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ABSTRACT
Todays embedded and safety-critical systems incorporate in-
creasing amounts of software. Consequently, the software
architecture and its connection to hardware elements have
a big impact on the safety of those systems. We present in
this paper an approach and its implementation in the Fu-
jaba4Eclipse environment for the analysis and improvement
of component-based systems w.r.t. their safety which specif-
ically exploits the software and system structure.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Reliability and life test-
ing; D.2.11 [Software Engineering]: Software Architec-
tures—languages, patterns

General Terms
Design, Measurement

Keywords
Safety, Fault Tolerance, Fujaba, Structural Transformations,
Failure Propagation, Hazard Analysis

1. INTRODUCTION
Software has become the driving force in the evolution of
many technical systems and in some areas grows at an ex-
ponential rate. As a consequence, system engineers face a
dramatically increasing complexity due to the cooperation
of beforehand isolated functions, as e.g. in the domain of
automotive software [4]. To counter the effect of growing
complexity, systems are often built in a component-based
fashion. A concrete system then is a specific composition of
reusable components.

Technical systems are often employed in a safety-critical
context. The software components of such a system, in par-
ticular their interaction and their distribution throughout
the system, have a tremendous impact on its safety. Thus,
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when reasoning about the safety of a system, the whole sys-
tem architecture has to be taken into account.

In [1], we presented approaches and their implementation
in the Fujaba research prototype for the modeling of the
structure as well as real-time and hybrid behavior of safety-
critical embedded systems. In both approaches, formal ver-
ification is used to detect systematic faults in the behavioral
models.

In the remainder of this paper, we present a complemen-
tary approach [8] and its implementation in the Eclipse ver-
sion of the Fujaba research prototype to tackle random faults.
The impact of random faults by their propagation through-
out the system architecture is explored using a component-
based hazard analysis. The system architecture can then
be improved by the application of fault tolerance techniques
which are formalized using graph transformations. The next
section shows an overview of the approach (cf. Figure 1). We
conclude in Section 3 with an outlook on future work.
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Figure 1: Approach overview

2. THE APPROACH
We use UML 2.0 components and deployment diagrams to
model the system architecture. Each component type is ex-
tended by a failure propagation specification (similar to the
fault pathology of Laprie [5]) using Boolean logic. In gen-
eral, a failure propagation consists of a set of outgoing failure
variables, a set of incoming failure variables, a set of inter-
nal error variables, and failure dependencies. The specified
failures and errors are typed and we distinguish the general
failure classes crash, timing, and value failure. The approach
additionally supports user-defined failure classifications.

After modeling the component types and their failure prop-
agations, the software components are deployed on hardware
components. On this instance view, hazards are specified.
To describe the occurrence of hazards, we use standard fault
tree analysis. Hence, the hazardous event is shown as the



top of a fault tree which is caused by a combination of failure
variables and AND/OR operators.

The system failure propagation is a combination of the
failure propagations of all component instances in the de-
ployment diagram with automatically inferred failure prop-
agations of the connectors between components. The system
failure propagation is then combined with the hazard defi-
nition for the hazard analysis.

The approach supports two types of hazard analysis: 1)
which hazards result from a set of given basic errors (bottom
up) as well as 2) which errors must occur in order for a given
hazard to happen [3] (top down). Our approach employs
binary decision diagrams (BDDs) for efficient operation.

The top-down analyis uses the BDD representation of the
system failure propagation to compute the event combina-
tions (prime implicants) which lead to the hazard. The
prime implicants of a Boolean formula are of special interest
in a hazard analysis since they denote smallest hazard sce-
narios. In addition to the possibility of a hazard occurrence,
its probability is computable, if (independent) probabilities
are known for the basic errors. This probability is recur-
sively computed on the BDD as shown in [3].

We employ a simulation of the failure propagation in the
bottom-up analysis. Additionally, the simulation enables
the developer to visually see the propagation path of the er-
rors through the system architecture. The simulation starts
with the given set of errors and recursively evaluates and
executes the failure propagations and hazard conditions.

The analysis step identifies which errors in which com-
ponent instances of the modeled system ultimately lead to
safety-critical situations. In order to keep the system oper-
ating as safely as possible, such situations should be avoided.
The triggering errors are inherently unavoidable. Their ef-
fect on the system, however, can be minimized using fault
tolerance techniques (cf. [7]).

We support the semi-automatic application of fault tol-
erance techniques to an existing system model. The steps
which are necessary to implement such a technique in an
existing model are formally specified by a transformation
language which combines activity diagrams and graph trans-
formations [2]. The transformations are specified w.r.t. the
metamodel of the system model.

Like activity diagrams, transformations allow to connect
activities, i.e. graph transformation rules, in complex con-
trol flow consisting of sequences, alternatives, and iterations.
Unless a graph transformation rule is explicitly specified to
be iterated, it is executed only once when reached by the
control flow. Transformations may call other transforma-
tions to facilitate composition and reuse.

3. CONCLUSIONS AND FUTURE WORK
We presented an approach for the analysis and improvement
of the safety of component-based systems. The approach is
prototypically implemented as a set of plugins for the Fu-
jaba4Eclipse environment.

The approach and the accompanying research prototype
can be improved in several ways. It would benefit from
checking the correctness of the modeled abstract failure prop-
agation behavior of each component w.r.t. its functional
behavior. Additionally, the failure propagation might be
(semi-)automatically inferable from the functional behavior.
If new component types are introduced by the application of
a transformation, the real-time or hybrid behavior of those

components might be automatically synthesized from the
communication protocols of the involved components as dis-
cussed in [8]. The correctness of the transformations them-
selves is important. We are currently working on verification
techniques which allow us to prove that transformations do
not violate certain structural properties when applied to a
model (cf. [6]).
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