
������� ���
	��
� ������������� �������

������� �

Thomas Klein, Ulrich Nickel, Jörg Niere, Albert Zündorf

AG-Softwaretechnik
University of Paderborn, Germany

[buko|duke|nierej|zuendorf]@uni-paderborn.de
D-33095 Paderborn

!#"#$&%('*),+-%/.
FUJABA is a public domain research prototype CASE tool that

aims to support round-trip engineering for UML class diagrams as well as for
UML behaviour diagrams. Like other CASE tools, Fujaba generates Java
class definitions from UML class diagrams. In addition, we combine the
UML state-chart, activity diagram, and collaboration diagram notations to a
powerfull visual programming language. This enables the generation of me-
thod bodies from their visual specification. To be of general use, Fujaba pro-
vides round-trip engineering support. This means, the user is allowed to mo-
dify the generated code manually and Fujaba is able to load modified code
and to (re)establish the corresponding (modified) UML diagrams. This co-
vers class diagrams and (to some extend) behaviour diagrams. In contrast to
most existing CASE tools, Fujaba does not use structured comments to sepe-
rate generated code and manual modifications but Fujaba relies on common
naming conventions and some programming styles. Thus, Fujaba is able to
recognize all code that sticks to these programming styles.

2.

0 132547698;:=<?> 47@A8B2

Normally UML is used in the early software development phases. Use-case diagrams
serve for requirements analysis. During object-oriented analysis and design, the
different use-cases are refined by a number of scenarios using sequence diagrams,
collaboration diagrams or activity diagrams. In more elaborated cases, state-charts may
be used to specify exact (object) behaviour. Together with these scenarios one
developes class diagrams specifying the static aspects of the desired application like
classes, attributes, associations, and method declarations.

State-of-the-art CASE tools like Rational Rose [5], TogetherJ [6], and Rhapsody [7],
provide editors for various kinds of UML diagrams. However, since most UML
behaviour diagrams describe only scenarios, code generation and round-trip
engineering support is restricted to class diagrams and (in case of Rhapsody) state-
charts. In [2], [8], [9], [10], we proposed to use UML behaviour diagrams for the
specification of method bodies and for code generation. In this work, we use state-charts
and activity diagrams for the specification of higher-level control flow of classes and
methods, respectively.

Normally, the basic actions of state-charts and activity diagrams are described by
pseudo code, only. In our work, we employ collaboration diagrams to specify complex
object structure look-ups and modifications. Complex computations and access to
system calls may be programmed in standard Java code. Thereby, we provide a precise,
formal, operational semantics for collaboration with state-charts and activity diagrams.
Note, we use UML behaviour diagrams for the specification of class reaction on sent
signals and for the specification of method bodies. This is quite different from scenario
description and requires a different interpretation and usage of the diagrams and
elements.

Altogether, our work allows to use UML class and behaviour diagrams as a very high-
level visual programming language called story-diagrams. This paper focuses on round-
trip engineering support for this visual programming language by the FUJABA
environment. The concepts for code generation have already been described in [2], [10].
This paper adds the concepts for recognizing classand behaviour diagrams from Java
code.

Chapter 2 introduces the language, story-diagrams, on hand of a running example.
Chapter 3 outlines our code generation concepts as far as necessary for the
understanding of our reverse engineering approach. This reverse engineering approach
is discussed in chapter 4. Chapter 5 summarizes our work and outlines some future
work.

C D=4 8E6GF5H/IJ@AKEL;69KEMONQPB47R?SUTVKB25LW<XKEL�S

In this chapter, we introduce the story-diagram language on hand of a running example,
which deals with the application domain of production control systems. Nowadays, the
market demands a very flexible production process. To meet these changes, production
control systems become more and more decentralized. Moreover, frequent changes of
the production process result in permanent adaptions of the control software. To

3.

perform these adaptions more rapidly, one aspires to specify the control software on a
high abstraction level and to generate the appropriate code. In turn, the existing code
has to be reengineered to modify the specification according to the new production
requirements.The building blocks of such a production control system are different,
selfacting and computer controlled resources like e.g. switches, shuttles, machines or
robots. The picture on the frontpage shows such a production control system used by
our mechanical engineer faculty. Shuttles move on rails and transport goods between
various production places. Each production place can be reached using switches in the
rail-way system. Such switches route shuttles to certain production places or to pass it,
if nothing has to be done with the good at the production place.

