
Story Diagrams – Syntax and Semantics 1 2 3

Technical Report
tr-ri-12-324

Markus von Detten, Christian Heinzemann, Marie Christin Platenius,
Jan Rieke, and Dietrich Travkin

Software Engineering Group, Heinz Nixdorf Institute
University of Paderborn

Zukunftsmeile 1
D-33102 Paderborn, Germany

[Markus.von.Detten|Christian.Heinzemann|Marie.Christin.Platenius|
Jan.Rieke|Dietrich.Travkin]@uni-paderborn.de

Stephan Hildebrandt
Department System Analysis and Modeling

Hasso-Plattner-Institut
Prof.-Dr.-Helmert-Str. 2-3

D-14482 Potsdam, Germany
stephan.hildebrandt@hpi.uni-potsdam.de

Version: 0.2

Paderborn, July 12, 2012

1This work was partially developed in the Collaborative Research Center 614, "Self-optimizing Concepts and
Structures in Mechanical Engineering" at the University of Paderborn and was published on its behalf and
funded by the Deutsche Forschungsgemeinschaft (DFG).

2This work was partially supported by the German Research Foundation (DFG) within the Collaborative Re-
search Centre “On-The-Fly Computing” (CRC 901).

3This work was partially developed in the project "ENTIME: Entwurfstechnik Intelligente Mechatronik" (De-
sign Methods for Intelligent Mechatronic Systems). The project ENTIME is funded by the state of North
Rhine-Westphalia (NRW), Germany and the European Union, European Regional Development Fund, "In-
vesting in Your Future".

Contents iii

Contents

1 Introduction 1
1.1 Extensions since the previous version . 2
1.2 Structure . 2

2 Foundations 3
2.1 Graphs and Graph Transformations . 3
2.2 Typed Attributed Graph Transformations . 6
2.3 Model Transformations . 7
2.4 The Type Graph in The Running Example 8

3 Concepts 11
3.1 Story Diagrams and Story Patterns in a Nutshell 11
3.2 Story Patterns . 13

3.2.1 General Idea . 13
3.2.2 Objects and Object Variables . 15
3.2.3 Links and Link Variables . 15
3.2.4 Binding of Variables . 16
3.2.5 Using Object Attributes . 21
3.2.6 Collection Variables . 24
3.2.7 Inclusion Links . 25
3.2.8 Link Constraints . 29
3.2.9 Maybe Links . 36
3.2.10 Pattern Constraints . 38

3.3 Story Diagrams . 38
3.3.1 General Idea . 39
3.3.2 Activities, Activity Parameters and Return Values 42
3.3.3 Activity Nodes, Activity Edges . 42
3.3.4 Activity Final Nodes . 43
3.3.5 Decision Nodes, Guards, and Loops 44
3.3.6 Propagation of Matchings . 46
3.3.7 Story Diagram Calls . 49

3.4 Expressions . 50

iv Contents

4 Complete Example 51
4.1 Motivation of the Example . 51
4.2 Story Diagram: Remove Interface Violation 52

4.2.1 Story Diagram: Copy Parameters 55
4.2.2 Story Diagram: Generate Method Stub 55

5 Related Work 59
5.1 Origins and Previous Work on Story Diagrams 59
5.2 Applications and Extensions of Story Diagrams 61
5.3 Work Related to Story Diagrams . 62

5.3.1 Endogenous, In-Place Model Transformations 63
5.3.2 Exogenous, Inter-Model Transformations 63

6 Conclusions and Future Work 65

Bibliography 67

A User Guide 73
A.1 Installation . 73

A.1.1 Installation Using the Eclipse Update Site – Users 73
A.1.2 Getting the Source Code From Repository – Developers 73

A.2 Getting Started – User Interface . 73
A.2.1 Story Diagram Editor . 73
A.2.2 Story Diagram Interpreter (Stephan) 73

B Execution of Story Diagrams 77
B.1 Interpreting Story Diagrams . 77

B.1.1 Interpreter Architecture . 77
B.1.2 Interpreting Story Diagrams . 84
B.1.3 Interpreting Story Patterns . 86

C Technical Reference 91
C.1 Package core . 91

C.1.1 Package Overview . 91
C.1.2 Detailed Contents Documentation 91

C.2 Package core::expressions . 94
C.2.1 Package Overview . 94
C.2.2 Detailed Contents Documentation 94

C.3 Package core::expressions::common 96
C.3.1 Package Overview . 96
C.3.2 Detailed Contents Documentation 96

C.4 Package storydiagrams . 100
C.4.1 Package Overview . 100

Contents v

C.4.2 Detailed Contents Documentation 100
C.5 Package storydiagrams::activities 101

C.5.1 Package Overview . 101
C.5.2 Detailed Contents Documentation 101

C.6 Package storydiagrams::activities::expressions 109
C.6.1 Package Overview . 109
C.6.2 Detailed Contents Documentation 109

C.7 Package storydiagrams::calls . 110
C.7.1 Package Overview . 110
C.7.2 Detailed Contents Documentation 110

C.8 Package storydiagrams::calls::expressions 113
C.8.1 Package Overview . 113
C.8.2 Detailed Contents Documentation 113

C.9 Package storydiagrams::patterns 115
C.9.1 Package Overview . 115
C.9.2 Detailed Contents Documentation 115

C.10 Package storydiagrams::patterns::expressions 124
C.10.1 Package Overview . 124
C.10.2 Detailed Contents Documentation 124

C.11 Package storydiagrams::templates 127
C.11.1 Package Overview . 127
C.11.2 Detailed Contents Documentation 127

1

Chapter 1

Introduction

The high complexity of modern technical systems poses great challenges to their development
process. Model-based development approaches are a promising means to tackle this complex-
ity. In such a model-based development approach, models are considered to be first-class arti-
facts of the development. They describe different parts of the system in development from dif-
ferent viewpoints and on different abstraction levels. For instance, models are used to describe
the structure and behavior of a software system, improving the overall comprehensibility of
the system. These models can then be employed to automatically generate code, reducing the
risks of implementation errors.

Even if two models have different viewpoints and are used for different purposes, their
information may overlap. Thus, models have to be translated into each other during such
a development process. To translate between different models and to keep them consistent,
model transformations can be applied. Model transformations are also used to define in which
way models can be changed, e.g., to specify refactoring operations.

Furthermore, model transformations themselves can be employed to precisely specify the
behavior of a system at run-time. If, for example, a system should react to environment
changes by reconfiguration, these reconfigurations can be described by model transformations
which define how to change the structure of the system. They furthermore allow a formal
analysis, e.g., to prove that certain properties still hold after applying a transformation.

Story diagrams [ZSW99, FNTZ00, Zün01] are a powerful visual formalism for specifying
model transformations, based on the well-known concept of graph transformation systems.
They feature declarative parts to specify object patterns which are matched and altered in
the source model and combine them with ideas from imperative programming to specify the
control flow of the transformation execution. The concrete syntax of story diagrams is based
on the concrete syntax of UML activities.

Since their introduction in 1998, story diagrams have been successfully applied in a wide
range of application scenarios and are now used for diverse purposes. Furthermore, several
extensions to story diagrams have been proposed. For instance, Story Decision Diagrams
(SDDs) [GK06] extend story diagrams with features of first-order-logic such as quantifica-
tion to allow the expression of complex properties like safety requirements. Timed Story Sce-
nario Diagrams (TSSD) [KG07] on the other hand are a story-diagram-based notation for the
specification of scenarios, integrating structural and temporal aspects.

2 Chapter 1. Introduction

Besides, some semantic issues have been identified in the original concept [TMG06]. In
addition, the main tool for the specification of story diagrams, the FUJABA tool suite, has
undergone major redesigns in the last years; these redesigns also affected the story diagram
implementation. Moreover, new approaches like the Story Diagram Interpreter have emerged.

In this technical report, we seek to provide a complete reference to the syntax and semantics
of story diagrams. It consolidates previous publications in a single document. We provide
definitions for the abstract and the concrete syntax as well as the semantics of story diagrams.

As an example, we show how story diagrams can be used to specify refactoring operations
on structural software models like class diagrams.

1.1 Extensions since the previous version
Compared to v0.1 of this report, the current version contains a number of additions. This
section briefly summarizes these extensions for readers that are familiar with the previous
report.

It introduces collection variables which allow the specification of sets of object variables
which have the same type (Section 3.2.6). Inclusion links can be used to add and remove
single object variables from a given object collection (Section 3.2.7). Link constraints can be
used to specify the order in which elements are reference by a multi reference (Section 3.2.8).
Furthermore, maybe links can now be used to circumvent the isomorphic matching for certain
object variables (3.2.9). Finally, the complete example in Chapter 4 has been extended to
contain examples of most of these additions.

1.2 Structure
The following chapter introduces important foundations like graph transformations that are
necessary for the understanding of story diagrams. Chapter 3 then describes the concepts used
in story patterns by explaining their abstract and concrete syntax as well as the semantics.
Chapter 4 gives a complex example by illustrating the specification of a refactoring opera-
tion with story diagrams. Related work is discussed in Chapter 5 while Section 6 concludes
the main part of the report. Appendix B deals with the execution of story diagrams by in-
terpretation. Finally, Appendix C contains the technical reference that documents the current
metamodel for story diagrams in detail.

3

Chapter 2

Foundations
This chapter introduces the foundations for working with story diagrams. Since story dia-
grams are based on graphs and corresponding graph transformations, we introduce the ba-
sics of graph transformations in Section 2.1. Story diagrams are built on an extension of this
simple graph model which is called typed attributed graph transformations (cf. Section 2.2).
These are based on so-called type graphs that allow to distinguish different types of nodes and
edges. Based on typed attributed graph transformations, we will introduce basic concepts of
model transformations in Section 2.3. Section 2.4 presents a type graph which we use in the
examples in this document.

