
Selective Tracing of Java Programs
∗

Lothar Wendehals, Matthias Meyer, Andreas Elsner
Software Engineering Group

Department of Computer Science
University of Paderborn
Warburger Straße 100

33098 Paderborn, Germany
[lowende|mm|trinet]@upb.de

Abstract
Design recovery, which means extracting design documents
from source code, is usually done by static analysis techni-
ques. Analysing behaviour by static analysis is very impreci-
se. We combine static and dynamic analysis to increase the
preciseness of our design recovery process. In this paper we
present an approach to collect data for the dynamic analysis
by recording method calls during a program’s execution. To
reduce the amount of information we monitor only relevant
classes and methods identified by static analysis.

1. Motivation
Today software engineers spend most of their time main-

taining software systems. The documentation of such sy-
stems is often not available or has become obsolete. Before
a system can be changed to meet new requirements it has
to be reverse engineered and its design has to be recovered
which is a time consuming and expensive task.

We developed a tool-supported semiautomatic approach
to design recovery [4] within the Fujaba Tool Suite [6].
The approach facilitates the recognition of patterns such as
design patterns [1] in the source code of a system. It is a
highly scaleable process which can be applied to large real
world applications.

Context
request()

State
handle()

ConcreteStateA
handle()

ConcreteStateB
handle()

state

1

state.handle()

Figure 1: The State design pattern

So far we only perform a static analysis based on source
code that focuses mainly on the structural aspects of a pat-
tern. However, many patterns are structurally very similar
and differ only in their behaviour, e.g. the design patterns
State (cf. Figure 1) and Strategy [8, 1]. Those behavioural
differences can only be recognized during a dynamic analysis
of the system. Therefore, we will combine our static analysis
with a subsequent dynamic analysis [7, 8].

∗This work is part of theFinite project funded by the German
Research Foundation (DFG), project-no. SCHA 745/2-1.

As the basis for dynamic analysis a program trace will be
recorded during the execution of the program to be analysed.
Since the amount of information for a complete program
trace is too high, we record only relevant method traces. The
relevant classes and methods to be monitored are identified
by the static analysis.

In the next section we present an overview of our design
recovery process. The selective tracing of Java programs is
described in Section 3. Related work follows in Section 4. In
Section 5 we report about the performance of our approach.
A short summary of future work follows in Section 6.

2. The Design Recovery Process
Our design recovery process is based on an extended Ab-

stract Syntax Graph (ASG) representation of the source co-
de. The ASG includes method bodies for a rudimentary sta-
tic analysis of behaviour. During design recovery the ASG
will be annotated by nodes which are linked to an arbitrary
number of ASG nodes to mark recognized pattern instances.

A tool-based pattern recovery requires a formal definition
of patterns. Thus, for each pattern to be recognized within
the source code a structural and a behavioural pattern is
given. The process starts with the static analysis using the
structural patterns. During this phase pattern instance can-
didates are recognized. These candidates will be verified by
the subsequent dynamic analysis using the behavioural pat-
terns.

2.1 Static Analysis
The structural patterns are specified as graph grammar

rules with respect to the ASG [4]. Graph grammar rules con-
sist of a left-hand side (LHS) and a right-hand side (RHS).
The LHS describes a sub graph to be found within the host
graph. The RHS describes the modifications of the sub graph
when the rule is applied.

Figure 2 depicts a structural pattern for the State design
pattern. The LHS and RHS of the graph grammar rule are
defined by one graph. The LHS is defined by all black nodes
and edges and describes the sub graph to be found within
the ASG. The RHS consists of the LHS and additional nodes
and edges marked with the stereotype �create�. It describes
how to mark the found sub graph by creating an annotation
node and links to ASG nodes.

The State pattern (cf. Figure 1) enables an object to
change its behaviour at runtime by changing its internal
state [1]. Each state is represented by a separate class which

1

context state

abstractState:Class
boolean abstract = true

«create» «create»

context:Class

request:Method

:ToOneReference

referring referenced
methodsmethods

:OverriddenMethod

overridden

:MethodCall calleecaller abstractHandle:Method
boolean abstract = true

:State

«create»

setState:Methodmethods params

concreteStateA:Class concreteStateB:Class

handleA:Method handleB:Method
methods methods

:OverriddenMethod

overridden

overridesoverrides

Figure 2: Structural pattern for State

encapsulates the state-specific behaviour. The state classes
adhere to a common interface defined by an abstract su-
per class. The object references exactly one state object and
delegates requests to this state object.

