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Abstract

Emerging key technologies like the World Wide Web,
object-orientation, and distributed computing enable new
applications, e.g., in the area of electronic commerce,
management information systems, and decision support
systems. Today, many companies face the problem that they
have to reengineer existing database (DB) applications to
take advantage of these technologies. Various computer-
aided reengineering tools have been developed to reduce
the complexity of the reengineering task. However, most of
these approaches presume complete structural and
semantical information about the DB schema and provide
only little support for earlier analysis activities that aim to
obtain this information. Such activities are mainly
performed manually with the aid of very simple, loosely-
coupled tools for textual search or data analysis. The
reengineer has to judge and combine many different
semantic indicators from various sources of information to
recover a complete DB schema. In this paper, we present a
flexible tool that aims to support the reengineer in these
reverse engineering activities. Unlike other tools, our
approach does not force the reengineer to follow a strict
process or to enter only consistent information. On the
contrary, our tool adopts the mental model of its user and
deals with imperfect information (uncertainty and
contradiction) explicitly.

1. Intr oduction

Today's information technology (IT) undergoes dramatic
mass changes [1] due to urgent requirements like the
coming of the next millennium (Year-2000-problem) [2],
the European currency union [3], and emerging
technologies like the World Wide Web. Electronic
Commerce is about to become one of the key business
technologies for the next decade. While new company start-
ups are able to purchase modern database (DB) technology
to develop information systems that meet these new
requirements, longer established enterprises have to deal
with pre-existing DB applications. In many cases, such

legacy DB applications have evolved over several
generations of programmers and lack a sufficient technical
documentation. Still, they maintain a vast amount of
valuable business data and their functionality is often
critical for the mission of the enterprise. Consequently, a
complete replacement of these systems is virtually
impossible or at least implies a significant risk.

In order to solve this problem, during the recent decade
there has been increasing effort to develop methods and
tools toreverse engineer legacy DBs. The general goal of
DB reverse engineering (DBRE) activities is to recover a
conceptual design for an implemented DB schema. Such a
conceptual design provides a high level of abstraction that
is prerequisite to achieve a variety of assessment and
maintenance activities. The DBRE process mainly consists
of two subsequent phases, namelyschema analysis and
conceptualschema translation (cf. Figure1). In the schema
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analysis phase, the reengineer aims to reconstruct a logical
schema that is structurally complete and semantically
enriched [4]. In case of a relational DB the reengineer aims
to identify and classify key and foreign key dependencies,
not-null constraints, optimization structures, and
denormalizations. Typically, some important structural and
semantical information is not represented explicitly in the
schema catalog of many legacy DBs. However, implicit
indicators for such information might be found in different
parts of the legacy application, including its schema catalog,
data, procedural code, and (obsolete) documentation. The
reengineer has to find and combine these indicators to yield
the desired logical schema. For larger systems this is a
complex and laborious task that requires a lot of experience.
Once, the logical schema of a legacy DB has been recovered
it can be translated into a conceptual data model, e.g., an
object-oriented (OO) or extended entity-relationship (EER)
model [5].

Various computer aided reverse engineering (CARE)
tools have been developed in industry and academy to
support the DBRE process, e.g., [6,7,8, 9,10,4,11,12]. Still,
most of these approaches have their primary focus on the
second phase (conceptual schema translation), i.e., they
presume the existence of a complete logical schema. Only a
few tool-based approaches provide (limited) support for the
activity of legacy schema analysis, e.g., [10, 12]. The reason
for this unbalanced situation is that conceptual schema
translation deals with canonical operations that can be
formalized based on the well-explored theories, e.g.,
transformation systems [13, 6, 10, 11]. On the opposite,
legacy schema analysis is a cognitive activity. CARE tools
that are of practical use in this activity have to offer solutions
for two inherent problems, namelyimperfect knowledge and
variety of application contexts.

The first problem addresses the fact that schema analysis
employs various heuristics and vague concepts that deliver
uncertain and partial contradicting analysis results.
Moreover, humans (e.g., reengineers, developers, domain
experts) have uncertain assumptions about the internal
realization of legacy systems. A suitable CARE tool has to
represent, propagate, and indicate such imperfect
knowledge and guide the user to a complete and consistent
result.