Figure 1 shows the structure of a switch as part of a material flow system, which we
specify by employing FUJABA, currently. The switch has a switch drive, which
changes its direction, some sensors, which observe the environment and a LON1-node,
which is connected to a communication network via a bus interface, where the
application software is nested. In our example, the identification unit detects an arriving
shuttle and reports the shuttle’s id to the control node. Now, the control software
decides in which direction the shuttle should be send. If the switch has to change its
direction, it activates the stopper in order to let shuttles wait. One has to asure, that no
shuttle is in the switching area, when the switch drive is activated, because otherwise
the switch drive could be damaged. For that reason, the switch has a pass observer at
each exit, which reports every shuttle leaving the area. Note, that we have a determined
driving direction, so that we have one entry and two exits (which means that its a
’branching switch’).

1. Local Operating Network

Control Node

Communication Bus

Driving Direction

Signal Direction

IU
ST
SD
PO

Identification Unit

Stopper

Switch Drive

Pass Observer Process-
interface

Application Software
„Switch“

Bus Interface

ID SDST

Shuttle

PS

station

PS

Figure 1 The structure of a switch in the material flow system

4.

In the first step, we identify and model the static parts of the switch control software.
FUJABA provides an editor for UML class diagrams. Figure 2 shows a screen shot of
the FUJABA environment with a UML class diagramm in the main part of the window,
corresponding to Figure 1. Note, that the communication between the nodes on the one
hand, and the node and its peripheral equipment on the other hand is signal driven.
Thus, we plan to add an optional „signal-compartment“ to the classes of the diagram,
which means, that we have asynchronous communication, here. The implementation is
scheduled for summer.

To specify the dynamic aspects of the switch, we employ so-called story-diagrams.
Figure 3 shows the specification of the methodSwitch::welcome1. The control
flow of the method is modeled by using an UML activity diagram. To specify the
manipulation of the object structure, we enriched the activity diagram by two graph
rewriting rules.

Basically, a graph grammar rule allows the specification of changes to complex-object-
structures by a pair of before and after snapshots. The before snapshot specifies which
part of the object-structure should be changed and the after snapshot specifies how it
should look like afterwards, without caring how this changes are achieved.

In order to facilitate the use of graph rewriting rules for object-oriented designers and
programmers, we adopt UML collaboration diagrams as a notation for object-structure

1. The welcome item in the navigation tree on the left hand side is highlighted.

Figure 2 FUJABA class diagram of a switch

5.

rewriting rules. In UML, collaboration diagrams do not have a precise execution seman-
tics, but model only possible scenarios. Using graph grammar theory we are able to
define an execution semantics for collaboration diagrams, easily, thus enabling their
translation to an object-oriented programming language.

Originally, collaboration diagrams are intended to model scenarios of complex message
flows between a group of collaborating objects.1 In addition, collaboration diagrams
allow to depict the effects of operations in terms of changed attribute values and created
and destroyed objects and links. Thus, the intial situation modeled by a collaboration
diagram corresponds to the left-hand side of a graph grammar rule. Accordingly, the
situation resulting from the execution of the collaboration diagram corresponds to the
right-hand side of that graph grammar rule. This view allows the execution and transla-
tion of collaboration diagrams using techniques known from the graph grammar field,
cf. [2],[4], [15].

In our example, the first activity is specified via an object-structure rewriting rule that
shows four objects:this, idU, t1, and s. The this object is attached to the
IdentificationUnit objectidU and theExit objectt1 via anidentification link and ahas
link. Note, that the classExit is is a subclass ofTrack, which in turn has a qualified
association to theswitch class (cf. Figure 2). We interpretethis, idU, t1, and s as
variables and the shown links as logical constraints on the allowed values of these
variables. Based on this interpretation, such a diagram is executed by binding the
specified variables to concrete object instances such that all specified constraints are
fulfilled.

