
Extending Fault Tolerance Patterns by Visual Degradation Rules∗

Matthias Tichy and Holger Giese
University of Paderborn, Software Engineering Group

Warburger Str. 100, 33095 Paderborn, Germany
[mtt,hg]@upb.de

Abstract

Embedded distributed systems play an important role
in many advanced technical systems. In order to satisfy
high availability and reliability requirements, fault toleran-
ce techniques such as triple modular redundancy are em-
ployed. In addition, techniques for graceful degradation are
required to handle situations when a system experiences too
many faults to compensate them while still providing a re-
duced albeit sufficient functionality.

As a formal visual specification technique to describe
known standard fault tolerance solutions we proposedfault
tolerance patterns[24] which capture the essential struc-
ture and relevant deployment restrictions of these solutions.
Fault tolerance patterns are easily applied during the de-
sign of component-based systems to increase the reliabili-
ty or availability of specific components or subsystems and
permit to derive a correct initial deployment and guide the
self-repair of the system.

In this paper, we extend our fault tolerance pattern ap-
proach with additional visualdegradation rules. The rules
can at first be employed to define reconfiguration steps for
the system which reduce the provided level of fault tole-
rance while retaining the provision of functional properties.
Secondly, steps which result in a graceful degradation and
thus only a reduced functionality can be defined.

1. Introduction

Today, distributed embedded systems are of paramount im-
portance for the dependable operation of many advanced
technical systems (cf. [22, 13]). In such systems reliabili-
ty and availability are important non-functional attributes
of embedded systems. As hardware failures can and will
happen for some nodes of such complex distributed em-

∗This work was developed in the course of the Special Research In-
itiative 614 – Self-optimizing Concepts and Structures in Mechanical En-
gineering – University of Paderborn, and was published on its behalf and
funded by the Deutsche Forschungsgemeinschaft.

bedded systems, the systems must have appropriate failure
handling capabilities. One possible direction are fault tole-
rance techniques [21] which employ redundant components
in the space, time and/or information domain to improve
the fault tolerance capabilities of a design. Techniques for
graceful degradation can be employed to handle situations
when a system experiences too many faults to compensate
them while still providing a degraded level of functionality
(cf. [27, 10]).

As the manual design and implementation of fault to-
lerance techniques is a complex and error prone task, we
proposed to usefault tolerance patterns[24] as a formal
visual specification technique to describe the structure and
deployment restrictions of known standard fault tolerance
techniques. The patterns support to easily apply well known
strategies by simply reusing the patterns for components or
structures of components where special attention for their
reliability or availability is required. The deployment re-
strictions provided by the patterns can be further used to
check that a given deployment respects the deployment re-
strictions of the pattern to exclude common-mode failures
which could result if multiple redundant components are er-
roneously deployed on the same node. In addition, a correct
initial deployment with respect to the deployment restricti-
ons can be derived automatically.

While the fault tolerance technique, which are realized
via the patterns, usually tolerate single hardware faults, ad-
ditional hardware faults which may accumulate over time
cannot be tolerated. Therefore, in practice a manual repair
of the embedded system must be performed to restore the
capability to tolerate faults. However, in many application
domains manual repair is either impossible, only possible
after rather long operation periods, or is more costly than
spending more for the initial standby hardware. Thus, tech-
niques which enable the self-repair or self-healing of the
system without explicit maintenance would improve the si-
tuation considerably.

Several concepts [8, 7, 3, 4, 26] are proposed today
which let the system reconfigure itself to repair detected



voter:Voter

Redundancy
Triple Modular

provider:Provider

unit1:Unit

unit2:Unit

unit3:Unit

user:Usermultiplier:Multiplier

Abbildung 1. Triple Modular Redundancy Pattern

problems (cf. self-healing [16]).1 A number of these approa-
ches [4, 3, 26] suggest to derive a valid deployment mapping
for self-repair actions in the presence of node crashes. In
[26] a self-repair algorithm which is in line with these other
approaches for fault tolerance pattern has been presented. If
fault tolerant software components fail during runtime, the
algorithm redeploys them in order to maintain the fault tole-
rance capabilities of the system. In case of crash failures at
run-time, the deployment information given by the deploy-
ment restrictions of the fault tolerance patterns are used to
determine an appropriate redeployment of the failed com-
ponents. This approach has been further optimized in [25]
looking for an optimal compromise between repair time and
damage minimization.