2.1 Graphs and Graph Transformations
Graphs consist of nodes and edges where an edge always connects two nodes. Nodes are used
to represent objects and edges denote relationships between these objects. In the course of this
document, we assume edges to be directed, i.e., they have a source node and a target node. In
the most simple case, neither nodes nor edges have a predefined semantics [Roz97].

Figure 2.1: Simple Graph

Figure 2.1 shows an example of a simple graph with three nodes and four directed edges.
The nodes are visualized as circles, the edges are visualized as arrows. An edge may have the
same node as a source and target node. Such an edge is called a self-edge.

Graph transformation rules specify allowed modifications of graphs. They consist of a left-
hand side (LHS), a right-hand side (RHS), and a so-called rule morphism. Both, the LHS
and the RHS are graphs while the rule morphism specifies which nodes of the LHS and RHS

4 Chapter 2. Foundations

are considered to be the same. This information is required for the application of a graph
transformation rule to a graph.

Simple Rule

LHS RHS

Figure 2.2: Simple Graph Transformation Rule

Figure 2.2 shows an example of a graph transformation rule. The LHS contains only one
node with a self-edge. The RHS contains two nodes connected by an edge where the right
node of the RHS has a self-edge as well. The rule morphism is visualized by the gray, dotted
arrow. It specifies that the node of the LHS and the left node of the RHS are considered to be
the same.

The application of a graph transformation rule to a graph is called a graph transforma-
tion [EEPT06]. The graph on which the rule is to be applied is called the host graph. The ap-
plication of a graph transformation rule to a graph is performed in three steps. In the first step,
an occurrence of the LHS of the graph transformation rule in the host graph is searched. Such
an occurrence is called a match of the graph transformation rule. If a match has been found,
the second step is executed in which all nodes and edges that occur in the LHS but not in the
RHS are deleted from the host graph. In this step, the rule morphism is used to decide which
nodes do not occur in the RHS. In the third step, all nodes and edges that occur in the RHS but
not in the LHS are added to the host graph. After the application of the graph transformation
rule, there exists a match of the RHS into the host graph.

Figure 2.3 shows an example of a graph transformation that applies the graph transformation
rule of Figure 2.2 to the graph of Figure 2.1. The matching of the LHS into the host graph
is visualized by a gray, dotted line. Then, the graph transformation rule deletes the self-edge
from this node. Afterwards, a new node with a self-edge is created and connected to the
previously matched node by an edge. The match of the RHS into the host graph after the rule
application is again shown by gray, dotted lines.

Formally, identifying a matching of a graph transformation rule in a host graph requires to
identify a subgraph of the host graph which is isomorphic to the LHS. This is denoted as the
subgraph isomorphism problem which is known to be NP-complete [Epp95].

In the field of algebraic graph transformations, the two most popular approaches for apply-
ing a graph transformation rule to a graph are the double-pushout approach [Roz97] and the
single-pushout approach [Roz97]. The definition of story diagrams follows the single-pushout

2.1. Graphs and Graph Transformations 5

Simple Rule

LHS RHS

Host Graph before rule application Host Graph after rule application

Figure 2.3: Application of a Graph Transformation Rule

approach. Besides the more theoretical differences, the two approaches differ in the handling
of two special situations that might occur upon rule application.

The first situation is the following. Assume the left-hand side of a rule consists of two
nodes. The first node is to be deleted and the second one is to be preserved. Both of these
nodes may be matched to the same node in the host graph. In this situation, it is not clear if the
node in the host graph is to be deleted or preserved. The double-pushout approach explicitly
forbids the application of the rule in such situations. The single-pushout approach allows such
situations and gives deletion priority over preservation.

The second situation deals with dangling edges. It occurs if a certain node is to be deleted
but some of its connected edges are to be preserved. The transformation would lead to a non-
valid graph in which the edges would no longer have either a source or a target node. The
double pushout approach does not allow such situations and instead requires that connected
edges are explicitly deleted. The single-pushout approach allows such situations and implicitly
deletes edges if one of their source or target nodes is deleted.

In general, matches of graph transformation rules are homomorphisms of the LHS of the
rule to the host graph. That allows to match two nodes of the LHS to the same node of the
host graph leading to the first situation mentioned above. Such situations may be prevented by
using isomorphisms for matching the LHS. Then, each node of the LHS must be matched to a
unique node of the host graph. Thus, using isomorphic matchings prevents the first situation
when using single-pushouts.

6 Chapter 2. Foundations

In addition to LHS and RHS a graph transformation rule may specify negative application
conditions (NAC, [Roz97]). A NAC is an additional condition for a successful match. If the
subgraph specified by the NAC can be matched into the host graph, then the graph transfor-
mation rule must not be applied.

2.2 Typed Attributed Graph Transformations

Graphs and according graph transformations as introduced in Section 2.1 are a very basic ap-
proach for describing structures and their modification. When using graph transformations for
modeling behavior for object-oriented software or as a foundation for defining the semantics
of modeling languages, it is necessary to distinguish different types of nodes and edges in a
graph in order to give them semantics.

Therefore, typed attributed graph transformations [EEPT06] have been defined. Typed
attributed graph transformations introduce a type graph and node attributes. The type graph
defines different types of nodes and edges and it defines which types of edges are allowed to
be used in combination with which types of nodes. Additionally, nodes may carry attributes
like, e.g., objects in an object-oriented programming language. Moreover, the type graph
specifies inheritance relations between types of objects, a concept that is also known from
object-oriented programming languages. Thereby, a type graph specifies the structure of all
possible graphs.

Place Transition

NodeArc

Petrinet

*
target

Token

source

1

1
outgoing

incoming

** *

place

* 1

tokens

arcs nodes

name : String

Figure 2.4: An Exemplary Type Graph – Metamodel for Petrinets

As an example, Figure 2.4 shows a simple type graph for petrinets. A Petrinet consists of
Nodes and Arcs. An Arc connects two nodes, which it refers as source and target. As usual,
there exist two types of nodes: Places and Transitions, where Places may contain a number
of Tokens.

The type graphs can be created, e.g., by using an arbitrary metamodeling language. Exam-
ples include Ecore [SBPM08], MOF [Obj11a], and UML [Obj10b].

The modifications of a typed attributed graph are specified by typed attributed graph trans-
formation rules. In these rules, all nodes and edges are typed over the type graph. The match-
ing needs to respect these types.

2.3. Model Transformations 7

Sink
LHS RHS

p : Place

a : Arc

▼ outgoing

p : Place

t : Token

▼ tokens

p : Place

NAC

t : Transition

p2 : Place

a2 : Arc

▲ target

▼ target ▲ outgoing

Figure 2.5: Typed Attributed Graph Transformation Rule

Figure 2.5 shows an example of a typed attributed graph transformation rule that specifies
the behavior for a sink using a concrete syntax as used by Ehrig et al. [EEPT06]. In a petrinet,
a sink is a transition that has no outgoing place. Then, the transition consumes tokens without
producing new tokens. The rule matches a Place with a Token in its LHS. Upon application,
the Token is deleted. The rule, however, may only be applied if the place p is connected to a
sink, which is ensured by the NAC. The NAC specifies a subgraph where p is connected to a
Transition that has an outgoing Arc to a Place. If such subgraph can be matched, the rule is not
applicable. The rule morphisms is indirectly specified by the names of the nodes, as proposed
by Ehrig et al. [EEPT06].

2.3 Model Transformations
A model transformation modifies or translates different kinds of models. We use graph trans-
formations to specify model transformations formally. In the context of model transforma-
tions, the host graph of a graph transformation is called instance model1 (or simply model).
Instance models are specified in a certain language, often a domain-specific language (DSL)2.
Thus, the type graph represents the abstract syntax of the language used and is part of the cor-
responding metamodel [Küh06] for this language. By replacing the metamodel we are able to
specify transformations for models specified in various languages.

The type graph or the abstract syntax of the language used to describe the instance models is,
in our case, described by a set of classes and their relations which define all potential instance
models. These classes and relations constitute a so-called type model (the actual type graph).
An instance model always contains objects and links (nodes and edges) that are instances of
the classes and relations defined in the corresponding type model.

If a graph transformation transforms a model based on a given type graph into a model
based on the same type graph (modification of the model), the transformation is called en-

1Thomas Kühne calls it token model [Küh06].
2The language can be textual or graphical.

8 Chapter 2. Foundations

dogenous (also known as in-place transformation). Otherwise, i.e., the transformation trans-
forms a model based on a given type graph into a model based on another type graph (transla-
tion), the transformation is called exogenous (also known as model-to-model transformation).
In principle, story diagrams are endogenous graph transformations. By combining the type
graphs of the source model and the target model, story diagrams may also be used to specify
exogenous graph transformations.

2.4 The Type Graph in The Running Example
The type graph used in the examples in this report describes the structure of an abstract syn-
tax tree for programming languages. In particular, it is an updated and slightly simplified
version of the generalized abstract syntax tree (GAST) metamodel developed in the QBench
project [QBe06]. The GAST was developed to provide a unified syntax tree model for dif-
ferent programming languages like Java, C, and C++. Figure 2.6 shows an excerpt of that
metamodel. Some specialized subclasses have been omitted for clarity reasons.

