
Visual Integration of UML 2.0 and Block Diagrams
for Flexible Reconfiguration in M ECHATRONIC UML ∗

Sven Burmester† and Holger Giese
Software Engineering Group, University of Paderborn

Warburger Str. 100, D-33098 Paderborn, Germany
{burmi|hg}@uni-paderborn.de

Abstract

Today, complex, networked, self-adaptive mechatronic sys-
tems which integrate advanced control engineering and
software engineering concepts within a single software sys-
tem are envisioned. These systems adapt their structures
at runtime to react to detected environmental changes, to
change their system goals, or to react to a change of the
system structure. To enable the development of such sys-
tems, an integration of object-oriented modeling techniques
such as UML and control theory approaches such as func-
tional block modeling is required. Thereby, the successful
visual modeling concepts of control engineering should be
preserved, as otherwise wide acceptance in industry, which
is mainly dominated by control engineers, is very unlikely.
In this paper, we present such a visual integration for UML
2.0 components, Statecharts, and block diagrams devel-
oped within theMECHATRONIC UML approach. It per-
mits to graphically model reconfiguration between several
pre-defined configurations with statecharts and instance di-
agrams as well as to specify the flexible assembly of control
configuration if needed by means of visual reconfiguration
rules.

1. Introduction

Today, mechatronic products have to integrate advanced
control engineering and software engineering concepts
within a single software system to enable that its elements
operate flexible and self-adaptive within a complex net-
worked environment. Such an integration has to enable
the elements to react to detected environmental changes, to

∗This work was developed in the course of the Special Research Ini-
tiative 614 - Self-optimizing Concepts and Structures in Mechanical En-
gineering - University of Paderborn, and was published on its behalf and
funded by the Deutsche Forschungsgemeinschaft.

†Supported by the International Graduate School of Dynamic Intelli-
gent Systems. University of Paderborn

change their system goals, or to react to a change of the
system structure by adapting their structure at runtime.

An integration between object-oriented modeling tech-
niques such as UML and control theory approaches such as
functional block modeling is required to enable the devel-
opment of such systems (cf. the OMG effort for the inte-
gration of the software engineering domain with the control
engineering domain [20]). Visual modeling concepts which
preserve where possible the successful control engineering
and software engineering concepts and integrate them in an
intuitive graphical manner are required as otherwise wide
acceptance in industry is very hard to achieve.

In this paper, we present our visual integration of the
control engineering and software engineering worlds. UML
2.0 components and Statecharts as software engineering ar-
tifacts are integrated with block diagrams the classical con-
trol engineering notation within the model-driven MECHA-
TRONIC UML development approach [6, 9, 8].

A first proposed integration suggests to model simple re-
configuration steps which allow to switch between several
pre-defined configurations by extending UML components
and Statecharts. A modular description with an intuitive vi-
sual appearance enables an easily comprehensible specifi-
cation style for run-time reconfiguration. If a more flexible
assembly of the control structure is required, we suggest to
use visual reconfiguration rules to describe required recon-
figuration steps which modify the current control configu-
ration accordingly.

The paper outline is as follows: We first introduce a case
study in Section 2 and afterwards, we review the current
state of the art and identify several severe limitations when
it comes to self-adaptive behavior and complex real-time
coordination in Section 3. Then, we outline and discuss
our proposal for the modular visual description of complex
reconfiguration behavior using the case study in Section 4.
The handling of flexible reconfiguration behavior to react to
changes of the system structure follows in Section 5 before
we close that paper by presenting our final conclusion and
an outlook on planned future work.



2. Example

Our application example is taken from the RailCab project.1

In this project, a modular rail system is developed consisting
of autonomous shuttles which apply the linear drive tech-
nology used in the Transrapid,2 but use existing rail tracks.

A B C

prop.- valves

A / D

controller

D / A

sensors

hydr. pump

coach body

hydr. actuators

air springs

to the
actuators

z

y

a

Figure 1. Suspension/tilt module

The shuttle’s active suspension system and its optimiza-
tion is one example for a complex mechatronic system we
employ in the following. The suspension/tilt module, de-
picted in Figure 1, is based on air springs which are damped
actively by a displacement of their bases and three vertical
hydraulic cylinders which move the bases of the air springs
via an intermediate frame – the suspension frame. The vi-
tal task of the system is to provide the passengers a high
comfort and to guarantee safety and stability when control-
ling the shuttle’s coach body. In order to achieve this goal,
multiple feedback controllers are applicable with different
capabilities in matters of safety and comfort.