This structure is described by the LHS in Figure 2. It
specifies that the ASG must contain a class context:Class
which references an abstract class abstractState:Class. This
is expressed by the oval annotation node of type ToOne-
Reference. Note, that the LHS may also contain annotation
nodes created by the application of other rules. This enables
the composition of structural patterns.

In addition, the class context is required to have a method
setState:Method which has a parameter of type abstract-
State:Class and another method request:Method which calls
(MethodCall 1) an abstract method abstractHandle:Method of
class abstractState:Class. Furthermore, the abstract method
abstractHandle:Method has to be overridden by at least two
concrete methods (handleA:Method and handleB:Method) in
two subclasses of class abstractState:Class, namely concrete-
StateA:Class and concreteStateB:Class.

If the rule can be applied, i.e. the sub graph can be found,
it creates a State annotation node and links it to the con-
text:Class and abstractState:Class classes. The mapping bet-
ween nodes of the LHS and the found sub graph nodes is
stored for dynamic analysis.

The application of the graph grammar rules for the struc-
tural patterns recovers pattern instance candidates. For de-
tails on the rule application see [4].

2.2 Dynamic Analysis
The purpose of the dynamic analysis is to verify the pat-

tern instance candidates recognized by the preceding static
analysis. It has to be checked if the collaboration of the can-
didate’s classes during runtime matches the pattern’s beha-
vioural description.

For the specification of behavioural patterns we use a no-
tation based on UML 2.0 sequence diagrams [8]. As an ex-
ample, Figure 3 shows the behavioural pattern for the State
design pattern. The pattern requires the existence of four
objects, namely client, context, concreteStateA, and concre-
teStateB. The pattern describes two alternative sequences.

1Polymorphism and dynamic method binding prevent a pre-
cise static analysis of method calls.

request()
handleA()

loop (1,n)

setState(concreteStateB)

setState(concreteStateB)

alt

request()
handleB()

loop (1,m)

request()
handleA()

loop (1,m)

setState(concreteStateA)

setState(concreteStateA)

alt

request()
handleB()

loop (1,n)

concreteStateBconcreteStateAcontextclient

alt

sd State

Figure 3: Behavioural pattern for State

In the first sequence the client object calls the method re-
quest on the context object which in turn calls handleA on
object concreteStateA. This interaction fragment must occur
at least once but may occur an arbitrary number of times
which is specified by loop(1,n). Then either the concrete-
StateA or the context itself has to change the state by calling
the setState method with concreteStateB as argument. After
the state change the client has to call request on context at
least once again. This time the behaviour of context must be
handled by the state concreteStateB. This specification con-
forms to the behavioural description of the State pattern
[1]. In principle the second alternative specifies the same be-
haviour as the first one except that the context is in state
concreteStateB first and then changes to concreteStateA.

Note that between the specified method calls an arbitra-
ry number of other methods may be called as long as they
are not already mentioned by the pattern. However, the me-
thod calls specified by the pattern have to occur in exactly
the specified sequence. This conforms to the semantics of
the UML 2.0 consider interaction operator which implicitly
holds for all behavioural patterns. To facilitate a more re-
strictive specification we also support the critical operator
which may be assigned to interaction fragments to prohibit
method calls which are not specified explicitly.

To verify the conformance of a pattern candidate to its
corresponding behavioural pattern we consider method tra-
ces recorded during the execution of the program.

3. Selective Tracing
As mentioned before, recording all method traces during

a program’s execution produces too much information. Fur-
thermore, the monitoring of a complete program extremely
reduces the runtime performance. For most analyses a “sli-
ce” of all method traces is sufficient. In this approach the
static analysis provides a set of pattern instance candida-
tes that has to be further analysed by dynamic analysis. All
other classes of the program can be ignored.

Figure 4 shows an example for a State candidate. It has
been recovered and annotated by the static analysis. For the

2

TCPState
open()

TCPEstablished
open()

TCPListen
open()

state

1

state.open()

State

context state

TCPConnection
changeState(TCPState s)
open()

Figure 4: Example of a State instance

dynamic analysis the method traces for the candidate have
to be recorded. This is done by the JavaTracer. It can be
used as a stand-alone tool or as a plug-in for the Fujaba
Tool Suite.