In this paper, we extend the outlined fault tolerance pat-
tern approach by means of visualdegradation rules. The-
se rules describe which elements of a given pattern can be
removed to reduce the resource consumption of the confi-
guration and which reduced non-functional and functional
quality results. If only the reliability or availability of the
subsystem is affected, we denote such a rule to be adepen-
dability degradation rule. We name it agraceful degrada-
tion rules if also the functionality provided is restricted or
has only a reduced quality.

The paper is organized as follows: The underlying con-
cepts of the fault tolerance patterns are introduced in Secti-
on 2. Our extension in form of degradation rules follow in
Section 3. Then, the extension of our approach for the self-
repair which takes degradation rules into account is sket-
ched in Section 4 and related work is discussed in Section
5. Finally, we conclude the paper and give an outlook on
planned future work.

1While dynamic reconfiguration is not recommended by more traditio-
nal approaches (see IEC 61508), also prominent proposal exists which see
reconfiguration as a key to dependable systems [23].

2. Fault Tolerance Patterns

Fault Tolerance Techniques have a long history in the de-
velopment of dependable systems. Fault Tolerance Patterns
[24] capture the structure and deployment restrictions of
well known fault tolerance techniques in a formal and visual
manner. We outline the underlying concepts in the followi-
ng providing two examples: the triple modular redundancy
pattern and the recovery block pattern. These examples are
subsequently employed to present our extension with degra-
dation rules.

2.1. Triple Modular Redundancy

Figure 1 shows the structural specification of the triple mo-
dular redundancy (TMR) fault tolerance pattern described
by UML 2.0 [15] component diagrams. A triple modular
redundancy system uses amultiplier component which trip-
les the input received and forwards it to the three com-
ponentsunit1 . . . 3, which actually perform the computation.
Thevoter compares the different results and chooses the re-
sult which at least two of the components returned. Thus, a
triple modular redundancy system can tolerate one crashed
or malfunctioning component. Theuser andprovider com-
ponents are not part of the fault tolerance pattern but are
important for connecting the using and used components
during application of the pattern. See [26] for an applicati-
on of the triple modular redundancy pattern to an example
from the railway domain.

In the case of improper deployment of the different com-
ponents of the pattern, common-mode failures spoil the
fault tolerance enhancement of a triple modular redundancy
setup. For example, if two of these three redundant copies
are executed on the same node, crash failure independence
does not hold anymore for node failures and the usage of
a TMR becomes pointless. Thus, the componentsunit1. . . 3
must be deployed to distinct nodes. Themultiplier andvo-
ter as well as theprovider anduser components are single



Node4 Node5Node3

Node2Node1

provider multiplier voter user

unit1 unit2 unit3

{Node3.CPU 6= Node4.CPU ∧Node3.CPU 6= Node5.CPU ∧ Node4.CPU 6= node5.CPU}

Abbildung 2. Deployment Restrictions of the TMR Pattern

:Provider :Multiplier

:Selector :User

at2:AcceptenceTest at3:AcceptenceTesta1:Alternative1

a2:Alternative2 a3:Alternative3

Abbildung 3. Recovery Block Pattern

points of failure in a simple application of TMR. Our ob-
servation is, that if auser component fails, thevoter is not
needed anymore. Thus, in order to enhance the fault tole-
rance of the TMR setup, we propose to deploy theprovider
andmultiplier as well as thevoter anduser to the same node,
i.e. both components do not crash fail independently of each
other. In addition, the nodes executing the redundant copies
should differ in order to tolerate hardware design faults. Fi-
gure 2 shows the deployment restrictions of the fault tole-
rance pattern of Figure 1 with a UML 2.0 deployment dia-
gram. Such a graphical specification as a diagram typically
provides better readability than a textual representation.

2.2. Recovery Blocks

As second example for a fault tolerance pattern we consi-
der recovery blocks. Recovery Blocks [11, 1] aim at impro-
ving reliability due to different implementations for a spe-
cific function with different qualities and possibly different
input data. An implementation of this technique consists of
a number of alternative implementations and an acceptance
test which is executed after each alternative. The acceptan-
ce test checks the values computed by the alternative. If the
check does not execute successfully, the next alternative is
executed.