In our controlling component, we apply the three feed-
back controllersreference, absolute, androbust, providing
different levels of comfort and requiring different inputs.
The most sophisticated controllerreference uses a given tra-
jectoryzref = f(x) that describes the ideal motion of the
coach body and the absolute accelerationz̈abs of the coach
body. Thezref trajectory is given for each single track sec-
tion and is communicated by a track section’s registry to the
shuttle. In case the reference trajectory is not available, the
less comfortable controllerabsolute which requires only the
z̈abs signal has to be used. In case the sensor that provides
the z̈abs signal fails, therobust controller which provides
the fewest comfort, but guarantees stability even when only
standard inputs are available, has to be applied.

Another considered example is the control of shuttle con-
voys. Whenever suitable, the shuttles reduce the air resis-
tance and thus reduce their energy consumption by building
convoys as depicted in Figure 2. Such convoys are built on-

1http://www-nbp.upb.de/en
2http://www.transrapid.de/en

Figure 2. Shuttles building convoys

demand and require a small distance between the different
shuttles such that a high reduction of energy consumption
is achieved. Coordination between speed control units of
the shuttles becomes a safety-critical aspect and results in
a number of hard real-time constraints, which have to be
addressed when building the control software of the shut-
tles. As shuttles may show rather different characteristics
due to their intent (shuttles for goods or people) or fabrica-
tion company, setting up the control structure for the convoy
coordination requires to flexibly add shuttle specific control
elements which might be provided at runtime (cf. composi-
tional adaptation [17]).

The challenges of modern mechatronic systems can be
exemplified by referring to the introduced case study: (1) At
first, sophisticated control algorithms have to be modeled
to describe the high comfort control of the suspension/tilt
module and thus support of CAE tools and their standard
block diagram notations and libraries is required. (2) Sec-
ondly, the hard real-time coordination between the shuttles
and the track section’s registry best modeled with a suit-
able UML variant which supports real-time systems such as
MECHATRONIC UML is a major concern and requires ap-
propriate CASE tool support. (3) The required integration
must further support to model the runtime reconfiguration
of the controllers such that reconfiguration steps may ei-
ther be initiated due to local events or due to changes of
the current state of the hard real-time coordination with the
external world, e.g. when the required reference trajectory
has been received. (4) Furthermore, some reconfiguration
steps can be realized asatomic switching, while sometimes
a technique calledoutput fadinghas to be employed. This
technique fades the output of one controller out, while the
output of another one is faded in to avoid discrete jumps
which can lead to instabilities when switching between dif-
ferent feedback-controllers. (5) Finally, besides the pre-
planned reconfiguration, which switches between different
control algorithms, also more flexible reconfiguration steps
have to be supported to handle compositional adaptation as
required, for example, in the case of the shuttle convoys.



3. State of the Art

To discuss the current state of the art and the limitations
of current approaches, we first discuss block diagrams and
hybrid automata before turning our attention to concepts
which support a decomposition of the models such as hi-
erarchical blocks or components.
Block diagrams [22] are the state of the art approach to
specify feedback-controllers which is employed in all CAE
tools such as Matlab/Simulink.3 Discrete elements can be
used in the block diagram to model reconfiguration of the
feedback-controller structure (often using a Statechart like
notation such as Stateflow in Matlab/Simulink). A first ap-
proach is to embed the discrete control elements into block
diagrams in such a manner, that the discrete block, de-
scribed by a statechart like notation, determines which one
of a set of alternative controller outputs is let through. Thus,
atomic switching between the output signals of different
controllers can be directly modeled. To address output fad-
ing, an additional generator for the fading functiong and a
weighted output fading elementy = g(t)u1 + (1− g(t))u2

has to be controlled by the statechart. Another option to
model reconfiguration are conditionally blocks which are
only evaluated if explicitly triggered. Thus, a statechart can
be used to only trigger the required elements of the currently
active configuration instead of blinding out the results of the
not required ones. The more formal hybrid bond graphs ap-
proach [18, 19] permits to blind out single components by
so called controlled junctions, similar to discrete blocks in
block diagrams.