1. This use of collaboration diagrams is equivalent to UML sequence diagrams, cf. [14].

Figure 3 Story-diagram of the method Switch::welcome

6.

In our example the variableidU is bound to the identification unit which is linked to the
current switch object (bound to the variable this). The same holds for the variable t1
which is bound the the (qualified)Exit object which is linked to the switch object via
the "station-link". If the identified shuttle formerly was announced to the switch, the
switch routes the shuttle to thestation exit. In that case, an instance of the identified
shuttle already exists and is linked to the station’s exit by awants_to link. Now, we just
have to model, that the current position of the shuttle is at the identification unit. This
is specified by creating ais_at link between the shuttle and the identification unit of the
switch. If the identified shuttle wasn’t announced before, there is no corresponding
instance and the variables cannot be bound. The graph rewriting rule fails. In that case,
the control flow follows the failure transition. The second graph rewriting rule is
interpreted in the same manner. It models the creation of a new shuttle object, which is
linked to the identification unit and thestraightOn exit of the switch, which means that
it is not routed to the station. In the next chapter it is described how code can be
generated for class-, and stroy-diagrams.

Y DZ8E<569>
S�[�8W:ZS]\�S^2XSQ6_KE47@38E2a`b8B6]D=4 8B6GF�H/IJ@3KELW6_KEMaN

The code generation is devided into two steps. In the first step Java code for class
diagrams will be generated. The method bodies, specified with story-diagrams, are
generated in a second generation step.

For each class in the diagram, a corresponding Java class is generated including the
inheritance specified in the diagram. The class’ attributs are mapped to Java attributes.
According to software development standards, we use private Java attributes accessible
via appropriate public get- and set-methods. In addition, these access methods ease
adaptability and side effect handling e.g. change notifications. The class’ method
declarations are mapped directly into Java code.

The last and complex part of the code generation out of class diagrams is the mapping
of associations. Generally there are different ways how to implement associations in
Java. Fujaba provides private attributes and access methods for an association in the
attached classes. The benefit of these standarized methods is that the write access
methods ensure that there are no dangling references and that the links in the object
structure are consistent. At this, consistent means that a link in the object structure is
bidirectional and so the attributes in the corresponding objects have to refer the other
object. To differ between associations, Fujaba discriminates between two kinds of
associations or better cardinalities of the corresponding roles. For to-one associations a
single valued attribute of the partner class’ type and the appropriate get and set methods
are generated. For to-many associations, a container attribute and further access
methods are generated. These access methods provide the read and write access of the
container as well as the possibility of iterating through the container, checking the
containment of an object, getting the number of contained objects, and so on. The
methods for adding objects to and removing objects from the container asure the
consistency of the object structure as well as the corresponding methods for to-one
associations. For further details see [2], [10].

7.

The Java code generation for
story-diagrams is divided
into two tasks. First, the
control flow is mapped to
imperativ control structures
like if, and while statements.
To enable this translation,
story-diagrams are restricted
to so-called well-formed
transition structures that
correspond directly to nested
branches and loops. Figure 4
shows the Java
implementation of the
welcome method of class
switch. The UML method
declaration is placed as
comment above the Java
method declaration (line 1 to
3). The success/failure
decision after the first graph
rewriting rule corresponds to
the if-then/else construct
(line 7 to 12).

In a second task, the code for
activities is generated. Story
diagrams support two kinds
of activities, statement
activities and graph rewriting
rules. Statement activities
just contain Java code and
are copied one-to-one. For
graph rewriting rules we
employ translation
mechnisms as described in
[2], [10]. Figure 5 shows the
generated code for the
second graph rewriting rule.
The execution starts with
binding objects to the
variables specified in the
rule. For example in line 10 the variableidU is bound to an object which is accessable
via theidentification association among the switch and the identification unit object.
Line 11 checks whether an object could be bound or not and throws an exception in case
of a failure. This exception is caught within the catch-statement (line 21) and it is

1: /**
2: * UMLMethod: '- * welcome (id : Integer) : Void'
3: */
4: private void welcome (int id)
5: {
6: // first graph rewriting rule
7: if (sdmSuccess)
8: { } // then
9: else