In contrast to standard recovery blocks, our recovery
block pattern targets distributed systems just as the ap-

proach presented in [12]. In order to tolerate crash failu-
res, we replicate the different alternatives and the acceptan-
ce tests as shown in Figure 3. During deployment of the
recovery block pattern elements, a copy of the acceptance
test and one alternative are deployed as a pair to the same
node whereas the different pairs are deployed to different
nodes. Provider and multiplier as well as selector and user
are deployed to the same node due to the same argument
as given above in the description of the TMR deployment
constraints.

2.3. Redeployment and Self-Repair

In [26] it is shown, how the deployment problem conside-
ring the above presented graphical deployment restrictions
is translated into a standard integer problem which is sol-
vable by standard constraint solvers like e.g. ILOG’s Solver
software.

Basically, for each component-node combination a boo-
lean variablexi,j is used. The constraint solver then can
either set the variable to 1 denoting that the componenti
should be deployed to nodej or set it to 0 for the other ca-
se. Then, the following consistency constraint is required to
ensure that each component is located on exactly one node
(cf. [25]):

∀j :
∑
i∈C

xi,j = 1 (1)



The graphical deployment constraints are also transfor-
med into constraints over these boolean variables. The cons-
traint ∀j : xunit1,j + xunit2,j ≤ 1 captures the deploy-
ment restriction that the two componentsunit1 andunit2
must not be deployed to the same nodej. For ri the re-
sources required for each componenti anduj the resources
available on a nodej, we have to additionally ensure that
∀i :

∑
j∈N xi,jri ≤ uj holds.

If hardware resources fail, software components fail, too.
As the hardware faults can either affect non-redundant com-
ponents or accumulate over time, we support that the system
can do a self-repair by redeployment of the failed softwa-
re components. In [26, 25], we presented an approach to
compute repair actions in a timely way, which are optimal
w.r.t. damage of the component failures.

At first, the proposed algorithm tries to find a new de-
ployment node for the failed software components. If a sim-
ple redeployment of just these components is not feasible
due restrictions on the underlying hardware platform, other
software components may be migrated in order to find sui-
table available hardware resources for the failed software
components.

If the load of the hardware resources is high, the failu-
re of just one hardware resource may lead to the situation
that a redeployment of the failed software components may
not be possible. If redundant copies of these failed software
components are still working, the damage which is implied
by this failure is rather small. But if non-redundant com-
ponents are affected, the damage to the system is greater.
Thus, we need to make resources available to redeploy those
components. In the following, we therefore present degra-
dation rules which aim at describing our options to repair a
system by also taking the degrading of its non-functional or
even functional properties into account.

3. Degradation Rules

In Section 2, we presented fault tolerance patterns which
capture structure and deployment restrictions of existing
fault tolerance techniques in a formal way. Thus, they are
easily applicable to software models. Typically, fault tole-
rance techniques employ redundancy in order to tolerate fai-
lures. The redundant pieces of software either are identical
copies (e.g. Triple Modular Redundancy) or provide diffe-
rent levels of functionality (e.g. Recovery Blocks). In times
of need (e.g. excessive amount of failures), the number of
redundant copies may be decreased in order to keep the sys-
tem operational even at a decreased level. A specification is
necessary which guides the system how to degrade the sys-
tem without loosing too much functional quality. Thus, we
proposedegradation rulesto complement the structural and
deployment specifications of fault tolerance patterns.

For each fault tolerance pattern, we support the specifi-

cation of a set of degradation rules. A degradation rule can
decrease non-functional properties like reliability as well as
decrease the functional quality of the software. Similar to
structural and deployment specifications of fault tolerance
templates, we use a visual specification language. These de-
gradation rules specify the behavior which is executed while
degrading the system’s functional or non-functional proper-
ties. As those rules are important for the dependability of
the systems, the rules must be formally defined using an ap-
propriate formalism.

3.1. Story Patterns

Graph transformations [19] are a powerful formalism for
the specification of structural changes to graph like structu-
res and as such are an appropriate notion for the specificati-
on of degradation rules.