From a visual language perspective, both approaches
to describe reconfiguration become problematic if all five
identified challenges have to be addressed. All configura-
tions of required block diagrams have to be specified within
a single complex diagram. Therefore, identification and
comprehension of the different configurations becomes very
difficult. The problems become even worse when it comes
to the discrete control elements which describe the switch-
ing between the different configurations. Either they are
rather unsystematically distributed in the block diagram as
in the case of hybrid bond graphs or we end up with very
complex statecharts describing the reconfiguration for the
whole block diagram. The crucial problem here is that a
consistent design of the different block diagram configura-
tions and the statechart requires that the designer is able to
identify the relation between control states of the statechart
and block diagram configurations. However, the provided
notations do not support such an understanding on the vi-
sual level.
The discussion of block diagrams and hybrid bond graphs
showed that there is a strong relation between the system’s
current global discrete state and the current configuration.

3http://www.mathworks.com

In the mentioned approaches, there is no direct support for
a mapping which assigns to each discrete state a related con-
figuration.

Hybrid automata [11, 1] overcome this drawback by sim-
ply assigning a specific continuous controller to each dis-
crete state, so that each possible configuration is easily de-
rived from the model without complex analysis. Extensions
such as Hybrid I/O automata [16] further support commu-
nicating hybrid automata. Support for concepts such as hi-
erarchic and orthogonal discrete states as known for stat-
echarts have been introduced for Hybrid statecharts as de-
fined in [12].

Although these approaches separate the possible config-
urations and thus overcome one of the drawbacks of block
diagrams, the current proposals restrict the possible config-
urations assigned to a state to read the same inputs and pro-
duce the same outputs. Therefore, the interface –especially
the information which input signals are required for a safe
application of the controlller– is not present in these models.
Another limitation, these approaches [11, 1, 16, 12] have in
common is that they are restricted to the specification of be-
havior while an integration with an architectural description
(similar to UML component diagrams or UML classes dia-
grams) is not provided. Therefore, these models can only be
used for the specification of single components (in terms of
UML), but a distributed system or a system with a modular,
hierarchic architecture cannot be described.
If so calledhierarchic blocksare employed in block dia-
grams to decompose the model, the visual complexity and
problems to identify and comprehend the different configu-
rations as well as their relation to discrete control states are
less critical. However, this is only true when the interface
of each hierarchic block is static and thus reconfiguration
is restricted to happen only locally within the blocks. If
this is not the case (not all inputs of a block are always re-
quired and not all output signals are always produced), the
situation becomes even harder as the hierarchic blocks ef-
fectively hide their details and thus a designer cannot keep
track of the configuration effects which can cross the block
interfaces. It is to be noted that in order to address challenge
(3), we thus either end up in the outlined dilemma that in-
formation which is required to comprehend the effects of
reconfiguration are hidden or all effects of reconfiguration
due to local as well as external effects has to be modeled
without a hierarchical decomposition. While in the former
case the decomposition becomes a hindrance for compre-
hension, in the latter case the complexity of the flat model
would render any attempt to develop a thorough understand-
ing of the reconfiguration.

Other approaches combining components and hybrid au-
tomata concepts such as CHARON [2], HyROOM [25, 3],
HyChart [10, 24], HybridUML [4], and Ptomely II [15] pro-
vide hierarchical automata models for the specification of



behavior and hierarchical architectural models. In UMLh

[7], the architecture is specified by extended UML classes
diagrams that distinguish between discrete, continuous, and
hybrid classes. Also the OMG effort to integrate models
from the software engineering domain with models from
the control engineering domain [20] falls into this category.
The Systems Modeling Language (SysML) [21] is a first
proposal to standardize system engineering, which could be
integrated with a possible UML 2.0 successor (cf. [13]).

Like the hybrid automata and statecharts, all class- or
component-based approaches also assume static interfaces.
The main improvement in modeling is the introduction of a
hierarchical architectural model. The behavior of the com-
ponents of the architectural models can then be specified
by the (hierarchical) behavioral models. Hybrid behavior
is specified by adding continuous components in form of a
MATLAB model, a differential equation, or a similar tex-
tual description to each discrete state of the component.
Thus, the same limitations which have been identified for
hierarchic blocks with static interfaces also apply here.