The second problem (variety of application contexts)
reflects the fact that legacy DB applications comprise
idiosyncratic coding styles and naming conventions.
Furthermore, they are based on diverse hard- and software
platforms, data models, etc. Lack of customizability has
been recognized as“the single most common limiting factor
in using tools for software analysis and transformation”
[14]. Even though current compiler technology provides
mechanisms to generate parsers for different programming

languages based on abstract specifications, most existing
CARE tools still employ general-purpose programming
languages to implement DBRE heuristics and analysis
processes. As a consequence, these heuristics and processes
can hardly be customized for changing application contexts.

In [15], we have proposed concepts to overcome the two
aforementioned limitations of current DBRE tools: we
introducedGeneric Fuzzy Reasoning Nets (GFRN) as an
abstract formalism to specify and customize DBRE
knowledge and analysis processes. Furthermore, we have
employed possibility theory to develop an inference engine
that executes GFRN specifications and manages imperfect
DBRE knowledge [16]. This paper describes a DBRE tool
(the Varlet Analyst) that implements these concepts and
guides the reengineer in an exploratory and evolutionary
schema analysis process.

The rest of this paper is structured as follows. In
Section2, we describe the customizable, semi-automatic
schema analysis process that is supported by our tool in
more detail. In Section3, we exemplify the customization
and application of our tool with a sample scenario that has
been taken from one of our industrial case studies. Section4
gives some insight in the architecture and internal realization
of the Varlet Analyst. Finally, in Section5 we discuss related
work and give concluding remarks about the experiences
with our approach.

2. Customizable tool support for legacy schema
analysis

Our approach to a customizable, semi-automatic schema
analysis process is presented as a data flow diagram in
Figure2. Activities that belong to thecustomization process
are displayed with a grey background. In this process, the
reengineer investigates the legacy DB in order to determine
the specific application context of the Varlet Analyst. The
result of thisdomain analysis activity is a set of technical
and non-technical characteristics, e.g., properties of the
employed software platform, the size of the legacy system,
and applied coding or naming conventions. Based on these
characteristics the reengineerspecifies or adapts domain-
specific heuristics and analysis operations which will be
applied in the schema analysis process. This knowledge and
process is formally represented by a GFRN specification.

After theVarlet Analyst has been customized with respect
to its current application context it can be employed to
support the reengineer in analyzing the schema of the legacy
DB. This analysis activity is performed in a semi-automatic
process. At first, automatic analysis operations are applied to
different legacy software artifacts including the legacy DB’s
schema catalog, procedural code, and the available data. The
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result of thisinitial automatic analysis is a set of (situation-
specific) facts about the legacy DB (cf. Figure2).
Subsequently, these facts are taken as indicators which are
combined with domain-specific heuristics specified in the
GFRN to infer new situation-specific knowledge about the
legacy DB. This situation-specific knowledge might
comprise definite facts as well as uncertain and inconsistent
hypotheses. Again, some of these hypotheses might be
refutable using automatic analysis operations. We call such
analysis operationsgoal-driven because they are performed
“on-demand” to support or refute intermediate assumptions.
Again, the GFRN specification determines which goal-
driven analysis operations are available and when they are
performed.

The output of this automatic inference step is a logical
schema which might still partially be inconsistent and
incomplete. This schema is presented to the reengineer in a
dialog process that provides interactive query facilities to
indicate the sources of such imperfect knowledge. The
reengineer might discuss controversial information with
application experts (e.g., developers or operators) and do
further manual investigations. As a result of these manual
activities the reengineer will enter additional hypotheses or

definite facts about the legacy DB. Subsequently, the
automatic inference is resumed, i.e., new knowledge is
inferred and (goal-driven) analysis operations might be
performed to validate hypotheses. The described semi-
automatic schema analysis process is iterated until the
information about the logical schema is consistent (and
complete). In the next section, we give an application-
driven illustration of the described process with a reverse
engineering example scenario. Detailed information on the
the theory behind the described GFRN formalism and the
implementation of its inference engine are out of the scope
of this paper and have been published in [15, 16, 18].

