[4] The Rational Rose case tool, Rational, http://www.rational.com

[5] The TogetherJ case tool, Object International, http://www.topethersoft.com/press

[6] Rhapsody case tool, ILogix, http://www.ilogix.com

[7] J.H. Jahnke, A. Zündorf,Specification and Implementation of a Distributed Planning and Information Sys-
tem for Courses based on Story Driven Modelling, in Proc. of 9th International Workshop on Software Spe-
cification and Design, Ise-Shima, Japan, IEEE Computer Society, pp. 77-86, ISBN 0-8186-8439-9, 1998.

[8] U. Nickel, J. Niere, W. Schäfer, A. Zündorf,Combining Statecharts and Collaboration Diagrams for the De-
velopment of Production Control Systems. In Proc. of Object-oriented modelling of embedded real-time sys-
tems (OMER) workshop, Technical Repport 1999-01 University of Armed Force München, May 1999.

[9] H.J. Köhler, U. Nickel, J. Niere, A. Zündorf,Integrating UML Diagrams for Production Control System, to
appear in Proc. of the 22nd Intl. Conf. on Software Engineering, Limerick, Ireland, June 2000.

[10] The SUN Java Compiler Compiler (JavaCC), http://www.suntest.com/JavaCC

[11] J.H. Jahnke, W. Schäfer, A. Zündorf,Generic Fuzzy Reasoning Nets as a basis for Reverse Engineering Re-
lational Database Applications, in Proc. of European Software Engineering Conference (ESEC/FSE), LNCS
1302, Springer, 1997.

[12] The SWING library, Java Foundation Classes,
http://www.sun.com/products/swingdoc-current

[13] A.V. Aho, J.D. Ullmann,Principles of Compiler Design (The Dragon Book), Reading, Addison-Wesley,
1986.

[14] M.T. Harandi, J.Q. Ning,Knowledge-Based Program Analysis, IEEE Software, pp.74- 81, Jan 1990.

Figure 6 Reconstructed welcome Story-Diagramy

idU:IdUnit

this t1:Exit

s:Shuttle
shuttle_Id == id

units

has ["station"]

«create»

isAt

Switch::welcome(intid)

wantsTo