Root

File

+ pathName: String
+ linesOfCode: int

Package

+ name: String

root1

root

packages**

subPackages

surroundingPackage

GlobalFunction Method

Function

+ name: String
+ visibility: int
+ abstract: boolean

surroundingPackage

globalFunctions *

GASTClass

+ name: String

surroundingPackage classes

*

surroundingClass

methods

*

GlobalVariable Field

surroundingPackage surroundingClass
** globalVariables fields

Variable

LocalVariable FormalParameter

GASTType

+ qualifiedName: String

localVariables*

surroundingFunction

surroundingFunction

formalParameters*

type

1

BlockStatement

Statement Access

FunctionAccess VariableAccess
surroundingFunction body

1

1

targetFunction

statement

blockStatement

*

parentStatement accesses

*

1

targetVariable

DeclarationType
Access

1 accessedTarget

1

returnType
Access

*
overridden

Member
CastType
Access

accessedTarget

1

InheritanceType
Access

*

1

accessedClass

inheritance
TypeAccess

Figure 2.6: Type Graph of a Generalized Abstract Syntax Tree (GAST) for Object-Oriented
Programming Languages [QBe06]

The following description of the classes in the type graph is based on [Tra11].

Root The Root element is the central element of every GAST model. All other elements are
reachable from the Root node via composition relations.

2.4. The Type Graph in The Running Example 9

File Elements of the GAST, e.g., classes and packages, can be assigned to files in the file
system. A File element holds references to those classes and packages and a String
containing the path to the file.

Package Similar to packages in Java, the Package element provides name spaces and visi-
bilities. A Package element can contain other packages, classes, global variables, and
functions.

GASTType The GASTType element represents data types like primitive data types and
classes. The attribute qualifiedName contains the unique, fully qualified name of the
type.

GASTClass Classes are represented by the element GASTClass in the GAST and are a sub
type of the GASTType. A GASTClass holds references to its methods, attributes, and
inner classes. A GASTClass can be assigned to a Package.

Function Function is the super type for all executable operations. In addition to attributes
for its name, visibility and abstractness, a Function can have a number of local variables
and formal parameters. The return type of a Function is determined by its DeclarationTy-
peAccess, a sub class of Access. A Function always contains a block statement which,
in turn, can contain other statements.

GlobalFunction A GlobalFunction element represents a globally accessible operation, i.e.,
an operation that does not belong to a class. It can be assigned to a name space defined
by a package. For example, C functions are represented by GlobalFunctions.

Method Functions that belong to a class are represented by Method elements, a sub type of
Function. They can reference methods which they override by means of the overridden-
Member association.

Variable Variable is a super type for all kinds of variables. A Variable always has a name and
a type.

LocalVariable LocalVariables are variables that are contained in a Function.

FormalParameter FormalParameters are variables that represent the parameters of a Func-
tion.

GlobalVariable GlobalVariables are variables that are globally accessible within a given
scope. The scope is determined by the package in which the GlobalVariable is contained.

Field The Field element represents class variables. Therefore it is contained in a GASTClass.

Statement A Function consists of a number of Statements. There are multiple sub classes of
Statement which represent the different kinds of statements. Most of them are omitted
here. A Statement can contain a number of Accesses.

10 Chapter 2. Foundations

BlockStatement The BlockStatement is a special kind of statement which can contain other
Statements. It is the root element of all Statements contained within a Function.

Access An Access represents the use of a Variable or a Function. It always belongs to a
certain Statement.

FunctionAccess A FunctionAccess represents the use of a Function in a Statement and
therefore references the accessed Funtion element.

VariableAccess A VariableAccess represents the use of a Variable in a Statement and
therefore references the accessed Variable element.

DeclarationTypeAccess The return type of a method can be specified by a DeclarationTy-
peAccess. It points to the GASTClass which specifies the return type.

CastTypeAccess A CastTypeAccess specifies the target type of a type cast. It can occur,
for example, in a Statement.

InheritanceTypeAccess An InheritanceTypeAccess is used to reflect the inheritance rela-
tionships of a GASTClass. A class can have arbitrarily many InheritanceTypeAccesses
but each of these accesses has only one target GASTType.

11

Chapter 3

Concepts

This chapter presents the concepts used in story diagrams. It begins with a short presentation
of the general ideas of story diagrams and story patterns. Section 3.2 then proceeds to explain
story patterns in detail. It is followed by Section 3.3 which describes how story patterns are
used in story diagrams and also presents calls between different story diagrams. Section 3.4
briefly covers the expressions that can be used in story diagrams.

3.1 Story Diagrams and Story Patterns in a Nutshell

In model-driven software development, a software model is the key artifact of the develop-
ment. It describes the software’s structure as well as its behavior and can be translated into
executable source code or be interpreted to be executed. The UML offers notations for the
description of the software structure and behavior, besides others class diagrams and activi-
ties. However, since UML activities use natural language in the activity nodes to describe the
particular activities, they are not automatically executable. Thus, a formal behavioral speci-
fication is needed. For that purpose, story diagrams have been developed [FNTZ00, Zün01].
They are based on UML activities [Obj10b] and replace the natural language with a formal
language to specify behavior and, thus, can be automatically executed.

A story diagram specifies a model transformation. In terms of the classification of model
transformation languages proposed by Czarnecki and Helsen [CH06], story diagrams are an
endogenous, in-place transformation language (see also Section 2.2).

Story diagrams describe the control flow similar to UML activities by means of activity
nodes and activity edges. The behavior of each activity node is described using a graph trans-
formation language called story patterns. Each activity node embeds one story pattern. A
story pattern uses a graphical notation to specify modifications of object structures in object-
oriented software systems. The modifications are basically creations and removals of objects
and their interconnections (links).

Using a simple and familiar notation, story patterns are similar to UML object diagrams
(see the embedded story pattern in Figure 3.2). A story pattern represents an object structure
that is to be modified. It includes annotations specifying which objects and links are to be
removed and created. Story patterns are a declarative language since they only specify what
to remove and create but not how to do it and in which order. This way, the complexity of the

12 Chapter 3. Concepts

behavioral specifications is reduced. In contrast to the deterministic control flow specified by
activity nodes and edges which determine the order of story pattern executions, the order of
creations and deletions specified by a story pattern is non-deterministic.

Story patterns are based on the well-known formalism of graph transformation systems and
the corresponding theory [Roz97]. Thus, precise analyses of the operations described by story
patterns are possible, e.g., it can be checked if certain properties of the object structure to be
modified remain after the structure’s modification [Sch06, Mey09].

A story pattern specifies a graph transformation rule [Roz97] (see Section 2.1). Given a so-
called host graph, i.e. the graph to be modified, a graph transformation removes and creates
nodes and edges in the given host graph. The host graph is a typed attributed graph where
the graph specified in the graph transformation is searched for (graph matching) and modified
afterwards (see Chapter 2 for more details).

In case of story patterns, the host graph is the object structure or model to be modified, i.e.
the run-time data of the executed software. Thus, we call the host graph’s nodes and edges
objects and links while the host graph itself is called instance model (or simply model) in the
remainder of the report. The type graph is a set of classes and their relations which define all
potential instance models at run-time. These classes and relations constitute a so-called type
model (see Section 2.3). Furthermore, we call the nodes and edges in story patterns object
variables and link variables since these represent and are matched to objects and links in the
instance model. The types of these variables are determined by types in a type model which is
a prerequisite to story patterns.

▼ attributes

removeAttribute(text: String): boolean

Class

*

1

name: String

Attribute

Figure 3.1: Exemplary Type Model

Class::removeAttribute(text: String): removed: boolean

this
attributes

►

Remove the attribute with the given name

[failure]

removed := false

[success]

removed := true

a: Attribute

name = text

«destroy»

Figure 3.2: Exemplary Story Diagram

For example, the class diagram in Figure 3.1 defines the types Class and Attribute as well
as their relations, attributes, and operations. The corresponding story diagram in Figure 3.2
defines the behavior of the removeAttribute method defined in the class diagram. Here, the
story diagram specifies that a class’s attribute with the name given by the parameter text
is to be found in the instance model and in case of success this attribute is to be removed
(«destroy»).

Graph matching includes the subgraph isomorphism problem which is known to be NP-
complete [Epp95]. To reduce the problem in the average case, the implemented graph match-

3.2. Story Patterns 13

ing approach for story patterns uses a subgraph isomorphism for at least one node as input, i.e.
at least one node in the left-hand side of a graph transformation rule (object variable in a story
pattern) is already matched to a certain node in the host graph (object in an instance model).

In summary, a story diagram is a special, formally defined UML activity that embeds graph
transformation rules, so-called story patterns, in its activity nodes to precisely describe run-
time behavior by means of graph transformations.

3.2 Story Patterns

In this section, we introduce story patterns in more detail. We start by giving the general idea
of story patterns in Section 3.2.1. Thereafter, we describe the basic concepts of story patterns,
namely object variables, link variables, and their respective binding semantics in Sections
3.2.2 to 3.2.4. Finally, we show the use of object attributes in a story pattern in Section 3.2.5.

3.2.1 General Idea

Story patterns are typed attributed graph transformation rules with inheritance on object types
(cf. Section 2.2) that can be embedded into an activity node of a story diagram (cf. Sec-
tion 3.3). By using a type model as introduced in Section 2.2, story patterns enable polymor-
phism for matching object and link variables. This allows for specifying graph replacement
rules for object-oriented models.

Object and link variables are matched to the objects and links of the instance model. In con-
trast to typed attributed graph transformations, story patterns explicitly require to use isomor-
phic matchings, i.e., two object variables of a story pattern may not be matched to the same
object of the instance model.