3. Tool application scenario

In this section, we use a sample scenario to present a tool
(theVarlet Analyst), that implements the approach described
in the previous section. The sample scenario deals with a
legacy product and document information system (PDIS) of
an international enterprise that produces a great variety of
drugs and other chemical goods. Traditionally, this system
has been used by members of the central hotline at the
company headquarter. Recently, the IT department has
decided to employ Internet-technology to establish a
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distributed Web-basedmarketing information system (MIS)
as an extension of the existing PDIS. The aim of this project
is to reduce costs and increase the availability of current
product data (24 hours a day). In order to develop the data
access layer that implements the integration of the existing
PDIS with the Web-server the legacy DB schema has to be
well understood. Unfortunately, important structural
information like referential integrity constraints and
alternative key dependencies are not specified explicitly in
the physical schema of PDIS. Furthermore, the schema is
hardly documented and the responsible developers have left
the company. Thus, PDIS has to beanalyzed to obtain a
structurally and semantically complete logical schema that
is a prerequisite for the desired integration. In the next two
sections, we exemplify thecustomization (Section3.1) and
application (Section3.2) of the Varlet Analyst to this
schema analysis problem, i.e., the detection and
classification of foreign and alternative keys in PDIS.

3.1 Customizing theVarlet Analyst

In [15], we introducedGeneric Fuzzy Reasoning Nets
(GFRN) as an abstract, graphical language to specify
heuristics and analysis processes for DBRE tools. The
semantics of GFRN specifications is defined in the

framework of possibilistic logic and fuzzy set theory [17].
We refer to [18] for their formal definition. The
customization mechanisms of theVarlet Analystare based
on the GFRN approach. For this purpose, our tool provides
a dedicated user interface called theCustomization Front-
End (cf. Figure3). This user interface facilitates
specification and adaption of DBRE heuristics in form of a
graphical network of predicates (represented as ovals) and
implications (represented as boxes). Predicates and
implications are connected by arcs which are labelled by
variable names. An arc with a black arrow head represents a
logical negation. Each implication has a header with a
unique implication identifier (i1-i8 in Figure3) and two
numbers between 0 and 100 which are separated by a slash.
The first number is calledconfidenceand specifies a measure
for the certainty that the corresponding implication is true.
The second number is calledthreshold and determines the
minimal amount of certainty that is required for the facts in
the premise of an implication. In addition, an implication
might contain a set ofconstraints over the variables of its in-
and outgoing arcs.

Let us start to illustrate these concepts with implicationi2
in Figure3. This implication represents an example for a
heuristic to detect key constraints by a simple naming

Figure 3. The Varlet Analyst, Customization Fr ont-End
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convention. It specifies the expectation of the reengineer that
in the context of PDIS column names which are similar to
their table names with the suffix “id” are credible indicators
for key candidates. An example for such a situation is
columnusrid in tableUSER in Figure4.

Indeed, this example also shows that heuristics which
employ naming conventions rather deal with vague than
with crisp concepts, because the name of our sample column
is not exactly equal to the name of the table with suffix “id”.
In the GFRN approach this knowledge is represented by
vague predicates, i.e., predicates that can be fulfilled
partially. Figure5 shows that string similarity measures like
the Levenshteindistance [19] can be used to define the
degrees of fulfillment for predicateColNameIsTab-
Name&ID. Figure5 also explains the effect of the threshold:
all indicators with a lower degree of fulfillment than 20 are
not considered within implicationi2.

If a column fulfills predicateColNameIsTabName&ID to
a degree higher than the threshold of implicationi2, it is
bound to variablea in the premise ofi2. In this case, the
constraint “k=set(a)” restricts variablek in the conclusion of
i2 to be a set with just one element, namely the value of
variablea. This conversion is necessary, because, in general,
key constraints are defined oversets of columns.

Obviously, an automatic analysis operation can be used to
compute the degrees of fulfillment of predicateColName-

IsTabName&ID for all columns of a legacy DB schema. In
the GFRN language such automatic analysis operations can
be assigned to predicates. Depending on the point of time
when these operations shall be performed, the
corresponding predicates are classified as eitherdata-driven
or goal-driven. Operations assigned to data-driven
predicates are performed at thebeginning of the inference
process to deliver initial information about a legacy DB,
whereas operations assigned to goal-driven predicates are
executedduring the analysis process to support or refute
intermediate hypotheses. In Figure3, data-driven predicates
are represented as ovals with a solid, grey border (e.g.,
ColNameIsTabName&ID), while goal-driven predicates
have a dashed, grey border. All remaining predicates (e.g.,
key) are calleddependent (black border).