Input for JavaTracer
The input for the JavaTracer is given as an XML do-
cument. Within this document the candidate’s classes and
some of their methods are listed that have to be monitored
during program execution. The information is retrieved from
the candidate and the structural and behavioural patterns.

The classes to be monitored can be gathered from the be-
havioural pattern in Figure 3. There are three objects within
the sequence diagram on which methods are called, name-
ly context, concreteStateA and concreteStateB. The names of
these three objects refer to the nodes context:Class, concrete-
StateA:Class and concreteStateB:Class within the structural
pattern in Figure 2. During static analysis the nodes from
the structural pattern have been mapped to the nodes of the
candidate in Figure 4. By using this mapping we can extract
the classes from the candidate that have to be monitored,
namely TCPConnection, TCPEstablished and TCPListen.

The methods can be extracted on the same way. In Fi-
gure 3 the four different methods request, setState, handleA
and handleB are called. They refer to request:Method, set-
State:Method, handleA:Method and handleB:Method from the
structural pattern. They have been mapped to the methods
TCPConnection.open(), TCPConnection.changeState(TCPSt-
ate s), TCPEstablished.open() and TCPListen. open().

The JavaTracer can also restrict the recording of me-
thod calls to a given caller. The handleA and handleB me-
thods in Figure 3 are called by the context object. So the
caller for the TCPEstablished.open() and TCPListen.open()
methods is the TCPConnection class. The method setState in
the behavioural pattern is called by three different objects.
So for the method TCPConnection.changeState() the three
caller classes TCPConnection, TCPEstablished and TCPListen
have to be monitored.

Figure 5 shows an excerpt of the input for the Java-
Tracer. The candidate’s classes given in the input will be
monitored using the consider semantics, i.e. only the given
methods will be monitored, method calls of other methods
will be ignored. These classes are listed within the Consider-
Trace section of the input.

The JavaTracer also provides critical monitoring of classes
where all methods of a class are monitored. This facilitates
the checking of critical method call sequences. The classes
are specified within an CriticalTrace section of the input.

<Trace>

...

<ConsiderTrace>

<Class name="TCPConnection">

<Method name="open"/>

<Method name="changeState">

<Parameter type="TCPState"/>

<Caller name="TCPConnection"/>

<Caller name="TCPEstablished"/>

<Caller name="TCPListen"/>

</Method>

</Class>

<Class name="TCPEstablished">

<Method name="open">

<Caller name="TCPConnection"/>

</Method>

</Class>

<Class name="TCPListen">

<Method name="open">

<Caller name="TCPConnection"/>

</Method>

</Class>

</ConsiderTrace>

...

</Trace>

Figure 5: Example of JavaTracer input

Tracing
The JavaTracer acts as a debugger and executes the pro-
gram to be analysed, called the debuggee. It uses the Java
Debugging Interface (JDI) [5] for connecting to the debug-
gee’s virtual machine. For each method given in the input
two breakpoints are set at the beginning and the end of the
method body. The JavaTracer is informed, when a break-
point is reached during program execution.

This approach is not bound to Java even though the Ja-
vaTracer is implemented for Java programs only. Break-
points are a common feature of debuggers for nearly all lan-
guages. So in principle a selective tracer for different langua-
ges can be implemented in the same way.

When the debuggee reaches a breakpoint the JavaTra-
cer will be informed. The JavaTracer halts the debuggee
and asks the debuggee’s virtual machine for additional in-
formation about the method call. This includes information
about the method name, the time stamp for the method
call, the names and unique identifiers of the caller and cal-
lee objects, the identifiers of objects passed as arguments as
well as the current thread. Then the debuggee’s execution
is continued.

The execution of the program is controlled either manual-
ly by the reengineer or by automated tests. The JavaTra-
cer informs the reengineer which classes have been loaded
and which methods have been executed.

Output of JavaTracer
Figure 6 shows an excerpt from the JavaTracer’s output.
The output consists of a list of method entry and exit events
in the order of their occurrence.

The three trace events describe a call of method open on
an object of class TCPConnection. This method calls another
method open on an object of class TCPEstablished. The last

3

<TraceResult>

...