For enabling a concise notation of the graph transformation, story patterns apply a short-
hand notation depicting the left-hand side (LHS) and the right-hand side (RHS) in a single,
annotated graph using stereotypes. In the short-hand notation, we use binding operators for
defining the LHS and the RHS. Object and link variables representing objects and links not
to be changed by the story pattern carry no stereotype. Object and link variables representing
objects to be created (or deleted) are annotated with «create» (or «destroy», respectively).
Consequently, the LHS consists of all object and link variables that carry no stereotype or
the stereotype «destroy». The RHS consists of all object and link variables that carry no
stereotype or the stereotype «create». The deletion of objects and links follows the single-
pushout approach (cf. Section 2.1).

Figure 3.3 shows an example of a single story pattern that redirects a method call from an
old method to a new method. In the example, the object variables parentClass, oldMethod,
and newMethod are bound variables, i.e., they already refer to objects of the instance model
(cf. Section 3.2.4.1). The object variables anyMethod and c are unbound. When applying the
story pattern, first a match for anyMethod and c is searched in the instance graph. A possible
match will be any method in parentClass which contains a call to oldMethod. If the matching

14 Chapter 3. Concepts

parentClass oldMethod

anyMethod: Method

▼ methods

c: Call

methods

►

statements

►

▲ accessedTarget

newMethod

▼ accessedTarget

«destroy»

«create»

Figure 3.3: Example of a Story Pattern

is successful, the link from c to oldMethod will be deleted and the link from c to newMethod
will be created.

In the concrete syntax of story patterns, the object and link variables representing objects
and links not to be modified by the story pattern are visualized in black. Object and link
variables representing objects and links to be destroyed are annotated with «destroy» and
visualized in red. Object and link variables representing objects and links to be created are
annotated with «create» and visualized in green. An unbound object variable is labeled
with its name and the name of the corresponding type. For bound object variables, we omit
the name of the type (e.g., parentClass in Figure 3.3).

In general, the matching process is executed as a three step process: first, a matching is
searched which uses the bound variables of the story pattern as a starting point. The matching
associates objects and links of the instance model to all object and link variables of the story
pattern. The matching is performed as defined for typed attributed graph transformations and
considers all object and link variables of the LHS. If a matching can be obtained, the story
pattern is applicable and the execution proceeds. Otherwise the execution of the story pattern
is aborted. In the second step, all objects and links matched to object and link variables
annotated with «destroy» are deleted. Finally, objects and links are created in the instance
model for all variables annotated with «create».

When the matching of a story pattern is successful, the specified modifications are always
executed. If the matching step fails, no modifications are executed and thus the story patterns
has no side effects. There are a few corner cases when the specified modification is infeasible
due to contradictory constraints (see Section 3.2.8.2). In this case, the execution of the story
pattern is aborted with an exception.

Story patterns aim to reduce the computational complexity of the matching process (cf.
Section 2.1) by using bound variables. We require at least one bound object variable in each
story pattern which is used as a starting point for the matching process.

3.2. Story Patterns 15

3.2.2 Objects and Object Variables

Object variables in a story pattern represent the objects in an instance model to be matched.
The variables are uniquely identified by their name. The objects are instances of classes of the
underlying type model (cf. Section 2.2). Thus, the object variables are typed by classes from
this model.

The story pattern in Figure 3.3 contains five object variables with the names parentClass,
oldMethod, anyMethod, c and newMethod. The type of an object variable is only visualized if
the variable is unbound or maybe bound (cf. Section 3.2.4.1). For example, the object variable
anyMethod has the type Method.

Object variables have binding states, binding operators and binding semantics which are
described in Section 3.2.4.

3.2.3 Links and Link Variables

Link variables represent connections between objects and are used to connect different object
variables. A link variable is typed over one or two corresponding EReferences that conceptu-
ally represent a uni-directional (only one EReference) or a bi-directional (two EReferences)
association in the underlying type graph.

Figure 3.4 a) shows an exemplary type graph with an association between the classes
Method and GASTType. Technically, this association corresponds to two EReferences meth-
ods and parameterTypes. Figure 3.4 b) shows a story pattern with a link variable typed via
this association.

method:Method
methods

string:GASTType

b) Example story pattern with a bidirectional link variable

c) Example story pattern with two bidirectional link variables

Method
parameterTypes

GASTType

a) Example type graph

methods

parameterTypes

method:Method methods string:GASTType

parameterTypes

methods

parameterTypes

Figure 3.4: An association between objects

16 Chapter 3. Concepts

If two object variables are connected via two link variables that refer to the same refer-
ence, the target object in the underlying model has to be contained twice in the source model.
However, this is not possible for unique references.

An example for this is shown in Figure 3.5. The upper part of the figure shows an excerpt of
a type graph and the lower part shows an exemplary story pattern with two object variables and
two link variable between them. The semantics is that a method method has two parameters of
the same type string. The same holds for bidirectional link variables as depicted in Figure 3.4
c).

Method
parameterTypes

GASTType

method:Method
parameterTypes

string:GASTType
parameterTypes

a) Example type graph

b) Example story pattern

Figure 3.5: Two link variables between objects

Like object variables, link variables also have binding operators and binding semantics (cf.
Section 3.2.4), but no binding state because link variables are bound implicitely.

3.2.4 Binding of Variables
Object variables have binding states (unbound, bound, maybe bound), binding semantics
(mandatory, negative, optional), and binding operators (check only, create, destroy). Link
variables have binding operators and binding semantics. Their meaning is described in the
following.

3.2.4.1 Binding States

An object variable or a link variable can be declared as bound, unbound, or maybe bound (i.e.,
it is unknown if the variable is bound or not). This is defined by its binding state. An unbound
variable is matched during the execution of the containing story pattern. A bound variable
must have been matched previously. For a variable that is specified as maybe bound, a new
match will only be determined if it has not been bound before. Otherwise it will be treated as
a bound variable. This is useful, if the same pattern should be used in different contexts, i.e.,
the bound variable of the pattern differs depending on the context but otherwise the patterns
are identical. Without maybe bound variables, different patterns would have to be modeled
that only differ in which variable is the bound variable of the pattern. With maybe bound

3.2. Story Patterns 17

variables, all variables can be set to maybe bound and the caller specifies a binding for one of
them depending on the context.

Unbound object variables are visualized with an underlined label of the form “name: Type”
(cf. Figure 3.6 a)). For bound object variables the type is hidden, as depicted in Figure 3.6 b).
Maybe bound object variables are represented like unbound object variables, but are marked
by a question mark after the name (cf. Figure 3.6 c)).

In a valid story pattern, each connected component1 must contain at least one bound ob-
ject variable or created variables only. This is necessary to avoid a search over the whole
underlying instance model which requires a long runtime in most cases (cf. Section 3.2.1).

m: Method

a) Unbound

object variable

b) Bound

 object variable

c) Maybe bound

object variable

m m?: Method

Figure 3.6: Binding States for Object Variables

3.2.4.2 Binding Semantics

Object variables and link variables have binding semantics that determine if a variable is
mandatory, negative or optional. A match for mandatory variables must exist in the given
instance model, otherwise the pattern matching fails. In contrast, negative variables constitute
so-called negative application conditions (NACs) and must not exist in the instance model. If
a variable defined as negative can be matched during the execution of the story pattern, the
pattern matching fails. Matches for optional variables may exist. An optional variable will be
bound if possible, but the story pattern may also be matched successfully otherwise.

Negative object variables are visualized crossed-out (cf. Figure 3.7 b)) and optional object
variables are visualized with a dashed border (cf. Figure 3.7 c)). The same holds for negative
and optional link variables (cf. Figure 3.7 e) and f)).

Negative as well as optional object and link variables are not part of a connected compo-
nent. This means, the graph has to be still connected when ignoring optional and negative
parts. However, optional and negative object variables must be reachable from a connected
component. Consequently, regarding the rule that each connected component must contain at
least one bound object variable (cf. Section 3.2.4.1), there are situations in which the use of
negative or optional object variables is not allowed. Figure 3.8 shows these situations. Case

1With “connected component” we mean a subgraph in which each object variable is reachable from at least one
bound object variable via directed link variables.

18 Chapter 3. Concepts

a) is allowed but case b) is not because, in the latter case, the graph without the negative and
optional elements is not a connected component anymore. Case c) is allowed because the ob-
ject variables a and c are bound which means that each connected component has at least one
bound object variable. Accordingly, case d) is allowed, too, because a and b are both bound.
Case e) is not allowed while Case f) is. Case g) is not allowed because the semantics is the
same as in Case a) due to the single-pushout approach of story patterns.

Similar to the application of negative object variables, Figure 3.9 shows some examples for
the application of optional object variables. While case a) is allowed, case b) is not allowed
because in this case the shown graph is not connected anymore. However, case c) and d) are
allowed because each connected component contains at least one bound object variable. Cases
e) and f) are also allowed.

m: Method m: Method m: Method

methods

►

methods

►

methods

►

a) Mandatory object b) Negative object c) Optional object

d) Mandatory link e) Negative link f) Optional link

Figure 3.7: Binding Semantics for Object and Link Variables

3.2.4.3 Binding Operators

Binding operators define whether an object or link is to be created, deleted, or just matched
in the instance model. After all elements that are defined to be deleted or just matched have
been matched, the model is modified by deleting and creating the elements as defined (see
Section 3.2.1).

It may happen that a matching is successful but that the specified creation is infeasible.
For instance, constraints imposed upon the elements to be created may be contradictory (see
Section 3.2.8.2). Of course, it is not sensible to specify such constraints but it cannot always
be checked statically if constraints are contradictory or not. If such a situation is detected at
execution time, the execution of the story diagram is aborted.

Objects and links to be created are marked with the stereotype «create» (cf. Figure 3.10
b) and e)) and objects and links to be deleted are marked with the stereotype «destroy» (cf.
Figure 3.10 c) and f)).