10: {
11: // second graph rewriting rule
12: } // else
13: return;
14: } // welcome

Figure 4 Control flow of method welcome

1: try
2: {
3: // bind t2 : Exit
4: sdmtmpObject = this.getFromHas("straightOn");
5: JavaSDM.ensure (sdmtmpObject != null
6: && sdmtmpObject instanceof Exit);
7: t2 = (Exit) sdmtmpObject;
8:
9: // bind idU : IdentificationUnit

10: idU = this.getRevIdentification();
11: JavaSDM.ensure (idU != null);
12: // create object
13: s = new Shuttle();
14: // assign statement
15: s.setShuttle_Id (id);
16: // create link
17: idU.setRevIs_at (s);
18: // create link
19: t2.addToRevWants_to (s);
20: sdmSuccess = true;
21: } catch (JavaSDMException sdmInternalExcep-
tion)
22: {
23: sdmSuccess = false;
24: } // try catch

Figure 5 Java code for second graph rewrite rule

8.

signaled that the execution fails (line 23). If all unbound variables are bound to objects,
the specified modifications are executed. For example, a new object is created in line
13 and in line 17 and 19 two new links are created. Then, line 20 signals that the graph
rewriting rule has been executed successfully.

c [dTVK;NQNQHZKE2?:eD=4 8E6fF�H/IJ@AKBLW69KBM 69Sg>B8B2?NA476G<X>#47@38E2

According to the generation of Java code out of specifications, the reverse step is also
devided into two tasks. First, the static information, the class diagrams, will be
reconstructed and in a second task, the story-diagrams will be recognized.

Figure 6 shows a cut-
out of the generated
code of class
Switch, described
in the previous
chapter. Comments
and most of the
method(bodie)s are
skipped. Only the
specified welcome
method (line 3) and
the implementation
of the announced
association is listed
(line 6 to 12). Beside
this, Figure 7 shows the generated Java code for classShuttle1. In line 17 to 19 the
generated code for attributeshuttle_Id is presented. Lines 21 to 23 show the code
generated for the associationannounced in classShuttle. The reason why the
association is generated in two different ways in the two corresponding classes is that
the announce association is a one-to-many association. A detailed description and
motivation of the generated code can be found in [1] and [2].

To reconstruct the class
diagram out of this two pure
Java code fragments, first,
FUJABA uses a parser to
construct a syntax graph for
the source code. The parser
is generated with JavaCC
[11]. JavaCC generates a
front-end of a parser for a
given grammar. We added a
back-end, so that the parser
is able to construct a

1. Like before, only the necessary parts for the recognition are shown.

1: public class Switch extends TrackElement {
2: ...
3: private void welcome (int id) {...}
4:
5: ...
6: private OrderedSet revAnnounced = new OrderedSet ();
7: public boolean hasInRevAnnounced (Shuttle elem) {...}
8: public Enumeration elementsOfRevAnnounced () {...}
9: public void addToRevAnnounced (Shuttle elem) {...}

10: public void removeFromRevAnnounced (Shuttle elem){...}
11: public int sizeOfRevAnnounced() {...}
12: public void removeAllFromRevAnnounced() {...}
13: ...
14: } // class Switch

Figure 6 Java code for class Switch

Figure 7 Java code for class Shuttle

15: public class Shuttle
16: ...
17: private int shuttle_Id;
18: public int getShuttle_Id () {...}
19: public void setShuttle_Id (int shuttle_Id) {...}
20: ...
21: private Switch announced;
22: public Switch getAnnounced () {...}
23: public void setAnnounced (Switch announced) {...}
24: ...
25: } // class Shuttle

9.

rudimentary class diagram out of the parsed information (cf. [16]). Such a rudimentary
class diagram consists of classes with (private) attributes and methods, either generated
access methods and ’real’ methods. Also the inheritance relations (line 1) are
recognized directly out of this first step. Figure 8 shows the rudimentary class diagram
of the Java source code for classSwitch and classShuttle.

In a second step, the access methods must be filtered out of the classes and associations
have to be (re)constructed. Therefore, FUJABA contains an incremental, generic
annotation process.