A goal-driven predicate (validKey) is used in the premise
of implication i6, which specifies the definite knowledge
that a hypothetical key constraint has to be refuted if it is not
valid in the available data of the legacy DB. This means that
if the data contains at least two identical entries for this
hypothetical key, then this hypotheses has to be refuted. This
is modelled by the confidence of 100 for implicationi6 and
the black arrow heads (which represents negation).On the
other hand, implicationi5 specifies that if a hypothetical key
constraint is fulfilled for a large amount of data, this fact
supports the hypothesis. In this case, we cannot proof (with
a confidence of 100) the key because a new entry could lead
to refutation.Figure6 shows a simplified implementation
for the goal-driven analysis operationvalidKey in pseudo
code.

The input of the algorithm consists of the hypothetical
key in form of k key columnsx1,..,xk of a tableT with
columns x1,..,xk,..xn. The output of the algorithm is an
integer value between 0 and 100 that depends on the total
number of entries|T| in tableT if the key constraint holds
(cf. Figure7). However, if a counter-example can be found
then the algorithm returns -100.

In practice, analysis operations are implemented inJava.
The Varlet Analyst facilitates this task by performing
consistency checks and generating code frames from
corresponding predicates in the GFRN which have been

create table USER(
usrid CHAR(10),
addr CHAR(40),
sname CHAR(18),
dpt CHAR(18),
telo CHAR(18),
telp CHAR(18),
name CHAR(50))

Figure  4. Excerpt of PDIS sc hema catalog
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algorithm validKey(T[x1,..,xk]): integer

If empty( “select * from T t1 where
exists (select * from T t2 where

t1.x1=t2.x1 and ... and t1.xk=t2.xk and
not( t1.xk+1=t2.xk+1 and ... and t1.xn=t2.xn))”)

then |T|=“select count(*) from T” /* number of entries in T */
return 200/π*atan(|T|/100)

else return -100

Figure  6. Goal-driven anal ysis operation validKey
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classified as data- or goal-driven (cf. the text windows in
Figure3). Furthermore, the tool provides a library of
procedures which are frequently used in analysis operations.

Another valuable source of information about a legacy
DB schema is the corresponding procedural code. In [20],
Andersson proposes to search the code for stereotypical
code patterns that serve as semantic indicators for schema
dependencies. The GFRN in Figure3 includes two
implications (i1 and i7) that deal with such code patterns.
Implication i1 in Figure3 represents a heuristic with a
confidence that highly depends on the context of a specific
DBRE project. It specifies that an occurrence of a so-called
select-distinct code pattern is an indicator against a key
constraint. The left-hand side of Figure8 shows an instance
of such a pattern. This query selects entries in tableUSER
according to their values in columnssname anddpt. The
purpose of the SQL keyworddistinct is to remove duplicate
tuples in the result set of the query, but such duplicate tuples
can only occur if columnssname anddpt do not represent a
key of tableUSER. Still, by investigating some code samples
during the domain analysis, the reengineer notices that the
developers of PDIS frequently (mis)used the distinct
keyword in their queries even if it is not needed.
Consequently, the reengineer assigns a low confidence toi1.

Implication i7 specifies the heuristic that a join between
two tables might indicate aninclusion dependency (IND)
[5]. The left-hand side of Figure8 shows an instance for a
join between tablesPRODGRP andUSER. In the GFRN (cf.
Figure3), a join is represented as a set of pairs of

corresponding columns in the two participating tables, e.g.,
{(PRODUCT.pg, PRODREF.pg); (PRODUCT.cg, PRODREF.cg);
(PRODUCT.no, PRODREF.prod)}. The two constraints in
implication i7 at-a-time restrict the first and the second
elements of all such pairs that might constitute an IND to
belong to the same table. At this,pi1 andpi2 represent the
relational projection operation [5] on the first and the second
element of each pair in variable i, e.g., pi1({...}) =
(PRODUCT.pg, PRODUCT.cg, PRODUCT.no). The
boolean functionsameTable evaluates to true if and only if
its arguments belong to the same table. TheVarlet Analyst
provides the reengineer with a list of predefined boolean and
relational functions that can be used to formulate constraints
for implications (cf. boxFunctionList in Figure3). In
analogy to the integration of new analysis operations, this
list can easily be extended by generatingJava code frames
for additional functions and using the provided libraries to
implement their bodies.