3.2. Story Patterns 19

a b:B

a b:B

a b:B

a b

a b:B

a b:B

c

c:C

c:C

a)

b)

c)

d)

e)

f)

g) a b:B

matching pattern well-formed

yes

no

yes

yes

no

yes

no

Figure 3.8: Negative Application Conditions

Since no objects and links exist for variables marked with «create», they also do not
belong to a connected component (like negative or optional variables).

3.2.4.4 Feasible Binding Combinations

Binding states, binding semantics and binding operators can be arbitrarily combined, but only
certain combinations are feasible. Table 3.1 lists all feasible binding combinations for object
variables. As shown there, bound and maybe bound object variables must not have negative
or optional binding semantics. As well, the combination of the binding states bound or maybe
bound and the binding operator create is not allowed.

The feasible combinations of binding semantics and binding operators for link variables are
given in Table 3.2. Link variables have no binding state.

20 Chapter 3. Concepts

Table 3.1: Feasible Combinations of Binding States, Binding Semantics, and Binding Opera-
tors for Object Variables

Binding State Binding Semantics Binding Operator Feasible
UNBOUND MANDATORY CHECK_ONLY yes
UNBOUND MANDATORY CREATE yes
UNBOUND MANDATORY DESTROY yes
UNBOUND NEGATIVE CHECK_ONLY yes
UNBOUND NEGATIVE CREATE no
UNBOUND NEGATIVE DESTROY no
UNBOUND OPTIONAL CHECK_ONLY yes
UNBOUND OPTIONAL CREATE yes
UNBOUND OPTIONAL DESTROY yes

BOUND MANDATORY CHECK_ONLY yes
BOUND MANDATORY CREATE no
BOUND MANDATORY DESTROY yes
BOUND NEGATIVE CHECK_ONLY no
BOUND NEGATIVE CREATE no
BOUND NEGATIVE DESTROY no
BOUND OPTIONAL CHECK_ONLY no
BOUND OPTIONAL CREATE no
BOUND OPTIONAL DESTROY no

MAYBE_BOUND MANDATORY CHECK_ONLY yes
MAYBE_BOUND MANDATORY CREATE no
MAYBE_BOUND MANDATORY DESTROY yes
MAYBE_BOUND NEGATIVE CHECK_ONLY no
MAYBE_BOUND NEGATIVE CREATE no
MAYBE_BOUND NEGATIVE DESTROY no
MAYBE_BOUND OPTIONAL CHECK_ONLY no
MAYBE_BOUND OPTIONAL CREATE no
MAYBE_BOUND OPTIONAL DESTROY no

3.2. Story Patterns 21

a b:B

a b:B

a b:B

a b

a b:B

a b:B

c

c:C

c:C

a)

b)

c)

d)

e)

f)

matching pattern well-formed

yes

no

yes

yes

yes

yes

Figure 3.9: Optional Object and Link Variables

3.2.5 Using Object Attributes

The objects of our instance model carry attributes. During the application of a story pattern,
these attributes can be used twofold. First, object constraints can be specified to restrict the
attribute values to a certain range, thereby restricting the possible matches of a story pattern.
Second, attribute values can be changed during the graph rewriting step after a successful
matching.

We use object constraints to restrict the matching of object variables to objects of the in-
stance model that have specific attribute values. Thus, object constraints are considered to
be part of the LHS and do not change the instance model. The object constraints of an ob-
ject variable are checked directly after matching the object variable. Figure 3.11 shows an
example.

In the example, we match a method being contained in the class represented by the object
variable theClass. The match is restricted to a method which has the name "getName".

The values of attributes that are not restricted by an object constraint are not considered
during the matching. Thus, they may have an arbitrary value. In the current version of story
patterns, object constraints need to be specified using OCL [Obj10a]. Besides equality checks,

22 Chapter 3. Concepts

m: Method m: Method m: Method

«create» «destroy»

«create»
methods

►

«destroy»
methods

►

methods

►

a) Object to be matched b) Object to be created c) Object to be destroyed

d) Link to be matched e) Link to be created f) Link to be destroyed

Figure 3.10: Binding Operators for Object and Link Variables

Table 3.2: Feasible Combinations of Binding Semantics and Binding Operators for Link
Variables

Binding Semantics Binding Operator Feasible
MANDATORY CHECK_ONLY yes
MANDATORY CREATE yes
MANDATORY DESTROY yes

NEGATIVE CHECK_ONLY yes
NEGATIVE CREATE no
NEGATIVE DESTROY no
OPTIONAL CHECK_ONLY yes
OPTIONAL CREATE yes
OPTIONAL DESTROY yes

all comparative operations on the attributes of an object supported by OCL can be used as
object constraints.

Besides object constraints, attribute assignments can be used to change the value of an
attribute during the application of a story pattern. Thus, attribute assignments are considered
to be part of the RHS. When using attribute assignments, the value of the attribute is not
considered while matching the LHS to the instance model. Figure 3.12 shows an example.

In the example, the story pattern matches a method with an arbitrary name in the class
theClass. Then, the name of the method is changed to "getMethodName".

The concrete syntax of an attribute assignment is

< a t t r i b u t e A s s i g n m e n t > : : = # A t t r i b u t e . name ’ := ’ E x p r e s s i o n

3.2. Story Patterns 23

theClass
methods

►

method: Method

name = „getName“

Figure 3.11: Matching Pattern with an Object Constraint

theClass
methods

►

method: Method

name := „getMethodName“

Figure 3.12: Using an Attribute Assignment

The expression is to be specified using OCL. The type of the return value of the OCL expres-
sion must be assignable to the type of the attribute. Since the attribute value is changed as part
of the RHS, the assignment is visualized in green color.

Story patterns also enable to use both, an object constraint and an attributed assignment for
the same attribute inside one object variable. Then, the object constraint is used during the
matching step. The attribute value of the object matched to the corresponding object variable
is then changed as specified by the attribute assignment while enforcing the RHS.

theClass
methods

►

method: Method

name = „getName“

name := „getMethodName“

Figure 3.13: Using an Object Constraint and an Attribute Assignment on the Same Attribute

Figure 3.13 combines the story patterns of Figure 3.11 and 3.12. The story pattern matches
an object of type Method which has the name getName. If the matching was successful, the
name of the object bound to method is set to getMethodName as defined by the attribute
assignment.

The OCL statements we allow for object constraints and attribute assignments must not
traverse the references of the object variables. Both may only use the attributes of object
variables in the same story pattern and arbitrary arithmetic, comparing, and logical operations
on them.

24 Chapter 3. Concepts

3.2.6 Collection Variables

Collection variables are special cases of object variables. They represent an arbitrary number
of objects in an instance model that are of the same type. Thus, a collection variable has the
type of the objects within the collection2.

Figure 3.14 depicts an example story pattern that contains a collection variable methods.
During the matching, all methods in the class that is bound to the object variable myClass are
bound to the collection variable methods.

myClass

methods:Method

methods

▼

Figure 3.14: Collection Variable Example

The elements in collection variables are always ordered. Collections can be specified to
only contain unique elements or to allow the same element to be contained multiple times.
This leads to two different types of collections: ordered sets and lists. Their semantics are
similar to collection types in OCL: Elements in ordered sets are ordered and unique. Elements
in a list are ordered, but not necessarily unique.

Figure 3.15 depicts the concrete syntax of the two collection types.

«Ordered Set»

methods: Method
«List»

methods: Method

unique elements multiple elements

ordered

Figure 3.15: Types of collection variables: Ordered Set and List

Two matched collection variables in the same story pattern do not have to be disjoint. Thus,
isomorphism is not enforced for the content of two or more collection variables. Link variables
between two collection variables are not allowed.

An attribute determines if the collection represented by a collection variable can be empty. If
this is the case, a collection variables is considered to be optional in a matching. Additionally,
object constraints can be used to specify the allowed size of the collection using OCL.

As the matching of collection variables is implicitly optional, their binding semantics can-
not be set to “optional”, explicitly. Negative collection variables are not allowed. Further-
more, collection variables in combination with a «create» binding operator are not allowed:

2We do not explicitly model collection objects in story diagrams. The type of a collection variable is that of the
contained objects and not the type of a collection object like java.util.Collection

3.2. Story Patterns 25

collection variables can only be used in combination with the binding operators “check only”
or «destroy».

3.2.7 Inclusion Links
There are cases when you want to add additional objects to a set of objects matched to a
collection variable as described in Section 3.2.6. For example, when collecting all methods in
a class hierarchy that comply to a certain method signature, you would go through all classes
in the hierarchy and add complying methods step by step. Since a collection variable does not
explicitly represent a collection object in the sense of Java (as described in Section 3.2.6, we
need a way to describe the addition or removal ofobjects to or from such an object collection
as well as checking if an object is included in an object collection. We introduce inclusion
links for this purpose.

methods «create»
aMethod

methods «destroy»
aMethod

methods m: Method

methods m: Method

methods m: Method

all selection

a)

b)

c)

d)

e)

f)

methods aMethod

g)

Figure 3.16: Notation of Inclusion Links

myClass

methods:Method

methods

▼

methods

myClass superClass:Class
superClass ►

«create»
new:Method

methods

▼

Figure 3.17: Add an Object to a Collection

An inclusion link represents a containment relation between two variables in a story pattern.
It can be used between a collection variable and another variable to specify that an object (or a
set of objects) represented by a variable is contained in an object set represented by a collection
variable. An inclusion link is represented by a line between a collection variable and another
object variable as illustrated in Figure 3.16 a). The circle containing a plus determines which
of the two sides of the link is containing the other one. In Figure 3.16 a), the collection
methods contains an object aMethod.