The preceding discussion highlights that current ap-
proaches are not sufficient to address the identified five chal-
lenges from Section 3: HyROOM and Ptomely II are the
only approaches following challenge (1) and allowing the
engineers to specify the continuous behavior with the well-
known block diagrams. None of the discussed approaches
allows an appropriate specification of real-time behavior
(conf. challenge (2)) as their semantics –if defined– assume
to detect triggered transitions and to fire them without con-
suming time which is unrealistic and not realizable. Fur-
ther, they lack of reconfiguration based on local and exter-
nal events (challenge (3)), as such a reconfiguration usually
leads to a change of the interfaces and requires reconfigura-
tion via multiple hierarchical levels, because the feedback-
controller components are usually located on the lowest hi-
erarchical level while the real-time coordination with the
external world is usually at the higher ones. Current ap-
proaches allow just reconfiguration via one hierarchic level
without changing the interface. Support for advanced visual
constructs for a simple and intuitive specification of atomic
transitions and fading transitions (challenge (4)) is not ad-
dressed at all. In addition, none of the approaches permits
to handle flexible reconfiguration including compositional
adaptation (challenge (5)). Instead, the anticipated recon-
figuration steps have to be explicitly modeled right like the
reconfiguration between two control algorithms.

4. Structural Reconfiguration

In this section, we present our approach to specify the con-
trol software for the suspension/tilt module which over-
comes the drawbacks of the approaches w.r.t. challenges (1)
to (4), discussed in the last section. We restrict our attention

here to the visual language aspect. The underlying seman-
tical integration with block diagrams has been discussed in
[5] and the modular verification of the model consistency
has been presented in [8] in detail.

When modeling the software to control the suspen-
sion/tilt module, we typically begin with a description of
the system’s structure, as depicted in the refined UML com-
ponent diagram from Figure 3. The shuttle’sMonitor com-
ponent communicates with theRegistry component of the
upcoming track section to obtain the trajectory. The com-
munication protocol is specified by theMonitor-Registration
pattern, as described in [8]. IfMonitor obtains the trajec-
tory, it stores it in thestorage component. The sensor is
designed redundant: Three instances of theSensor compo-
nents provide thëzabs signal. TheCrossChecker judges all
signals and determines if a sensor failed. The triangles in
Figure 3 designate so calledcontinuous ports. White ports
are not always present – their existence is dependent on the
components’ discrete state. Note that the connections of the
two black ports ofBC are omitted in the example. Their
connections do not change due to reconfiguration.

:Monitor

:Registry

Monitor Registry
Role Role

:Sensor

:Storage

:Sensor

:Sensor
:BC

:CrossChecker Monitor−
Registration

Figure 3. System structure

One task of theMonitor component is to coordinate its
subordinated (embedded)Body Control (BC) component
which contains the different feedback-controllers, control-
ling the suspension/tilt module. The behavior ofBody Con-
trol is specified by our so calledhybrid reconfiguration chart
[8, 5] (see Figure 4). This hybrid reconfiguration chart con-
sists of the three discrete locationsRobust, Absolute, and
Reference, each associated with one feedback-controller.
Transitions that are visualized as thick arrows are associ-
ated with a deadline intervaldi, specifying a minimal and
a maximal duration of the transitions, and thefading func-
tion ffadei describing how to fade. Such a fading transition
is a visual construct to reduce complexity by omitting an
intermediate location associated with a configuration that
performs the fading. The other transitions fireatomic.

This example shows that theBody Control component
has a dynamic interface, which depends on the current dis-
crete state. Therefore, we provide a visual description of
this dynamic interface in form of our so calledinterface
state chart(see Figure 5) [8, 5]. This interface state chart



zAbsFailure

zAbsOK

Robust

Reference

Absolute

zRefOK

zAbsFailure

zAbsOK

zRefFailure

Abs

Rob

Ref

d4

d2

ffade2

ffade1

z̈abs

z̈abs

zref
d1

d3

ffade3

ffade4

Figure 4. Behavior of the BC component

abstracts from the internal details of the behavior and de-
picts just the possible interfaces and the real-time restric-
tions (i.e. the deadline intervals) which describe how to
switch between the interfaces. Especially, when the ac-
cording hybrid reconfiguration chart contains multiple dis-
crete states with different controllers, which have partly the
same interface, the interface state chart provides an abstrac-
tion omitting much of the complexity of the reconfiguration
chart. This abstract view ofBody Control is used for the
coordination withMonitor (see below).

zRefOK

zAbsFailure

zAbsOK

zRefFailure

zAbsOK

[Robust]

[Absolute]

zAbsFailure

[Reference]

d2

d3

d1

d4

z̈abs

zref

z̈abs

Figure 5. Dynamic Interface of the Body Con-
trol (BC) component

TheBody Control component has to be coordinated by its
superordinatedMonitor component, dependent on the avail-
able input signals (zref and z̈abs). Therefore, the descrip-
tion of the behavior ofMonitor includes visually the subor-
dinated components (see Figure 6).