Graph transformation rules consist of structural speci-
fications for a precondition and a postcondition. A graph
transformation rule is applicable if each element of the pre-
condition structure (excluding negative elements) can be
mapped onto one element of the host graph. No two ele-
ments of precondition structure must be mapped onto the
same element of the host graph (isomorphism check). Then
the host graph is changed in such a way that each element of
the postcondition can be mapped onto an element of the host
graph while retaining the element mappings created during
the precondition mapping and remove elements which are
part of the pre- but not part of the postcondition structure.

As concrete formalism story patterns [28, 5] are employ-
ed. Story patterns combine pre- and postcondition structu-
res into a single diagram based on UML [15] collaboration
diagrams. The difference between pre- and postcondition
structures is denoted by annotating elements by�create�
and�destroy� stereotypes. An elemenent annotated by
�create� will be created during application of the story
pattern, whereas an element annotated by�destroy� will
be destroyed.

Graph matching which is required in order to find a pre-
condition in the host graph is a NP-complete problem [6].
As our degradation rules should be executed during runtime
and failure recovery should be fairly fast, this is an unplea-
sant property. Fortunately, we can efficiently compute the
relevant mappings of preconditions onto the host graph at
deployment time due to knowledge about the occurrence of
the fault tolerance patterns in the system.

In the following, we will present degradation rules for
the TMR and the recovery block patterns. The TMR de-
gradation rules degrade the reliability of the system (non-
functional property) whereas the recovery block degradati-
on rules degrade the functional property of the system.



3.2. Triple Modular Redundancy

Figure 4 shows a graceful degradation rule for the triple
modular redundancy pattern. This rule specifies the degra-
dation of a pattern application from a triple modular setup
to a double setup, i.e. one redundant copy ofUnit is remo-
ved from the deployment system. The removal of the red-
undant copy is specified using the�destroy� stereotypes.
The connector between thevoter and the redundant copy
as well as the connector to themultiplier are also removed.
The resulting double modular redundancy setup can tolerate
crash failures, but cannot tolerate value failures.

voterunit

unit

unit

multiplier

<<destroy>>

<<destroy>><<destroy>>

Abbildung 4. Triple → double redundancy

The second graceful degradation rule converts an already
degraded double modular redundancy (former triple) setup
into a non-redundant one. Figure 5 shows the story pattern
which captures this behavior. This pattern removes the se-
cond redundant copy of the pattern application. Asmultiplier
andvoter are not necessary for a single computation unit,
they are removed too. The finalunit is directly connected to
theuser andprovider components. As no redundancy is em-
ployed, the setup cannot tolerate a failure anymore. Note,
that the rule requires that there is no other redundant copy
available since then removing themultiplier andvoter would
not been possible. This is visualized by the crossed outunit
component.

voter userunit

unit

unit

provider multiplier

<<destroy>>

<<destroy>><<destroy>>

<<create>><<create>>

Abbildung 5. Double → no redundancy

3.3. Recovery Blocks

Graceful degradation for the recovery block pattern is per-
formed by removal of alternatives and their acceptance test

instance. As the number of alternatives can differ in appli-
cations of the fault tolerance pattern, we propose iterative
degradation rules. Two rules complement each other. The
first rule removes the first alternative and its accompanying
acceptance test. The first one is removed, since its typical
the most sophisticated one and therefore probably has the
most resource requirements. Note, that the acceptance test,
which should be removed, is connected to another via the
directednext-edge. The negative acceptance test node in the
lower part of the figure assures that there exists no previous
acceptance test node, i.e. the acceptance test is the first one.

selector

acceptanceTest

multiplier

acceptanceTest

next

alternative

<<destroy>>

<<destroy>>

acceptanceTest

next

Abbildung 6. Remove first alternative

The first rule can only be executed as long as there is
more than one alternative and acceptance test. If this is not
the case, there is only one final alternative in the system.
As in this case, the multiplier, selector and acceptance test
components are unnecessary, the second degradation rule
simply removes them from the model. Note, that both inco-
ming and outgoingnext-edges are negated, i.e. there are no
other acceptance tests connected to this one and as such it
is the final one.