In contrast to link variables that are typed over an association, inclusion links are not typed
at all. They only represent a containment of an object in a collection of objects. But similar to

26 Chapter 3. Concepts

link variables, this relation can be checked to be existent between a collection and an object
or be used to match new objects. While the pattern in Figure 3.16 a) specifies to check if the
object aMethod is contained in the collection methods, the pattern in Figure 3.16 b) specifies
to match a Method object which is contained in the collection methods.

Similar to other links, inclusion links can be used with object variables that are bound, un-
bound, or maybe-bound. Inclusion links can also be negative or optional and can be combined
with «create» or «destroy» stereotypes (see Figure 3.16 a) to f)). Case c) in Figure 3.16
defines that the matching is only successful if no Method object can be found in the methods
collection. Accordingly, case d) specifies to optionally match a Method object contained in
the methods collection (see the description of binding semantics in Section 3.2.4.2 for details).
Case e) specifies to create an inclusion relation between the object aMethod and the collection
methods, i.e., to add the object aMethod to the collection methods. Analogously, case f) spec-
ifies to remove the object aMethod from the collection methods. Furthermore, inclusion links
can also be used between two collection variables as illustrated in Figure 3.16 f) to check if
all objects in the collection selection are contained in the collection all.

By means of inclusion links, a collection variable that has been matched to a set of objects
can be modified afterwards by adding or removing objects. Using story diagrams as described
in Section 3.3, one can, for example, collect a set of Method objects in a collection methods
as illustrated in the first story node in Figure 3.17 and then add another Method object to the
same collection in a following story node that reuses the previously matched set of objects.

methods sel: Method c: Class
returnType

all selection anotherSelection

methods sel1: Method sel2: Method

type

returnType

:Parameter

parameters

a)

b)

c)

methods m: Method aClass
methods

d)

Figure 3.18: Exemplary Uses of Inclusion Links

Inclusion links can be used in combination with link variables. In Figure 3.18 we give
some examples for possible uses. In case a) the story pattern specifies that a Method object
is to be found which is defined in a class aClass, but which is not contained in the collection
methods. Case b) specifies to find a collection sel of Method objects which are contained in
the collection methods and do not have a return type that is a Class object. The pattern in case
c) checks whether a set of objects described by the collection all contains another set of objects
described by the collection selection which in turn contains another set of objects described by

3.2. Story Patterns 27

the collection anotherSelection, i.e., anotherSelection is a subset of selection and selection is
a subset of all. The pattern in case d) specifies to find two object sets that are subsets of another
set. First, a collection sel1 of Method objects which have the return type type is to be found in
the collection methods. Second, a collection sel2 of Method objects which additionaly have
no parameters is to be found in the collection sel1.

3.2.7.1 Feasible Uses of Inclusion Links

Inclusion links can be used exactly like link variables except that the source of an inclusion
link has to be a collection variable.

Inclusion links can be used with all available binding semantics as described in Sec-
tion 3.2.4.2. Consequently, if you replace a negative or optional link variable in Figures 3.8
and 3.9 with a negative or optional inclusion link (independent of the inclusion link’s direc-
tion and assuming that an inlucion link’s source is a collection variable), you get the feasible
combinations of binding semantics used with inclusion links.

Moreover, you get all feasible combinations of binding operators and inclusion links from
Table 3.2 in Section 3.2.4.3.

In addition, different combinations of collection variables connected to a bound or unbound
variable and to a single object variable or a collection variable are feasible as illustrated in
Figure 3.19.

3.2.7.2 Collection Operations with Inclusion Links

Inclusion links cannot only be used between a collection variable and a single object vari-
able as shown in Figure 3.16 (p. 25), but also between two collection variables as shown in
Figure 3.20. The semantics for this case are explained in the following.

An inclusion link between two collection variables represents a containment relation be-
tween two sets of objects, i.e., between two collections. In case of the illustration in Fig-
ure 3.20, the collection b depicts a subset of the set represented by the collection a (mathe-
matically b ⊆ a). Interpreting the Figure 3.20 as a story pattern, it describes to check if the
elements in collection b are also contained in the collection a.

In Section 3.2.6 we introduced different types of collection variables. We distinguish be-
tween ordered sets and lists. Sets contain an element mostly once (unique property) while
lists can contain an element arbitrarily often. Consequently, the inclusion links between dif-
ferent types of collection variables have different semantics, which are described in Table 3.3.
The first two columns determine the type of the collections a and b. The third column deter-
mines if the inclusion link is to be checked, created or removed. The last column describes
the semantics.

The main difference in the semantics of inclusion links stems from the unique or non-unique
property of the collections. If a is a set and the binding operator is CHECK_ONLY, the execu-
tion of a story pattern only checks if all objects in b are contained (once) in a (mathematically
a ⊇ b). In contrast, if a is a list (which can contain the same object arbitrarily often), the story

28 Chapter 3. Concepts

methods m: Method

methods myMethod

methods selection

methods sel: Method

methods sel: Method type
returnType

methods sel: Method type
returnType

method m: Method

methods selection selection2

methods selection

selection2

a)

b)

c)

d)

e)

f)

matching pattern well-formed

no

g)

h)

i)

yes

yes

yes

yes

yes

yes

yes

yes

Figure 3.19: Well-formedness of inclusion links

3.2. Story Patterns 29

a b

Figure 3.20: Inclusion Link Between Two Collections

pattern execution ensures that the objects in b are not only contained at least once in a, but also
at least as often as in b. If, for example, b contains an element x twice, then a has to contain x
at least twice, too. Otherwise, the matching of the story pattern fails.

An inclusion link with the binding operator «create» describes to add all objects from b
to a. If a is a set, the story pattern execution only adds each object from b to a if a does not
already contain it. Since story patterns only have ordered sets, the order of the objects in the
collections have to be regarded. The story pattern execution adds the objects from b to the
end of a and keeps the same order as they had in b. If a is a list, a similar adding operation is
performed, the objects from b are added as often to a as they are in b. This can be seen as a
concatenation of two lists or as the union of two sets (mathematically a ∪ b).

The binding operator «destroy» used with an inclusion link and two collections as illus-
trated in Table 3.3 describes to remove all elements contained in b from the collection a. If a
is a set, all occurrences of the objects in b are removed from a and the order of the remain-
ing elements in a is preserved. If a is a list and b is a set, quite the same is done. If an ob-
ject contained in b is contained more than once in a, all of its occurrences in a are removed.
This comes close to the mathematical relative complement operation (mathematically a \ b).
If both, a and b are lists, only as many occurrences of the objects in b are removed from a as
these are available in b. Furthermore, the removal starts at the beginning of the list a.

3.2.8 Link Constraints

Link constraints specify constraints on the absolute position of an element in an ordered ref-
erence (link position constraints, Section 3.2.8.1) or on the position of an element relative to
another element (link order constraints, Section 3.2.8.2). These constraints are only applica-
ble to link variables that are typed by ordered multi-valued references. All other kinds of links
cannot be adorned with link constraints.

3.2.8.1 Link Position Constraints

A link position constraint applies to a link variable that is typed by a multi-valued ordered
reference. It specifies that the target object of the constrained link has to be the first or the last
element in that reference. Other link position constraints are not supported.

The index link constraint, which was available in earlier versions of story dia-
grams [WW01], is no longer supported. It was used to match an element which is located
at a specific position in a multi-valued reference. However, that causes that upon creation of
multiple elements it is not precisely defined where they are inserted into the list. In addition,
the index may cause OutOfBounds exceptions if the modeler specifies an invalid index.

30 Chapter 3. Concepts

Table 3.3: Inclusion Links Between Two Collection Variables
Type of a Type of b Binding Operation Semantics

a b

Ordered Set any CHECK_ONLY Each element in b is con-
tained (once) in a.

List any CHECK_ONLY Each element in b is con-
tained at least as often in a
as in b.

«create»a b

Ordered Set any CREATE Add all elements from b to
a that are missing in a to
the end of a, preserving the
order of elements in b.

List any CREATE Add all elements from b to
the end of a, preserving the
order of elements in b.

«destroy»a b

Ordered Set any DESTROY Remove all elements in b
from a, preserve the order
of remaining elements in a.

List Ordered Set DESTROY Remove all occurrences of
elements contained in b
from a, preserve the order
of remaining elements in a.

List List DESTROY Starting at the beginning of
the list a, for each element
in b remove as many occur-
rences of the element in a
as it is available in b, pre-
serve the order of remain-
ing elements in a.

3.2. Story Patterns 31

Figure 3.21 shows an example of a link position constraint for matching the first element
in a reference. The story pattern matches a FormalParameter of the object which is bound to
the object variable method. The link position constraint {first} specifies that the first Formal-
Parameter needs to be matched.

method

{first}

formalParameters

►
param: FormalParameters

Figure 3.21: A {first} link position constraint

Figure 3.22 shows a similar story pattern, which matches the last FormalParameter instead
of the first one. This is specified by the link position constraint {last}.

method

{last}

formalParameters

►
param: FormalParameters

Figure 3.22: A {last} link position constraint

If multiple link variables originate from the same object variable that refer to the same
reference, only one of them may have a {first} (or {last}) link position constraint.

Link position constraints can be used with all feasible combinations of binding operators
and binding semantics according to Table 3.2. For now, we discussed the semantics for us-
ing link position constraints for link variables with MANDATORY binding semantics and
CHECK_ONLY binding operator. If we use binding operator «create», the object is in-
serted at the specified position. If the target element already exists in the reference but at a
different position, the semantics of the create depends on the kind of the reference. If the ref-
erence requires objects to be unique in the reference, the target element is moved to the posi-
tion specified by the create link variable. Otherwise, the element is added a second time at the
specified position. If we use binding operator «destroy», the object is bound as described
before and then deleted.