In analogy to implicationi6, implication i4 specifies the
definite knowledge that an hypothetical IND has to be valid
in the available data. Implicationsi8 andi3 serve to classify
INDs: i3 represents the heuristic that an IND that iskey-
based and inversely key-based indicates an inheritance
relationship (cf. [4]) , whilei8 specifies that the existence of
an IND that iskey-based indicates a foreign-key. Finally, the
shadow behind the box that represents implicationi8
represents a definite implication in the opposite direction.
This is shown in Figure9 by implicationi9. A key-based
IND is a necessary condition for a given foreign key, in other
words the existence of a foreignKey implies the existence of
a key and a (key-based) IND.

3.2 Applying the Varlet Analyst to exploratory
schema analysis

In the previous section, we exemplified the activity of
customizing theVarlet Analyst for detecting and classifying
key and foreign key dependencies in the schema of PDIS. In
this section, we demonstrate the application of theVarlet
Analyst in the actual schema analysis process. The first
analysis step consists of an automatic extraction of the
physical schema catalog from the used DB management
system (DBMS). This reveals the structure of the
participating tables including their column names and types
and their primary keys or indexes (if they are specified
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explicitly). If the employed DBMS is modern enough to
monitor referential integrity constraints between tables (and
this functionality was used by the developer of the legacy
DB application) this catalog extraction mightalso reveal
further structural information about foreign keys.
Unfortunately, like in our sample scenario, these constraints
are not represented explicitly in older systems. Likewise,
alternative keys are rarely specified in the schema catalog.

Therefore, the next step in the analysis process is to
invoke the data-driven analysis operations that have been
specified in the GFRN during the customization process in
order to detect indicators for such constraints. This step is
performed automatically after extracting the schema
catalog. The GFRN in Figure 3 contains three data-driven
analysis operations (namelyColNameIsTabName&ID, join,
selDist), which, applied to PDIS, deliver a set of indicators.
The inference engine of theVarlet Analyst combines these
indicators with the GFRN in Figure 3 to derive new
hypotheses (e.g.key or IND) and execute goal-driven
analysis operations (validKey, validIND) accordingly (cf.
Figure 2). (We refer to [15] for details about its internal
realization.) Subsequently, the result of this automatic
analysis step is presented to the reengineer who might add

situation-specific knowledge in terms of facts or hypotheses
with an associated confidence value. For our application
scenario, let us assume that the reengineer enters two
hypotheses:

 • From a conversation with a hotline operator the reengineer
learns that PDIS users have a unique short name.
Consequently, the reengineer adds the hypotheses that
sname is an alternative key of table USER (with an
assigned confidence of 70).

 • Furthermore, (s)he enters his/her subjective assumption
that columnpg represents a key of tablePRODGRP(with
a confidence of 50).

Again, the inference engine executes specified goal-
driven analysis operations to falsify or support these new
hypotheses and the results are propagated to the current
representation of the logical schema. Figure 10 shows a
screenshot of the so-calledAnalysis Front-End which is used
as the dialog component in the described semi-automatic
schema analysis process. The logical schema is represented
graphically in this dialog, where each box represents a table
and INDs are visualized by lines. In order to cope with large
schemas, the reengineer can choose from various levels of

Figure 10. The Varlet Analyst, Anal ysis Fr ont-End
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abstraction and create separate views on the same logical
data structure. For example, in Figure 10, most INDs are
represented as single lines between tables, but the reengineer
selected a detailed representation of the IND between tables
PRODUCT and PRODREF. In this representation,
correspondences between pairs of participating columns are
marked by numbers.