selector

acceptanceTest

multiplier

acceptanceTest

nextprovider user

<<destroy>>

<<create>> <<create>>

<<destroy>>

acceptanceTest

next

Abbildung 7. Garbage collection

4. Self-Repair with Degradation

Software components in distributed systems experience fai-
lures. In Section 2.3, we presented an approach to repair a
partially failed system by redeployment of the failed softwa-
re components. In high load systems, a redeployment of fai-
led software components may unfortunately be not possible
due to unsatisfiable resource constraints. In this situation,
degradation rules as presented in Section 3 are used in or-
der to free up resources by either decreasing non-functional



properties like fault tolerance and retain the required func-
tionality or vice versa.

We have two options to process the degradation rules:
(1) We may execute a set of rules2 on the deployment cons-
traint model and solve the constraint model using the algo-
rithm presented in [25]. (2) We may map the application of
all degradation rules into the objective function of the cons-
traint model. Using an objective function, the constraint sol-
ver minimizes the degradation due to a value associated to
the different configurations produced by applications of the
degradation rules. The values denote the different qualities
of the configurations, i.e. a triple modular redundancy setup
has a higher value than a non-redundant setup.

The first option may result in non-optimal application of
degradation rules as more rules are applied than necessary.
But due to the incremental approach of [25], a fast recovery
from the failure is provided. The second option offers the
advantage that an optimal number of rules is selected for
application but needs more time to find an minimal degra-
dation due to the objective function.

We suggest to select each of these two options depending
on the types of failures which are observed for the softwa-
re components. If a timely reaction to at least on of these
failures is required because one failed software component
is an important non-redundant one, we suggest to use op-
tion one. After a successful redeployment of the degraded
system, one can employ the second option to minimize the
amount of degradation rules applications. If only redundant
copies experience failures, the functionality of the system
is not affected. Thus, it is reasonable to pursue option two
directly. In the following, we sketch these two options.

4.1. Fast Degradation

The incremental algorithm [25] presented in Section 2.3
for the computation of self-repair actions starts with a small
deployment model consisting of only a small number of
components. This small model is repeatedly extended by
other components until the deployment model is solvable.

The degradation rules are applied to the component
structure of the deployment model during execution of the
algorithm. In detail, the degradation rules are applied each
time they can be applied to the model. Thus, whenever a
reduced deployment model is not solvable, applicability of
the degradation rules is tested. If the precondition of the ru-
le can be matched3 with the component structure, the rule is

2The actual number of graceful degradation rules is based on the
amount of failed software components and can be specified by the admi-
nistrator. A first rough estimation is to apply at least the same amount of
rules as the number of failed components.

3This precondition check is fast, since we know which components are
applicants of a fault tolerance pattern and as such we just have to check
if all members of one pattern instance are contained in the deployment
model.

applied and the constraint solver is executed. If it does not
succeed, the model is extended as in the original approach
and the next iteration of the algorithm is performed.

Based on this extended algorithm, we preserve the fast
responsiveness of the algorithm and additionally take into
account the application of the degradation rules.

4.2. Minimal Degradation

In contrast to the above described approach for a fast re-
covery from a failure, we aim here at minimal degradation
of the system. Thus, possible applications of degradation ru-
les are added to the deployment constraint model using the
objective function provided by the constraint solver.

The transformation of the deployment model to the input
language of a constraint solver is shown in Section 2.3. The-
re, boolean variablesxi,j ∈ {0, 1} are used denote whether
a componenti ∈ C is deployed to hostn ∈ N or not.

It is not required that all components are deployed due
to the possible application of the degradation rules. Thus,
we get forp ∈ P the set of pattern occurrences with related
componentsCp that for componentsi ∈ C − {Cp|p ∈ P}
still equation 1 must hold while otherwise the following in-
equality must hold:

∀j ∈ N :
∑

i∈{Cp|p∈P}

xi,j ≤ 1 (2)

In order to express the application of degradation rules,
we introduce boolean variablesbi ∈ {0, 1}, which denote
whether a componenti is deployed on any node (bi = 1) or
not (bi = 0).