Figure 3.23 shows an example for using a link position constraint at a link variable with
binding operator «create». The link position constraint causes the created FormalParameter
to be inserted at the last position of the formalParameters of method.

method

«create» {last}

formalParameters

► param: FormalParameters

«create»

Figure 3.23: Link Position constraint at a created link.

32 Chapter 3. Concepts

If an OPTIONAL binding semantics is used, the matching will also be successful if no
object at the specified position can be matched. Since we only restrict the position to the first
or last position, this case will only apply if the link contains no objects at all. If the link
variable additionally has binding operator «destroy», the object bound to the target object
variable will be deleted. If the link variable additionally has binding operator «create», we
have an optionally created link. If the object does not yet exist at the specified position, it is
inserted following the rules for created links as described before.

A combination with NEGATIVE binding semantics is also possible. If a link variable is
negative and has a {first} (or {last}) link position constraint, then the object bound to the target
object variable must not be the first (or last) object in the corresponding reference. That means,
we negate the link position constraint rather than the whole link variable which causes a slight
change of the NEGATIVE binding semantics of link variables.

Figure 3.24 shows an example for a negative link with a link position constraint. The For-
malParameter which is bound to param must not be the first formalParameter of the method
which is bound to method.

method

{first}

formalParameters

► param: FormalParameters
formalParameters

►

Figure 3.24: A negative link with a {first} link position constraint

3.2.8.2 Link Order Constraints

Link order constraints specify a relative order between two objects in a multi-valued ordered
reference. A link order constraint therefore connects two link variables which we denote
as the source link variable and target link variable of the link order constraint. Then, the
object matched via the target link variable must either be the direct successor or an arbitrary
successor of the object matched via the source link variable.

Figure 3.25 shows an example of a link order constraint requiring to match two subsequent
FormalParameters of method. Therefore, the two link variables from method to param1 and
param2 are connected by a link order constraint {next}. Then, the object matched to param2
must be a direct successor of the object matched to param1.

Figure 3.26 shows an example of a link order constraint requiring to match two Formal-
Parameters of method where one succeeds the other. Therefore, the two link variables from
method to param1 and param2 are connected by a link order constraint {successor}. Then,
the object matched to param2 must be an arbitrary successor of the object matched to param1.
The matching of the successor is non-deterministic. Thus, a matching retrieved for the story
pattern in Figure 3.25 is a valid matching for the story pattern in Figure 3.26 as well. A match-

3.2. Story Patterns 33

method
formalParameters

►
param1: FormalParameters

param2: FormalParameters
formalParameters

►

{next}

Figure 3.25: A link order constraint specifying a {direct_successor}.

ing retrieved for the story pattern in Figure 3.26, however, will not be a valid matching for the
story pattern in Figure 3.25 in the general case.

method
formalParameters

►
param1: FormalParameters

param2: FormalParameters
formalParameters

►

{successor}

Figure 3.26: A link order constraint specifying a {successor}.

Link order constraints can be applied to links that have a binding operator «create» or
«destroy». In case of «destroy», the matching is carried out as described before. In case
of «create», links corresponding to the link variables are created in the instance model. The
target objects are then inserted into the reference at the specified positions. If the source link
variable (or target link variable) of the link order constraint has a «create» binding operator,
then the object is inserted directly before (or after) the object bound via the target (or source)
link variable. We also apply this semantics if the link order constraint requires the objects only
to be indirect successors to avoid non-determinism.

method

«create»

formalParameters

► param1: FormalParameters

param2: FormalParameters
formalParameters

►

{next}

param3: FormalParameters

«delete»

formalParameters

►

{next}

«create»

«delete»

Figure 3.27: Using link order constraints with binding operators «create» and «destroy».

34 Chapter 3. Concepts

Figure 3.27 shows an example for using link order constraints with the binding operators
«create» and «destroy». The story pattern matches two successive FormalParameters
of method and binds them to the object variables param2 and param3. If the matching was
successful, the parameter bound to param3 is deleted and removed from the reference. Then,
a new FormalParameter is created and inserted directly before param2.

If a link variable with binding operator «create» is the target link variable (or source link
variable) of several indirect successor link order constraints, then the target object of the link
variable is inserted directly behind (or before) the object with the highest index. If multiple
link constraints are applied to the same link variable with binding operator «create», enforc-
ing the right-hand side of the story pattern may fail if the link constraints are unsatisfiable for
the reference.

If the reference already contains the target object of a create link variable, but at a position
which does not satisfy the link order constraint, then there are two possibilities. If the refer-
ence requires objects to be unique in the reference, the target element is moved to a position
specified by the link order constraints. Otherwise, the element is added a second time at a
position specified by the link order constraints.

If both, the source link variable and the target link variable of the link order constraint,
carry a binding operator, both need to carry the same binding operator. If one link variable
has a binding operator «create» and the other one has «destroy», then the reference for
inserting the new object has been deleted before the object can be inserted. Since the semantics
in undefined in that case, we forbid this case.

Link order constraints can be used in combination with an optional binding semantics of the
source or target link variable. In case the link variable carries no binding operator or binding
operator «destroy», the matching process is performed as described before. If no matching
for the optional link variables satisfying the link order constraints can be found, the matching
does not fail. If the a link variable carries an optional create, a matching which satisfies the
link order constraints is searched. If no matching can be obtained, the rules for inserting an
object into a reference as described above for non-optional link variables are applied.

Link order constraints may also be used in combination with a negative binding semantics
of the source or target link variable. If a negative link variable is the target link variable of a
direct successor (or indirect successor) link order constraint, then the target object must not
be located directly after (of indirectly after) the object bound to the source link variable. If a
negative link variable is the source link variable of a direct successor (or indirect successor)
link order constraint, then the target object must not be located directly before (of indirectly
before) the object bound to the target link variable. That means, we negate the link order
constraint rather than the whole link variable if the link variable is the source or target link
variable of a link order constraint. That causes a slight change in the definition of the negative
binding semantics for link variables.

Figure 3.28 shows an example of a negative link variable which is the target link variable
of a direct successor link order constraint. In the example, two FormalParameters of method
are to be matched. The object bound to param1 may be an arbitrary FormalParameter. The

3.2. Story Patterns 35

method
formalParameters

►
param1: FormalParameters

param2: FormalParameters
formalParameters

►

{next}

Figure 3.28: A link order constraint with a negative link.

object variable param2 may be matched to any FormalParameter of method except for the
FormalParameter that is directly located behind the object bound to param1.

It is possible to use multiple link order constraints on a negative link. Then, all of the
specified conditions need to hold. However, for each link order constraint either the source
link variable or the target link variable may be negative, but not both.

method
formalParameters

►
param1: FormalParameters

param2: FormalParameters
formalParameters

►

{successor}

param3: FormalParameters
formalParameters

►

{next}

Figure 3.29: Applying Multiple Link Order Constraints on a Negative Link Variable

Figure 3.29 shows an example of applying multiple link order constraint to a negative link
variable. The story pattern matches three FormalParameters of method. The matching must
fulfill the following conditions which are implied by the negative link variable from method
to param2 and the two link order constraints: param2 must not be an indirect successor of
param1 and param3 must not be the direct successor of param2. If only one of the two
conditions is not fulfilled, then the story pattern does not match.

method
formalParameters

►
param1: FormalParameters

param2: FormalParameters
formalParameters

►

{next}

Figure 3.30: Invalid Combination of Link Order Constraints and Negative Link Variables.

36 Chapter 3. Concepts

Figure 3.30 shows an example of an invalid combination of negative link variables and
link order constraints because both, the source and the target link variable of the link order
constraint, are negative.

Link order constraints may not form circles or unsatisfiable story patterns. An example of
an unsatisfiable story pattern is given by Figure 3.31. In this story pattern, the object bound
to param2 must be the first FormalParameter of method. At the same time, the link order
constraint requires the object bound to param2 to be the direct successor of the object bound
to param1. Since this is not possible, the pattern is unsatisfiable and will never match.

method
formalParameters

►
param1: FormalParameters

param2: FormalParameters

{first}

formalParameters

►

{next}

Figure 3.31: Link Constraints causing a Story Pattern to be unsatisfiable.

By supporting sequences of link order constraints (cf. Figure 3.27) and combinations of link
position and link order constraints, we extend story patterns and their semantics as proposed
by Tichy et. al. [TMG06]. The general semantical issue that the insertion into an ordered
reference is non-deterministic remains, but may be explicitly solved using the link constraints
introduced in this section.

Similar to the link constraints described in Section 3.2.8, link constraints can also be used
with inclusion links. An exemplary use is illustrated in the story diagram in Figure 3.32. We
will explain story diagrams in more detail in Section 3.3. Here, the story diagram describes
the sequential execution of two story patterns.

In the first story pattern (the upper one), a set of Method objects is collected from a given
class myClass and stored in the collection methods. In the next story pattern, a superclass
of myClass, a method in this superclass and the first method in the collection methods are
matched. In case of a successful matching the newly matched method new is added to the
collection methods. The link constraint {next} determines to add this method to the ordered
collection in such a way that the method new directly follows the method first in the collection
methods.