Each element in the syntax graph is passed to a set of annotation engines and can be
annotated by them. Such an annotation is again an element in the syntax graph and so,
other annotation engines can annotate this annotation. An example of the annotation
structure for the attributeshuttle_Id of classShuttle is shown in Figure 9. In the

first level the parsed declarations (elements of the syntax graph) are annotated1. There
are, for example, the attribute itself, annotated with aprivate attribute annotation and
the access methods, classified in read and write access. The annotation process uses the
naming conventions mentioned in the previous chapter to recognize such methods. In
case of association access methods, there are other annotations and thereby,
classifications needed. Constructive on these three annotations, an engine recognizes

1. The real object structure is more complex, but this simplification sufficies for the un-
derstanding of the concepts.

Switch
- revAnnounced : OrderedSet
- welcome (id: int)
...
+ addToRevAnnounced (announced: Shuttle)
+ removeFromRevAnnounced(announced:Shuttle)
...

TrackElement

Shuttle
- shuttle_Id : int
- announced : Switch
+ getShuttle_Id (): int
+ setShuttle_Id (...)
+ getAnnounced (): Switch
+ setAnnounced (...)
...

Figure 8 Rudimentary class diagram

private int shuttle_Id;

public int getShuttle_Id () {...}

public void setShuttle_Id (int shuttle_Id) {...}

private
attribute

read
access

write
access

encapsulated
attribute

attr

read

write

Figure 9 Annotation structure for encapsulated attributes

10.

that this is not a standalone attribute and methods, but an encapsulated attribute. So the
engine constructs another annotation calledencapsulated attribute and connects this
second-level annotation with the three first-level annotations. To provide a quick access
for the connected annotations and diagram elements, the connectors may be guarded
with names e.gattr, read, write. Now, after the second-level annotation is constructed,
and thereby, the attribute and the methods have been classified as an encapsulated
attribute, the annotation engine marks the methods as hidden and sets the visibility of
the attribute topublic. This can be done, because FUJABA has recognized that the
access methods and the visibility have been generated by itself. Note, that the methods
are only marked as hidden and not be delete in order to rescue changes a developer has
made in the generated source code before he/she starts the parsing process.

In case of attributes and
methods, which have been
generated for associations, the
corresponding annotation
structure is more complex, but
looks like the above. Thereby,
to recognize, that a method is a
e.g. write access method, the
annotation engine has to look into the method’s body in order to get the partner class on
the other side of the association. Using naming conventions is not enough in the case of
a to-many association, because to find the access methods of a attribute of type
OrderedSet, the method bodies have to be examined in order to check, if ,the object
passed as parameter, is really added to the container. We use traditional compiler
techniques to extract the informations, cf. [16]. Once an annotation engine recognizes
that an attribute e.g.revAnnounced and some access methods e.g.
addToRevAnnounced or removeFromRevAnnounced correspond to a
reference association between two classes (Switch and Shuttle), either the
attribute and the access methods will be hidden and a reference association will be
added from classSwitch to classShuttle. If the same engine recognizes that there
is another reference assoziation between the two classes, but directed the other way
around, the engine will not construct another reference, but a normal (two side
navigational) association. To recognize that two reference associations represent a
normal associations, we examine the bodies of the corresponding write access methods
in order to look for a write access method calls in the partner class. Figure 10 shows the
class diagram after the annotation process has been finished. The access visibility of the
attributeshuttle_Id of classShuttle has been set topublic and the access
methods either of the attribute and of the association are hidden as well as the attributes
for the association.

The described annotation process also works for e.g aggregation, composition, and
qualified associations, so that class diagrams can be recognized from Java code if the
code is generated from FUJABA itself, or a developer uses the naming conventions and
implementation concepts of FUJABA. It is also possible to use the annotation concept
to recognize, create, and complete design patterns [3] within a class diagram. This is
also part of the environment. The support of a more flexible recognition system, in order

Switch
- welcome (int id)

Shuttle
+ shuttle_ID

announced

n0..1

TrackElement

Figure 10 Class diagram after annotation pro-

11.

to reengineer ’legacy’ code, is current and future work. But we assume that it can be
done easily if the reengineer is able to interact with the system and is able to configure it.