bi =
{

1 :
∑

i∈C xi,j = 1
0 : else

The application of degradation rules for each pattern oc-
currencep ∈ P can then be expressed in terms of boolean
expressions over thebi variables. This is formally repre-
sented using additional boolean variablesdp

1, . . . , d
p
k which

denote whether different degraded configurations1, . . . , k
hold. In this case, ifdp

3 = true holds, then the full triple
modular redundancy setup is used. ifdp

1 = true holds, then
only a single redundant copy is used. These configurations
dp

k are computed by the application of the degradation rules
specified in Section 3. Finally, the constraintcp which en-
forces that exactly one of the configurations is operational
has to be added to the constraint system.

dp
3 = bmultiplier ∧ bunit1 ∧ bunit2 ∧ bunit3 ∧ bvoter

dp
2 = bmultiplier ∧ ((bunit1 ∧ bunit2) ∨ (bunit1 ∧ bunit3)

∨(bunit2 ∧ bunit3)) ∧ bvoter ∧ ¬d3

dp
1 = (bunit1 ∨ bunit2 ∨ bunit3) ∧ ¬d2 ∧ ¬d3

cp : (dp
1 ∨ dp

2 ∨ dp
3)



The objective of the constraint solver is to maximize the
deployed components as the execution of a degradation ru-
les decreases the amount of deployed components. In terms
of the deployment constraint model introduced in this sec-
tion, the objective function is to maximize the value of the
different fault tolerance pattern occurrencesp ∈ P using
their set of degradation configurationsk ∈ Dp weighted
value given by the constant factorsαp

k. Note that the com-
ponents which are not related to any pattern are not subject
of the optimization.

max
∑
p∈P

∑
k∈Dp

αp
kdp

k

5. Related Work

Many approaches (e.g. [17, 4, 14, 2]) address the problem
of deployment and reconfiguration of fault tolerance enhan-
ced systems. While [17, 14] do not specifically tackle the
problem of minimal redeployment, [4] tries to compute op-
timal redeployment actions by a model extension approach
similar to ours. In contrast to the others approaches, Arshad
et al. present in [2] a planning based approach for failu-
re recovery. Based on a domain model which specifies the
components and its requirements on the system as well as
reconfiguration actions, an AI planner is used to find a plan
for failure recovery. The AI planner tries to find a sequence
of actions which change the system state from the initial,
failure state to a certain goal state (e.g. a number of rede-
ployment steps). Degradation actions in combination with
an appropriate goal may provide similar reconfiguration and
degradation behavior as our approach. All above mentioned
approaches do not use visual specifications.

In [23], Strunk and Knight present a formal approach
for the specification of reconfiguration actions for real-time
embedded systems. Those reconfiguration actions specifi-
cally allow the specification of real-time annotations as
e.g. the action begins at the same time the system is no
longer operating under a certain service configuration. Our
approach uses a visual language for the specification in con-
trast to the textual notion of [23]. In addition, our degrada-
tion rules are part of fault tolerance patterns and thus can be
easily reused.

Graceful degradation is used in a wide variety of ap-
proaches [10, 20, 27]. Gonzalez et al. present in [10] an
approach to dynamically adapt the employed fault toleran-
ce for each incoming computation request. Similarly to our
approach, they can degrade non-functional properties like
fault-tolerance. In contrast, to our approach, they use no
visual language and adapt in case of variations to the rate
of incoming computation requests. Shelton et al. present in
[20] a framework for the analysis of graceful degradation
rules. They divide a component-based software system into

feature sets and compute what utility those different feature
sets provide in case of failures. In contrast to our approach,
they measure the system’s degradation which is the implicit
result of induced failures whereas our approach uses degra-
dation rules to react to failures.

6. Conclusion and Future Work

Embedded software systems are an integral part of today’s
technical systems. Reliability and availability of those tech-
nical systems are important non-functional properties. As
those properties are affected by failures, fault tolerance
techniques are applied to provide protection from those fai-
lures. If the number of failures is too high, the system might
degrade its functional or non-functional properties in order
to maintain its operational status.

We presented a visual formalism for fault tolerance tech-
niques in this paper.Fault Tolerance Patterns capture struc-
ture, deployment and degradation for existing fault toleran-
ce techniques. We presented fault tolerance patterns for a
triple modular redundancy setup and a distributed recovery
block setup. Based on the visual specifications, we presen-
ted to self-repair the system in case of failures. Self-repair
either restores the system by redeployment of failed softwa-
re components or degrades the system’s functional or non-
functional properties by the execution of degradation rules.