The upper orthogonal state of the hybrid reconfiguration
chart from Figure 6 contains four discrete states, represent-
ing that both, none, or exactly one of the input signals are
available. The component instance diagrams, associated
with each discrete state, specify the structure of the embed-
ded components: For example, whenMonitor is in stateAbs-
Available, representing that just thëzabs signal is available,

it is specified that theBody Control component is in state
Absolute and its input is fed by theCrossChecker compo-
nent. A state change ofMonitor to AllAvailable implies (i)
a state change ofBody Control to stateReference and (ii)
a change of the structure ofMonitor’s embedded compo-
nents, as indicated by the component instance diagram of
the target state. It is to be noted that this relation can also
be employed to check consistent reconfiguration at the in-
terface level as outlined in [8] such that theBody Control’s
interface changes have to respect its interface state chart.
One of the significant properties of this approach is that
control engineersand software engineers can continue us-
ing their well-known description languages and tools: The
control engineer uses block diagrams to specify feedback-
controllers and the software engineer uses UML component
diagrams and statecharts to specify the discrete coordina-
tion. In hybrid reconfiguration charts, both models are in-
tegrated to fulfill challenge (1). Challenges (2) and (4) are
met by specifying deadlines for the transitions [6] and by
the distinction between atomic and fading transitions.

Further, this approach enables advanced modeling of
reconfiguration via multiple layers, as a change in the
top-level component (Monitor) leads to an exchange of
feedback-controllers which are multiple layers below the
top-level component in the architectural view. The model
and its visualization contain the separated configurations
and a description when and how to switch between them.
By the additional support of dynamic interfaces, our ap-
proach enables reconfiguration, based on local and external
events (challenge (3)).

The visual integration of behavior and structure leads to
models with reduced visual complexity: It simplifies analy-
ses, as the reachable state space and the reachable configu-
rations are visualized in the model: In the example, it is ob-
vious that only the state combinations (states of Monitor×
states of Body Control) (AllAvailable, Reference), (AbsAvail-
able, Absolute), (RefAvailable, Robust), and(NoneAvailable,
Robust) are reachable. Others, e.g.(AllAvailable, Absolute),
(AbsAvailable, Reference), cannot be reached. Inconsistent
configurations, i.e. configurations that do not feed all re-
quired inputs, are detected without complex analyses. Fur-
thermore, errors can be pinpointed to a single transition. As
described in [8] in detail, a combination of transitions in dif-
ferent components guarantees consistent reconfiguration if
the deadlines are not in conflict. For the intervals from our
example, the consistency ruled3 ⊆ db must hold.

If we had used standard approaches, like the ones dis-
cussed in Section 3, we had to model the coordination be-
tweenMonitor andBody Control by additional asynchronous
communication, i.e. modeling the implied state changes by
sending discrete signals. This would result in the same
reachable state space, but it could not be derived intuitively
and its determination would require additional effort.



:BC[Robust] :BC[Robust]

:BC[Absolute]

:Sensor[On]

:Sensor[On]

:Sensor[On]

:Sensor[On]

:Sensor[On]

:Sensor[On]

:BC[Reference]

storage:Storage

:CrossChecker :CrossChecker

when(nextSegment)
data(Vector zRef)?

noData? /

when(next
Segment)

RefAvailable NoneAvailable
data(Vector zRef)?

noData?

registry.experience

TrajectoryNot
Available

noData! /

registry.requestInfo

registry.sendInfo(zRef) / storage.add(zRef)

when(storage.isEmpty())

Trajectory
Available

/ registry.experience

when(
!storage.isEmpty())
data(Vector zRef)!