After the class diagram has been recognized, the method bodies must be examined in
order to reconstruct the story-diagrams. As mentioned in the previous chapter, story-
diagrams consist of activity diagrams to specify the control flow and Java code or graph
rewriting rules within activities. Thereby graph rewriting rules are a kind of
collaboration diagrams.

To reconstruct story-diagrams out of Java code, the first step is to reconstruct the control
flow (activity diagram). Such a control flow can be constructed directly out of the
syntax graph and is like a rudimentary class diagram (see above). Each activity contains
exactly one line of Java code and branches and loops are displayed as transitions with
guards. Figure 11 shows such a rudimentary activity diagram of thewelcome method
of classSwitch. The loop transition at the first activity derives from the generated
code for the graph rewriting rule and will be replaced in the annotation process. Each
activity contains a sequence of statements and the control flow is specified with guarded
transitions (the guards are just abbreviations due to the lack of space).

Like the recognition of class
diagrams such rudimentary
activity diagram will be
annotated in order to reconstruct
the graph rewriting rules
(collaboration diagrams). If no
graph rewriting rule can be
recognized in the whole or in
parts of the activity diagram, it is
left untouched. This might be the
case if the method does not
contain a rewrite rule or a
developer has made changes in
the source code in such a way that

[!success &&
enum.hasMoreElements]

...

... ...

[success]

[else]

[failure]

Figure 11 Activity diagram for method welco-

12.

the rewrite rule can’t be recognized. The annotation process constructs a multi-level
annotation structure like in Figure 9 for attributes.

Figure 12 shows the annotation structure and the annotated source code for the first
activity of Figure 11. The first level annotationsbind object just connect the source code
(line 30, 34). To annotate such a line, the annotation engine uses the information of the
class diagram and the annotation process, that the methodsgetFromHas and
getRevIdentification are read access methods for associations. Thereby, the
return type of the access method and the association itself is known. Theiterate
container annotation connects either line 37 as the self loop transition in Figure 11
displayed as the dashed line guarded withtransition. Thelook up annotation connects
all annotations on the first level, which signal that they bind objects in the object
structure to variables. They deal as something like a group annotation. The top-level
annotation is thegraph rewrite rule annotation, which signals that all containing
annotations refer to a graph rewriting rule and replaces all activities and transitions
refering to that graph rewrite rule in the activity diagram by one activity containing the
corresponding rule. The resulting activity diagram looks the same like in Figure 3. Note,
that the loop in Figure 11 is not pertinent any longer, because it has become part of the
graph rewriting rule annotated by theiterate container annotation.

Within these concepts, FUJABA is able to provide round-trip enginering and, as
mentioned above, the support of recognition, creation and completion of design patterns
[3]. The round-trip engineering works also if a developer makes manual changes in the
source code and uses the naming conventions and implementation concepts of
FUJABA. To provide a more flexible recognition, we will use generic fuzzy reasoning
nets (GFRN) [12] and we assume that we are able to reengineer ’legacy’ Java code then.
For example, the SWING library [13] also contains a kind of graph rewriting rules.
Therefore GFRN’s provide a percentual uncertainty and the reengineer can decide if a
part of a source code corresponds to a graph-rewriting rule or this transformation can
be done automatically.

The recognition of state-charts has not been mentioned here, because it works like the
described process, as well. Since, we use state-tables to implement state-charts, it is

26: ...
27: // bind t1 : Exit
28: sdmtmpObject = this.getFromHas("station");
29: JavaSDM.ensure (sdmtmpObject != null && sdmtmpObject instanceof Exit);
30: t1 = (Exit) sdmtmpObject;
31:
32: // bind idU : IdentificationUnit
33: idU = this.getRevIdentification();
34: JavaSDM.ensure (idU != null);
35:
36: // bind s : Shuttle
37: Enumeration enum = t1.elementsOfRevWants_to();
38: ...