We are currently integrating this approach into an execu-
tion framework and our case tool Fujaba4 in order to further
evaluate the benefits of the self-repair actions and the degra-
dation rules. Proof of degradation rules correctness is an im-
portant prerequisite for the application of the rules in highly
critical technical systems. Correctness includes detection of
conflicts or unsafe states in the degradation rules. Thus, we
are evaluating the formal verification approaches of [9] and
[18]. In addition, we will address temporal requirements of
degradation in future work. As a complement to degrada-
tion rules, improving rules will be considered which add
components which were previously removed by a degrada-
tion rule in order to improve functional and non-functional
properties during runtime.

Literatur

[1] T. Anderson and R. Kerr. Recovery blocks in action: A sys-
tem supporting high reliability. InICSE ’76: Proceedings of
the 2nd international conference on Software engineering,
pages 447–457, Los Alamitos, CA, USA, 1976. IEEE Com-
puter Society Press.

[2] N. Arshad, D. Heimbigner, and A. L. Wolf. A Planning
Based Approach to Failure Recovery in Distributed Sys-
tems. InProceedings of the ACM SIGSOFT Internatio-

4www.fujaba.de



nal Workshop on Self-Managed Systems (WOSS’04). ACM
Press, Oct./Nov. 2004.

[3] E. M. Dashofy, A. van der Hoek, and R. N. Taylor. Towards
architecture-based self-healing systems. InWOSS ’02: Pro-
ceedings of the first workshop on Self-healing systems, pages
21–26, New York, NY, USA, 2002. ACM Press.

[4] A. Dearle, G. Kirby, and A. McCarthy. A Framework for
Constraint-Based Deployment and Autonomic Management
of Distributed Applications. Technical Report CS/04/1, Uni-
versity of St Andrews, 2004.

[5] T. Fischer, J. Niere, L. Torunski, and A. Zündorf. Story Dia-
grams: A new Graph Rewrite Language based on the Uni-
fied Modeling Language. In G. Engels and G. Rozenberg,
editors,Proc. of the6th International Workshop on Theory
and Application of Graph Transformation (TAGT), Pader-
born, Germany, LNCS 1764, pages 296–309. Springer Ver-
lag, November 1998.

[6] M. R. Garey and D. S. Johnson.Computers and Intractabi-
lity. W. H. Freeman and Company, 1979.

[7] D. Garlan and B. Schmerl. Model-based adaptation for self-
healing systems. InWOSS ’02: Proceedings of the first
workshop on Self-healing systems, pages 27–32, New York,
NY, USA, 2002. ACM Press.

[8] I. Georgiadis, J. Magee, and J. Kramer. Self-organising soft-
ware architectures for distributed systems. InWOSS ’02:
Proceedings of the first workshop on Self-healing systems,
pages 33–38, New York, NY, USA, 2002. ACM Press.

[9] H. Giese and D. Schilling. Towards the Automatic Verifica-
tion of Inductive Invariants for Invinite State UML Models.
Technical Report tr-ri-04-252, University of Paderborn, Pa-
derborn, Germany, December 2004.

[10] O. Gonzalez, H. Shrikumar, J. A. Stankovic, and K. Ramam-
ritham. Adaptive fault tolerance and graceful degradation
under dynamic hard real-time scheduling. InRTSS ’97: Pro-
ceedings of the 18th IEEE Real-Time Systems Symposium
(RTSS ’97), page 79, Washington, DC, USA, 1997. IEEE
Computer Society.

[11] J. J. Horning, H. C. Lauer, P. M. Melliar-Smith, and B. Ran-
dell. A program structure for error detection and recovery.
In Operating Systems, Proceedings of an International Sym-
posium, volume 16 ofLecture Notes in Computer Science,
pages 171–187, London, UK, 1974. Springer Verlag.

[12] K. H. Kim and H. O. Welch. Distributed Execution of Reco-
very Blocks: An Approach for Uniform Treatment of Hard-
ware and Software Faults in Real-Time Applications.IEEE
Trans. Comput., 38(5):626–636, 1989.