AllAvailable AbsAvailable

when(nextSegment)
data(Vector zRef)? /

when(nextSegment)
data(Vector zRef)? /

crossChecker.failure /

crossChecker.ok /
crossChecker.ok /

crossChecker.failure /

dd da

dc

{t0}
[20 ≤ t0]

{t0}

db

Figure 6. Behavior of the Monitor component

5. Flexible Structural Adaptation

The approach presented in the last section can effectively
be applied when the required reconfiguration is local. Then
usually all possible configurations are well-known at the de-
sign time and their number is small. However, specifying
more flexible reconfiguration which results from the need
to coordinate ad hoc groups cannot be addressed.

When, for example, shuttles build a convoy and a leader
shuttle determines the reference positions for all the follow-
ing shuttles, the control of these reference positions depends
on the length of the convoy and on the participating shuttle
types and characteristics. For example, a heavy load shut-
tle has to hold a larger distance within the convoy. The
leader shuttle of a convoy can respect such individual prop-
erties or requirements only when individual components or
feedback-controllers are applied to determine the reference
positions. Using our approach, discussed in the last section,
would thus be impractical as a large number of possible con-
figurations (in principle even infinite many ones) have to be
explicitly specified.

In the given example, the different shuttle types are not
known a priori at design time (recall how many different
types of automobiles exist). Thus, each shuttle sends the

component, which the leader shuttle has to apply, to the
leader shuttle when it joins the convoy at runtime. We there-
fore suggest to specify the required flexible structural recon-
figuration by means ofreconfiguration ruleswhere control
elements can be determined by parameters which are based
on graph transformation systems (cf. [14]). Graph trans-
formations are usually applied for model transformations
(e.g. [23]). We will exemplify that they are even an ap-
propriate visual, model-based description technique for the
specification of reconfiguration at runtime and that the same
advantages apply as for model transformations.

A cut-out of the behavior of the shuttles forcoordinating
convoys is depicted in Figure 7. Note that in [9] is described
how to ensure a safebuilding of convoys. The hybrid re-
configuration chart consists of three states:ConvoyLeader
represents that the shuttle is the leader shuttle,ConvoyFol-
lower represents that the shuttle is part of a convoy but not
the leader shuttle, andNoConvoy represents that the shuttle
is not in a convoy at all.

Residing in stateConvoyFollower, the shuttle applies a
position controller that delivers the current accelerationa
dependent on its reference positionsref and its current posi-
tion scurrent. It periodically receives the eventreceiveRef-
Pos with parameterpos[] and stores the new reference po-



ConvoyFollower

:PosCtrl

enterConvoy(int id,
Component C, int pre, int suc)

:C

id == suc

o2:C

:C

enterConvoy(int id,
Component C, int pre, int suc)

NoConvoy

:VelCtrl

pos[id] ConvoyLeader

/ newShuttle(id, C, pre, suc)

id == prev

o1:C

this.id = id

c[prev] c[id]

pos[suc]

pos[prev] pos[id]

id == prev

o1:C

id == suc

o2:C

pos[prev]

c[prev]

pos[suc]

this.id = id

pos[id]

:Char c[pre]

WCET = wcet

receiveRefPos(double[] pos)

c[suc]

c[id]

c[suc]
∫

d1

scurrent

sref

a

d1 ffade2

∫

avcurrent

vref

do: sendRefPos(pos[]); p ∈ [plow; pup]

ffade1

∫

/ sref = pos[id]

Figure 7. Shuttle behavior to control convoys

sition pos[id] as side-effect insref . In stateNoConvoy, the
shuttle applies a velocity controller, requiring a reference
and the current velocity as input. The latter one is used to
determine the current positionpos[id]. When a new shuttle
joins the convoy, it sends an evententerConvoy with the fol-
lowing parameters: its identifierid, the componentC to be
used to determine the shuttle’s reference position, and the
IDs pre andsuc of the shuttles which let the new shuttle in.

The reconfiguration rule of the transition (visualized
with a dashed border) adds the componentC to the shut-
tle’s control structure: An instance of a componentChar is
created that provides the characteristics of the leader shut-
tle such as length, maximal brake acceleration etc. These
characteristics and the current position of the leader shut-
tle are fed intoC which determines the reference position
pos[id] as output. A simple implementation of component
C would just add the length of the preceding shuttle and an
individual safety margin to the current position of the pre-
ceding shuttle. Portc[id] provides the characteristics of the
new shuttle.