<TraceEvent time="1089792972829">

<Callee id="3">

<Object objectName="TCPConnection"

uniqueID="42" owningThread="main"/>

<Method methodName="open"/>

</Callee>

</TraceEvent>

<TraceEvent time="1089792972830">

<Callee id="15">

<Object objectName="TCPEstablished"

uniqueID="48" owningThread="main"/>

<Method methodName="open"/>

</Callee>

<Caller>

<Object objectName="TCPConnection"

uniqueID="42" owningThread="main"/>

<Method methodName="open"/>

</Caller>

</TraceEvent>

<TraceEvent time="1089792972845">

<MethodExit id="15">

<Method methodName="open"/>

</MethodExit>

</TraceEvent>

...

</TraceResult>

Figure 6: Example of JavaTracer output

method call immediately returns. These three events cover
the first loop within the behavioural pattern of Figure 3.

4. Related Work
The JaVis environment [3] visualizes and debugs concur-

rent Java programs to detect deadlocks. The information
about a running program is collected by tracing, which is
implemented using the JDI [5]. However, this approach uses
another technique of the JDI. The debugger has to provi-
de a filter, which specifies the classes and methods to be
monitored. During the debuggee’s execution all classes and
all methods are monitored. For methods passing the filter
MethodEntry- and MethodExitEvents are sent to the debug-
ger. Since all methods are monitored this technique can slow
down the debuggee up to 10.000 times.

The Omniscient Debugger [2] records method calls and
variable state changes of Java programs. It instruments the
source code on the byte code level, i.e. additional code is
inserted into the original source code of the debuggee. The
code is used to inform the debugger about method calls.
The instrumentation is also done in a non-selective way. The
author reports about 100MB/sec of information produced
during the execution as the main problem of this approach.

5. Performance
Table 1 shows the performance of different executions of

the Fujaba Tool Suite. In the first case the duration of
starting Fujaba was measured2. In the second and the third

2The analysis was done on 1GHz Athlon, 640MB RAM,
Windows 98 2nd edition, JDK 1.4.2

case a project was opened in Fujaba. The first project con-
sists of one class diagram with 12 classes, the second one of
one class diagram with 27 classes and 178 activity diagrams.
Four major classes were monitored.

Action tw/o tbreak tevents

Starting Fujaba 8 sec. 10 sec. 81 sec.
Open Project I 4 sec. 23 sec. 416 sec.
Open Project II 9 sec. 100 sec. 1267 sec.

Table 1: Duration of program tracings

First, the program was executed without any tracing (tw/o).
Then, the program was monitored using the breakpoint ap-
proach (tbreak) and at last by filtering the MethodEntry- and
MethodExitEvents (tevents). The table shows that selective
tracing with breakpoints improves the performance signifi-
cantly compared to the event based approach.

6. Future Work
The behavioural pattern recognition has not been imple-

mented yet, but basically the same techniques as in static
analysis can be used. The behavioural patterns will be trans-
lated into graph grammar rules. The output from the Ja-
vaTracer will be transformed into a method call graph for
each candidate. If the graph grammar rule for the behaviou-
ral pattern can be applied to the call graph, the candidate
can be verified as a correct design pattern instance.

References
[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.

Design Patterns: Elements of Reusable Object Oriented
Software. Addison-Wesley, Reading, MA, 1995.

[2] B. Lewis. Recording events to analyze programs. In
Object-Oriented Technology. ECOOP 2003 Workshop
Reader. Lecture notes on computer science (LNCS
3013), Springer, July 2003.

[3] K. Mehner. JaVis: A UML-Based Visualization and
Debugging Environment for Concurrent Java Programs,
pages 163–175. LNCS 2269. Springer Verlag, May 2001.

[4] J. Niere, W. Schäfer, J. Wadsack, L. Wendehals, and
J. Welsh. Towards pattern-based design recovery. In
Proc. of the 24th International Conference on Software
Engineering (ICSE), Orlando, Florida, USA, pages
338–348. ACM Press, May 2002.

[5] Sun Microsystems. Java Platform Debugger
Architecture (JPDA). Online at
http://java.sun.com/products/jpda/index.jsp.

[6] University of Paderborn, Germany. Fujaba Tool Suite.
Online at http://www.fujaba.de/.

[7] L. Wendehals. Improving design pattern instance
recognition by dynamic analysis. In Proc. of the ICSE
2003 Workshop on Dynamic Analysis (WODA),
Portland, USA, May 2003.

[8] L. Wendehals. Specifying patterns for dynamic pattern
instance recognition with UML 2.0 sequence diagrams.
In Proc. of the 6th Workshop Software Reengineering
(WSR), Bad Honnef, Germany, May 2004. to appear.

4