A central issue that has to be tackled in a tool that exploits
imperfect knowledge in DBRE is to find an adequate way to
communicate such imperfect information to the reengineer
and guide him/her to a consistent analysis result,
incrementally. For this purpose, we have developed a
dedicated dialog called theAnalyst’s Agenda which is
shown in the bottom-right corner of Figure 10. TheAnalyst’s
Agenda presents a list of uncertain or contradicting
constraints about the current view of the logical schema. For
each constraint a positive and a negative confidence is
displayed. TheAnalyst’s Agenda provides the functionality
to sort the list items according to various criterions in
ascending or descending order, e.g., positive confidence,
negative confidence, degree of contradiction (absolute
difference of both confidences). Figure 10 shows that in our
sample scenario theAnalyst’s Agenda starts with two
uncertain key constraints. The first key (usrid) has been
inferred according to the heuristic specified in the GFRN
implication i2 (cf. Figure 3), which expresses string
similarity betweenusrid andUSER(ID) (cf. Figure 5). The
second key (sname) is listed due to the information added by
the user. Both key hypotheses could not be falsified by
executing the automatic goal-driven operationvalidKey (cf.
Figure 6). On the contrary, the hypothesis thatsname is a key
could even be supported by the automatic data analysis. This
is because tableUSER has more than 200 entries which
according to the definition of operationvalidKey results in a
positive confidence of 70 (cf. Figure 7). On the other hand,
the analysis operation assigned to the data-driven predicate
selDist has detected an instance of aselect-distinct pattern
that contradicts to this key assumption (cf. Figure 8). This
results in a negative confidence value of 30 because in our
sample GFRN the confidence of implicationi1 is limited to
this value.

In addition, theAnalyst’s Agenda shows an IND from
tablePRODGRP.manager to tableUSER.sname which has
been inferred due to a detected instance of ajoin pattern (cf.
Figure 8) by implicationi7. Together with the (hypothetical)
key constraint for columnsname this IND is classified as a
foreign key (by implication i8). Note, that the subjective
assumption of the reengineer (the third key constraint
PRODGRP.pg listed in the agenda) has been falsified by the
automatic data analysis operationvalidKey. This explains
the negative confidence value of 100, the positive confidence
value of 50 is reengineer assumption.

Now, it is up to the reengineer to investigate the
intermediate results displayed by the agenda in order to
confirm or refute them. If (s)he selects one of the entries
listed, the corresponding schema elements are highlighted in
the graphical representation. In Figure 10, the reengineer has
selected the foreign key from PRODGRP to USER. After
investigating the form-based user interface of PDIS (s)he
confirms that the inferred foreign key in fact represents a
reference between product groups and product managers
(stored in tableUSER). In accordance to the GFRN, the
inference engine propagates this confirmation automatically
to the necessary preconditions, namely the key constraint
over sname and the IND fromPRODGRP to USER. Hence,
this single confirmation causes three entries (key
USER.sname, ind and foreignkey from PRODGRP.manager
to USER.sname) to disappear from the next update of the
Analyst’s Agenda.

The entire schema analysis process consists of several
iterations of such intertwined automatic and manual analysis
activities until a consistent result is obtained. The inference
engine that is parameterized by a GFRN mainly serves three
purposes: (1) it infers new hypotheses, (2) it checks the
consistency of user added hypotheses with the existing
knowledge about the legacy DB, and (3) it executes
automatic analysis operations to validate user input.

We would like to emphasize that the displayed positive
and negative confidence values donot have the semantics of
probabilities, but they representrelative measures for the
compatibility or incompatibility of propositions with
predicates [17]. Their sole purpose is to focus the
reengineer’s attention, but it is not necessary for the
reengineer to understand the theory behind their inference.
This theory is described in [15] and [16].

4. Architecture and implementation

The architecture of theVarlet Analyst is outlined in
Figure11. The entire tool comprises approximately 30
thousand lines of code. The part that deals with the internal
GFRN representation and inference is written inJava. The
implementation of the inference engine is based on the
Fuzzy Petri Net (FPN) model which is described in detail in
[15]. All boolean and relational functions that can be used in
constraints of GFRN implications are implemented in
moduleConstraint Functions. This module can be extended
during the tool customization process if additional functions
are needed (cf. Section3.1). A predefinedJava class
Relation which basically implements an extended version of
the relational algebra facilitates such extensions. Likewise,
new analysis operations can be added to modulesData-
Driven Operations and Goal-Driven Operations.
Modifications to other modules are not required when new
analysis operations or constraint functions are added,
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because we have implemented a generic method invocation
mechanism that is based on theJavareflection API [21]. The
Varlet Analyst uses this API to check all available operations
and functions at run-time and reports to the user in case of
inconsistencies with the specified GFRN (cf. the consistency
report in Figure 3).