Residing in stateConvoyLeader, the shuttle sends peri-
odically with a periodp ∈ [plow; pup] the reference po-
sitionspos[] to the according shuttles. If a further shuttle
joins the convoy, its component is inserted in the structure
between the components ofprev and suc. Reconfigura-
tion rules for the special cases when a shuttle joins at the
end or at the beginning of the convoy are omitted in Fig-
ure 7. Due to lack of space, we omitted also transitions
which model that shuttles leave the convoy. If we speci-
fied a transition, leading fromConvoyLeader to NoConvoy,
the current configuration –eventually consisting of multiple
components– would be discarded and the configuration of
NoConvoy would be applied.

Especially rules which just create new components en-
large the execution time. In order to ensure predictability
for the duration of the execution time which is indispens-

able for real-time systems, we define a worst case execu-
tion timewcet. The reconfiguration is just applicable when
the execution time of the resulting structure is less or equal
wcet. Only if the model is designed for simulation purposes,
this can be neglected as the simulation times can be adjusted
appropriately.

The example points out that modeling flexible reconfig-
uration with reconfiguration rules leads to an enormous re-
duction of the visual complexity, as not every possible con-
figuration has to be specified explicitly.

6. Conclusion and Future Work

We presented the visual integration of object-oriented mod-
eling techniques in form of the UML and control theory
approaches in form of block diagrams within the MECHA-
TRONIC UML approach. MECHATRONIC UML preserves
where possible both the successful control engineering and
software engineering concepts for modeling and addition-
ally integrates them in an intuitive graphical manner. This
integration enables us to describe mechatronic units which
operate flexible and self-adaptive within a complex net-
worked environment by adapting their structure at runtime
to react to detected environmental changes, to change their
system goals, or to react to a change of the system structure.
In addition, a visual interface in form of the interface state
charts permits the cooperation of experts from the differ-
ent domains while they use the notations common in their
domain.

The reconfiguration outlined in Section 4 has been pro-
totypically realized in form of an integration of the open
source CASE tool Fujaba4 and the CAE tool CAMeL5.
Planned future work includes to also realize the concepts

4http://www.fujaba.de
5http://www.ixtronics.de



for the flexible reconfiguration in Fujaba on top of existing
work for graph transformation systems (cf. [14]). Special
emphasis has to be put here on appropriately implement-
ing the real-time processing such that the approach is also
applicable for hard real-time systems and on the verifica-
tion of the reconfiguration rule based behavior. Currently,
we evaluate the visual languages by realizing the presented
examples in cooperation with control engineers.

References

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P.-H.
Ho, X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The
algorithmic analysis of hybrid systems.Theoretical Com-
puter Science, 138(3-34), 1995.

[2] R. Alur, T. Dang, J. Esposito, R. Fierro, Y. Hur, F. Ivancic,
V. Kumar, I. Lee, P. Mishra, G. Pappas, and O. Sokolsky.
Hierarchical Hybrid Modeling of Embedded Systems. In
First Workshop on Embedded Software, 2001.

[3] K. Bender, M. Broy, I. Peter, A. Pretschner, and T. Stauner.
Model based development of hybrid systems. InModelling,
Analysis, and Design of Hybrid Systems, volume 279 ofLec-
ture Notes on Control and Information Sciences, pages 37–
52. Springer Verlag, July 2002.

[4] K. Berkenk̈otter, S. Bisanz, U. Hannemann, and J. Peleska.
Executable HybridUML and its Application to Train Control
Systems. In H. Ehrig, W. Damm, J. Desel, M. Große-Rhode,
W. Reif, E. Schnieder, and E. Westkämper, editors,Integra-
tion of Software Specification Techniques for Applications
in Engineering, volume 3147 ofLecture Notes in Computer
Science, pages 145–173. Springer Verlag, 2004.

[5] S. Burmester, H. Giese, and O. Oberschelp. Hybrid UML
Components for the Design of Complex Self-optimizing
Mechatronic Systems. InInformatics in Control, Automa-
tion and Robotics. Kluwer Academic Publishers, 2005. to
appear.

[6] S. Burmester, H. Giese, and M. Tichy. Model-Driven De-
velopment of Reconfigurable Mechatronic Systems with
Mechatronic UML. InModel Driven Architecture: Foun-
dations and Applications, volume 3599 ofLecture Notes in
Computer Science, pages 47–61. Springer Verlag, 2005.