Figure 12 Java code for the first activity of Figure 11

bind
object

bind
object

iterate
container

graph re-
write rule

look-up
modifi-
cations

transition

13.

only necessary to analyze the setup method of the state-table to recognize the
information.

h [�8E2?> T-<XNA@A8E2XNJKE2X:jik<547<569Sml�8B6Gn

Most current UML tools provide round trip engineering support for class diagrams
only. Our work allows to use UML behaviour diagrams like state-charts, activity
diagrams, collaboration diagrams as a visual programming language with well defined
semantics. The FUJABA environment provides editors for various diagrams, and a
code generator for Java code. This paper describes the parsing and recognition concepts
of the FUJABA environment, especially for class-, activity-, and collaboration
diagrams (graph rewriting rules). We use Java beans naming conventions to identify
field access operations. (To-many) associations are identified having a closer look at
such access operations. State-charts are reconstructed from their state table setup
method. Activity diagrams are recognized by looking at control flow statements.

Groups of object structure look-ups and modification statements will be turned into
collaboration diagrams. Diagrams derived from code are carefully merged with existing
design diagrams in order not to loose existing layout information. Altogether, this will
result in a sound round-trip engineering support by the FUJABA environment.
Currently class diagram recognition is done. State-chart, activity diagrams, and
collaboration diagram recognition is scheduled for August 1999, first results are
encouraging.

Future work will try to analyze legacy code and provide reengineering support for it.

o pqS^`rS^69S^2?>
SgN

[1] T. Fischer, J. Niere, L. Torunski.Design and Implementation of an integrated Develop-
ment Environment for UML, Java, and Story Driven Modeling, Master Thesises, Pader-
born 1998 (in German)

[2] T. Fischer, J. Niere, L. Torunski, A. Zündorf.Story Diagrams: A New Graph Grammer
Language based on the Unified Modelling Language and Java. to appear in Proceedings
of TAGT ’98 (Theory and Application of Graph Transformations), LNCS, Springer 1999

[3] E.Gamma, R.Helm, R. Johnson, J.Vlissides.Design Patterns. Addison-Weslay, 1995.

[4] G.Rozenberg (ed).Handbook of Graph Grammars and Computing by Graph Transforma-
tion. World Science, 1997.

[5] The Rational Rose case tool, Rational, http://www.rational.com

[6] The TogetherJ case tool, Object International, http://www.topethersoft.com/press

[7] Rhapsody case tool, ILogix, http://www.ilogix.com

[8] J.H. Jahnke, A.Zündorf,Specification and Implementation of a Distributed Planning and
Information System for Courses based on Story Driven Modelling, in Proc. of 9th Interna-
tional Workshop on Software Specification and Design, Ise-Shima, Japan, IEEE Computer
Society, pp. 77-86, ISBN 0-8186-8439-9

[9] U. Nickel, J. Niere, W. Schäfer, A. Zündorf,Combining Statecharts and Collaboration
Diagrams for the Development of Production Control Systems, to appear in Proc. of Ob-
ject-oriented modelling of embedded real-time systems (OMER) workshop, May 1999

14.

[10] H.J. Köhler, U. Nickel, J. Niere, A. Zündorf,Using UML as Visual Programming Langua-
ge, to appear as technical report, University of Paderborn, 1999

[11] The SUN Java Compiler Compiler (JavaCC), http://www.suntest.com/JavaCC

[12] J.H. Jahnke, W. Schäfer, A.Zündorf,Generic Fuzzy Reasoning Nets as a basis for Reverse
Engineering Relational Database Applications, in Proc. of European Software Enginee-
ring Conference (ESEC/FSE), LNCS 1302, Springer, 1997

[13] The SWING library, Java Foundation Classes,
http://www.sun.com/products/swingdoc-current

[14] G. Booch, J. Rambough, I. Jacobson,The Unified Modelling Language User Guide, Addi-
son-Wesley, 1999, ISBN 0-201-57168-4

[15] A. Schürr, A. Winter, A. Zündorf,Graph Grammar Engineering with PROGRESS, in W.
Schäfer (ed.) Software Engineering ESEC ’95, LNCS 989, pp. 219 - 234, Springer 1995

[16] A.V. Aho, J.D. Ullmann,Principles of Compiler Design (The Dragon Book), Reading, Ad-
dison-Wesley, 1986