[13] N. G. Leveson. Safeware : system safety and computers.
Addison-Wesley, 1995.

[14] M. Mikic-Rakic, S. Malek, N. Beckman, and N. Medvido-
vic. A Tailorable Environment for Assessing the Quali-
ty of Deployment Architectures in Highly Distributed Set-
tings. In W. Emmerich and A. L. Wolf, editors,Component
Deployment, Second International Working Conference, CD
2004, Edinburgh, UK, May 20-21, 2004, Proceedings, volu-
me 3083 ofLecture Notes in Computer Science, pages 1–17.
Springer, 2004.

[15] Object Management Group.UML 2.0 Superstructure Speci-
fication, 2003. Document ptc/03-08-02.

[16] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner,
G. Johnson, N. Medvidovic, A. Quilici, D. S. Rosenblum,
and A. L. Wolf. An Architecture-Based Approach to Self-
Adaptive Software.IEEE Intelligent Systems, 14(3):54–62,
May/June 1999.

[17] C. Pinello, L. P. Carloni, and A. L. Sangiovanni-Vincentelli.
Fault-Tolerant Deployment of Embedded Software for Cost-
Sensitive Real-Time Feedback-Control Applications. InDA-
TE ’04: Proceedings of the conference on Design, automati-
on and test in Europe, page 21164. IEEE Computer Society,
2004.

[18] A. Rensink,Á. Schmidt, and D. Varŕo. Model Checking
Graph Transformations: A Comparison of Two Approaches.
In H. Ehrig, G. Engels, F. Parisi-Presicce, and G. Rozen-
berg, editors,International Conference on Graph Transfor-
mations (ICGT), volume 3256 ofLecture Notes in Computer
Science, pages 226–241. Springer-Verlag Heidelberg, 2004.

[19] G. Rozenberg, editor.Handbook of Graph Grammars and
Computing by Graph Transformation : Foundations. World
Scientific Pub Co, February 1997.

[20] C. Shelton, P. Koopman, and W. Nace. A framework for sca-
lable analysis and design of system-wide graceful degrada-
tion in distributed embedded systems. InProc. of the Eighth
International Workshop on Object-Oriented Real-Time De-
pendable Systems, 2003.

[21] A. K. Somani and N. H. Vaidya. Understanding Fault Tole-
rance and Reliability.Computer, 30(4):45–50, 1997.

[22] N. Storey. Safety-Critical Computer Systems. Addison-
Wesley, 1996.

[23] E. A. Strunk and J. C. Knight. Assured Reconfiguration of
Embedded Real-Time Software. InProceedings of the 2004
International Conference on Dependable Systems and Net-
works (DSN’04), pages 367–376, Washington, DC, USA,
2004. IEEE Computer Society.

[24] M. Tichy, B. Becker, and H. Giese. Component Templa-
tes for Dependable Real-Time Systems. In A. Schürr and
A. Zündorf, editors,Proc. of the 2nd International Fuja-
ba Days 2004, Darmstadt, Germany, volume tr-ri-04-253
of Technical Report, pages 27–30. University of Paderborn,
September 2004.

[25] M. Tichy, H. Giese, D. Schilling, and W. Pauls. Computing
Optimal Self-Repair Actions: Damage Minimization versus
Repair Time. In R. de Lemos and A. Romanovsky, editors,
Proc. of the ICSE 2005 Workshop on Architecting Depen-
dable Systems, St. Louis, Missouri, USA. ACM Press, May
2005.

[26] M. Tichy, D. Schilling, and H. Giese. Design of Self-
Managing Dependable Systems with UML and Fault Tole-
rance Patterns. InProc. of the Workshop on Self-Managed
Systems (WOSS) 2004, FSE 2004 Workshop, Newport Be-
ach, USA, October 2004.

[27] D. Weber. Formal Specification of Fault Tolerance and its
Relation to Computer Security.ACM SIGSOFT Engineering
Notes, 14(3), 1989. (International Workshop on Software
Specification and Design 1989).

[28] A. Zündorf. Rigorous Object Oriented Software Develop-
ment. University of Paderborn, 2001.