[7] V. Friesen, A. Nordwig, and M. Weber. Object-Oriented
Specification of Hybrid Systems Using UMLh and ZimOO.
In Proceedings of the 11th International Conference of Z
Users on The Z Formal Specification Notation, Berlin, Ger-
many, volume 1493 ofLecture Notes in Computer Science
(LNCS), pages 328–346. Springer Verlag, 1998.

[8] H. Giese, S. Burmester, W. Schäfer, and O. Oberschelp.
Modular Design and Verification of Component-Based
Mechatronic Systems with Online-Reconfiguration. InProc.
of 12th ACM SIGSOFT Foundations of Software Engineer-
ing 2004 (FSE 2004), Newport Beach, USA, pages 179–188.
ACM Press, November 2004.

[9] H. Giese, M. Tichy, S. Burmester, W. Schäfer, and S. Flake.
Towards the Compositional Verification of Real-Time UML
Designs. InProc. of the European Software Engineering
Conference (ESEC), Helsinki, Finland, pages 38–47. ACM
Press, September 2003.

[10] R. Grosu, T. Stauner, and M. Broy. A Modular Visual Model
for Hybrid Systems. InFormal Techniques in Real Time
and Fault Tolerant Systems (FTRTFT’98). Springer Verlag,
1998.

[11] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: The
Next Generation. InProc. of the 16th IEEE Real-Time Sym-
posium. IEEE Computer Press, December 1995.

[12] Y. Kesten and A. Pnueli. Timed and Hybrid Statecharts and
their Textual Representation. In J. Vytopil, editor,Formal
Techniques in Real-Time and Fault-Tolerant Systems, vol-
ume 571 of LNCS, Springer Verlag, 1992.

[13] C. Kobryn. Expertr’s voice: UML 3.0 and the future of mod-
eling. Software and Systems Modeling, 3(1):4 – 8, March
2004.

[14] H. J. Köhler, U. A. Nickel, J. Niere, and A. Z̈undorf. Inte-
grating UML Diagrams for Production Control Systems. In
Proc. of the22nd International Conference on Software En-
gineering (ICSE), Limerick, Ireland, pages 241–251. ACM
Press, 2000.

[15] X. Liu, Y. Xiong, and E. A. Lee. The Ptolemy II Framework
for Visual Languages. InProceedings of the IEEE 2001
Symposia on Human Centric Computing Languages and En-
vironments (HCC’01), Stresa, Italy, pages 50–51, Septem-
ber 2001.

[16] N. Lynch, R. Segala, and F. Vaandrager. Hybrid I/O Au-
tomata Revisited. InProceedings of the 4th International
Workshop on Hybrid Systems: Computation and Control
(HSCC 2001), Rome, Italy, March 28-30, 2001, volume
2034 ofLecture Notes in Computer Science, pages 403–417.
Springer Verlag, 2001.

[17] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H.
Cheng. Composing Adaptive Software.IEEE Computer,
37(7), July 2004.

[18] P. J. Mosterman and G. Biswas. Modeling Discontinu-
ous Behavior with Hybrid Bond Graphs. InProc. of the
Intl. Conference on Qualitative Reasoning, Amsterdam, the
Netherlands, pages 139–147, May 1995.

[19] P. J. Mosterman and G. Biswas. A Theory of Discontinu-
ities in Physical System Models.Journal of the Franklin
Institute, 334B(6):401–439, January 1998.

[20] Object Management Group.UML for System Engineering
Request for Proposal, ad/03-03-41, March 2003.

[21] Object Management Group.Systems Modeling Language
(SysML) Specification, January 2005. Document ad/05-01-
03.

[22] K. Ogata. Modern Control Engineering. Prentice Hall,
2002.

[23] G. Song, K. Zhang, and J. Kong. Model Management
Through Graph Transformation. InProceedings of the
2004 IEEE Symposium on Visual Languages - Human Cen-
tric Computing (VLHCC’04), Rome, Italy, pages 75–82,
September 2004.

[24] T. Stauner.Systematic Development of Hybrid Systems. PhD
thesis, Technische Universität München, 2001.

[25] T. Stauner, A. Pretschner, and I. Péter. Approaching a
Discrete-Continuous UML: Tool Support and Formaliza-
tion. In Proc. UML’2001 workshop on Practical UML-
Based Rigorous Development Methods – Countering or In-
tegrating the eXtremists, pages 242–257, Toronto, Canada,
October 2001.