Analysis operations use basic functionality provided by
modulesCode Pattern Extraction, Extension Extraction, and
Schema Extraction. Module Code Pattern Extraction
implements customizable detection mechanism for
stereotypical code patterns. Code patterns are specified on a
high level of abstraction usinglayered graph grammars
(LGG) [22]. They are stored in a pattern library that can
easily be extended. The actual pattern recognition algorithm
is implemented in the graphical programming language
Progres [23]. Module Schema Extraction provides
functionality to extract information about the meta data of
the legacy DB, while moduleExtension Extraction allows to
access the available legacy data. We use an abstract interface
to facilitate the adaption of theVarlet Analyst to different DB
platforms.

The two user-interface components of theVarlet Analyst,

the Customization Front-End and theAnalysis Front-End
have been developed iniTcl/Tk [24]. Internally, the logical
schema is represented by an abstract syntax graph that is
initially constructed by an SQL parser implemented with
lex&yacc [25].

5. Conclusions and related work

In [26], Premerlani and Blaha emphasize that a flexible,
interactive approach to DBRE is more likely to succeed than
batch-oriented compilers. As a consequence, they propose a
set of simple, loosely coupled tools for textual search and
data analysis, e.g.,grep, awk-scripts [25], and predefined
DB queries. We agree that DBRE is a human-intensive and
exploratory activity. However, loosely coupled tools lack the
ability to control, propagate, and indicating inconsistencies.
Our approach overcomes this limitation and allows to
integrate such tools in terms of data-driven and goal-driven
analysis operations. Still, theVarlet Analyst does not cut the
reengineer’s freedom to make manual investigations or use
non-integrated tools, but it provides a basis to combine the
results of such investigations.

In [12], Signore et. al. present an approach that uses
Prolog rules to infer schema constraints from detected
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semantic indicators. However, they do not consider the
problem of imperfect knowledge and present inference
results without any information about their confidence.
Analysis operations which deliver the indicators are not
explicitly considered in this approach. Furthermore, textual
rules provide a much lower level of abstraction and are
harder to maintain.

This paper presents a first approach to consider the mental
model of the reengineer during legacy DB analysis in a
DBRE tool. By tolerating and exploiting such imperfect
knowledge theVarlet Analyst fills an important gap between
the rather informal (and exploratory) activity of legacy
schema analysis and the well-supported activity of schema
translation, visualization, and redesign. We have applied the
Varlet Analyst in a project with one of our industrial partners
which is very similar to the case study described in this
paper. The tool is well accepted because it does not impose
a specific predefined sequence of analysis steps but supports
the reengineer in an evolutionary process. It helps to focus
the reengineer’s attention on the most controversial parts of
the legacy DB. In comparison with current approaches our
tool plays a more active role in the analysis process. The
concept of goal-driven analysis operations unburdens the
reengineer from invoking such standard operations
explicitly. On the contrary, the reengineer just enters his/her
assumptions about the schema and theVarlet Analyst tries to
validate them. The GFRN approach facilitates the
customization of our tool with respect to changing
application contexts. In particular, the concept ofthresholds
in GFRN implications provides the flexibility to adjust the
Varlet Analyst to analyze legacy DBs of any scale: for large-
scale applications, the reengineer can start the analysis with
higher threshold values to reduce the set of hypotheses to the
most credible ones.

Due to our experience, an understanding of the GFRN
formalism or the inference algorithm is not necessary to
apply theVarlet Analyst in the actual analysis process. Still,
in some situations an explanation dialog for inferred
hypotheses would be desirable. Besides the development of
such a dialog, our future research activities will focus on
generalizing the GFRN approach for other reengineering
contexts, e.g., to recover architectural patterns [27].
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