3.2.9 Maybe Links

Story patterns are matched by using isomorphic matchings. That means that two object vari-
ables in a story pattern may not be matched to the same object of the instance model. A match-
ing which matches two object variables to the same object is, thus, considered to be invalid.
In some situations, however, it should be explicitly allowed to match the same object to two
different object variables inside the same story pattern. Then, the isomorphic matching must

3.2. Story Patterns 37

myClass

methods:Method

methods

▼

methods

myClass superClass:Class
superClass ►

«create»
new:Method

methods

▼

first:Method

{first} {next}

Figure 3.32: Inclusion Links With Link Constraints

be disabled for the two corresponding object variables. This is achieved by connecting the
object variables with a maybe link. Then, a matching may assign the same object to the object
variables connected by the maybe link, but it also may assign different objects to the variables.
For all other object variables, the isomorphism condition is enforced.

c1:Class

m:Method

methods

▼

c2:Class

a:Attribute

attributes

▼

{same?}

Figure 3.33: Maybe Link allowing two Object Variables to be matched to the same Object

Figure 3.33 shows the concrete syntax of maybe links. The object variables c1 and c2 are
connected with a maybe link which is visualized by a dotted line labeled with {same}. The
matching of the story patterns is successful if either two classes - one containing a method
and one containing an attribute - can be matched in the instance graph or if only one class
containing a method and an attribute can be matched.

If two object variables are connected by a maybe link, they both must be mandatory or
optional. In addition, a maybe link requires the object variables to be matched or destroyed,
but not created.

38 Chapter 3. Concepts

3.2.10 Pattern Constraints

A pattern constraint defines an additional condition for a match that is evaluated and the end
of the matching step, i.e., it is evaluated after all object and link variables have been matched.
Since it is a condition, it needs to evaluate to true or false. If the pattern constraint is evaluated
to true, then the match for the story pattern is valid. If the pattern constraint is evaluated to
false, then the match is rejected.

A pattern constraint may use all object variables that are used in the same story pattern.
Object variables are referred by their name. The pattern constraint may traverse the refer-
ences of the objects bound to a particular object variable and access the attributes of the cor-
responding object. In the current version of story diagrams, we only support to use OCL for
specifying pattern constraints. Then, the OCL constraint uses the name of the object variables
to refer to objects and may use all features of OCL to access references and attributes of the
corresponding objects.

class interfaceMethodsclassMethods: Method

classMethods -> forAll (name <> method.name)

methods

►

method

Figure 3.34: Example of a Pattern Constraint

Figure 3.34 gives an example for the concrete syntax of a pattern constraint. The story
pattern has two bound object variables class and method of types GASTClass and Method,
respectively. The story pattern matches all methods of class in the object set classMethods.
The pattern constraint is visualized as a label containing the OCL constraint. In the example,
the OCL constraint specifies that all classMethods need to have a name which is different
from the name of method. The matching of the story pattern is successful only if the pattern
constraint is fulfilled.

3.3 Story Diagrams

After explaining the concept of story patterns in Section 3.2, a prerequisite for this section,
we explain the story diagrams themselves. We give an overview of the general idea in Sec-
tion 3.3.1 and go on with explaining the language constructs in the following sections.

3.3. Story Diagrams 39

3.3.1 General Idea
The main idea behind story diagrams is to formalize UML activities to better support model-
driven software development. This is done by not only modeling the software structure, but
also completely modeling its behavior and, thus, making the software model executable. For
that purpose, graph transformations were chosen to formally specify behavior and have been
combined with UML activities. The result, story diagrams, is a mixture of two languages:
an imperative, deterministic language for the description of control flow, namely UML ac-
tivities, and a declarative, non-deterministic, object-oriented, graph-transformation-based lan-
guage for the description of model modifications, so-called story patterns (see Section 3.2).
Both languages are graphical, formally defined, and use a familiar notation based on UML
activities3 and UML object diagrams with minor modifications.

An exemplary story diagram is illustrated in Figure 3.35. This story diagram takes a graph-
based representation (a model of a so-called abstract syntax graph, see Section 2.4) of an
object-oriented program, e.g., in Java, and replaces calls of a given method (oldMethod) with
calls of another given method (newMethod).

oldMethod

methods

▼

replaceMethodCalls(oldMethod: Method, newMethod: Method): call: Call

newMethod

parentClass: Class

methods

▼

Ensure same parent class for both methods

[failure]

call := null

[success]

parentClass oldMethod

anyMethod: Method

▼ methods

c: Call

methods

►

statements

►

▲ accessedTarget

newMethod

▼ accessedTarget

«destroy»

«create»

Replace each old method call with a new method call

call := c

[end]

Figure 3.35: Exemplary Story Diagram – Replace Method Calls

Like UML activities, story diagrams model control flow by means of activity nodes and
activity edges. Each activity node embeds a story pattern to formally specify the behavior

3Actually, we use the notation of UML 1.5 activity diagrams, but already use the terminology of the UML 2.

40 Chapter 3. Concepts

for this node4. The activity edges can carry guards. These are either specified by boolean
expressions, e.g., checking attribute values of a matched object, or by keywords used to specify
decisions on whether a story pattern could be matched or not5. In Figure 3.35, the used guards
are [success] (successful execution of a story pattern), [failure] (failed to completely execute
a story pattern), and [end] (activity edge points to the first activity node to be executed after a
loop).

In contrast to ordinary UML activities, story diagrams, so far, do not model concurrent
execution. Thus, the language constructs fork and join are currently not supported in story
diagrams. We plan to include these concepts in future versions of story diagrams.

Basically, there are two different ways of using story diagrams in a model-driven software
development process.

Originally, story diagrams were used in object-oriented software development to formally
specify the behavior of methods that are defined in classes. Calling such a method means to
execute the story diagram that represents the method’s behavior. If there is a story diagram that
models the behavior for each method specified in a class model, the software model completely
covers the software’s structure and behavior and, thus, can be analyzed and executed. In this
case, story diagrams specify the behavior of objects whose properties are defined by classes.
For that reason, those story diagrams have a this variable – similar to the keyword this in Java
– representing the object (a class instance) that they belong to (a self reference). This variable
can be used as a starting point for the graph matching specified in a story diagram.

For example, the class diagram in Figure 3.36 defines a method findAttribute for all Class
objects. This method’s behavior is specified by the story diagram in Figure 3.37. The matching
of the object structure specified in the contained story pattern, in this case, starts with the
this object variable of the type Class which is already bound to the Class object that the
findAttribute method belongs to. Thus, this method tries to find an attribute a in the same class
with the name given by the method’s parameter text.

Another more flexible way of using story diagrams is to specify any kind of model trans-
formation or operation in a story diagram without attaching this behavior to a certain class.
In contrast to the previous case, there is no this variable that could be used as a starting point
for the graph matching. All starting nodes for the graph matching have to be provided as ar-
guments of the story diagram call. For this purpose, in contrast to the story diagram in Fig-
ure 3.37, the story diagram in Figure 3.38 has an additional parameter c. The corresponding
arguments of a story diagram call are assumed to be known (bound object variables) and are
used as starting points for the graph matching. This way, the operations or transformations
defined by story diagrams can be used from within any other part of the developed software,
like a software library would be used. Typically, model-to-model transformations, consistency
checks, or more generally speaking, recurring and object-independent operations are defined
this way.

4There are some exceptions like activity call nodes which do not contain story patterns to specify the behavior.
5A story pattern is successfully matched if for each object and link variable in the pattern corresponding objects

and links are found in the instance model (host graph) and all specified constraints are satisfied.

3.3. Story Diagrams 41

▼ attributes

findAttribute(text: String): Attribute

Class

*

1

name: String

Attribute

Figure 3.36: Type Model for the
Story Diagram in
Figure 3.37

Class::findAttribute(text: String): attr: Attribute

this
attributes

►

Find an attribute with the given name

[failure]

attr := null

[success]

attr := a

a: Attribute

name = text

Figure 3.37: Exemplary Story Diagram With this
Object Variable

findAttribute(c: Class, text: String): attr: Attribute

c
attributes

►

Find an attribute with the given name

[failure]

attr := null

[success]

attr := a

a: Attribute

name = text

Figure 3.38: Exemplary Story Diagram Without this Object Variable

In both cases, story diagrams can be used to generate executable source code or be executed
using an interpreter. Besides execution, the formally defined story diagrams can also be ana-
lyzed to guarantee certain behavioral properties [Mey09, Zün09]. For example, model check-
ing can be used to check whether a certain invariant holds (e.g., that all accessible variables
are still accessible after a refactoring operation) or if a critical state can ever be reached (e.g.,
if an attribute or method has no parent class after a refactoring operation which would result
in an incorrect program).

A complete description of the story diagrams’ abstract syntax is given in the Appendix C.
There is also a grammar that determines all feasible story diagrams by constraining their struc-
ture. The latest version of this grammar can be found in Thomas Klein’s diploma thesis
[Kle99].

42 Chapter 3. Concepts

3.3.2 Activities, Activity Parameters and Return Values

Since story diagrams can be seen as special UML activities, we reused the class names defined
by the UML 2. Thus, similar to UML activities, a story diagram is represented by a so-called
activity (class Activity).

Each story diagram can have parameters. We distinguish in and out parameters, i.e., param-
eters representing arguments given when a story diagram is called (in) and parameters rep-
resenting return values (out). Parameters are either in or out parameters. The story diagram
in Figure 3.38 has two in parameters c and text as well as an out parameter attr of the type
Attribute. If there are more than one out parameter, these are comma-separated.

If a story diagram defines the behavior of a method, the parameters are defined by the
corresponding method’s signature. In this case, the number of out parameters is limited to
one single parameter and represents the only return value of the method and story diagram.
Besides these parameters, there is another implicitly defined parameter this which – similar to
Java’s this keyword – represents the object that the story diagram belongs to.

In case a story diagram is not defining a method’s behavior, it defines its own signature
explicitly with according in and out parameters. The number of out parameters is allowed to
be arbitrary in this case and there is no this parameter.

The values or objects returned after execution of a story diagram are defined by expressions
in the stop activity nodes. For example, the object matched to the object variable a is returned
by the story diagram in Figure 3.38 in case of a successful execution. This is specified by the
expression attr := a which represents an assignment of the value of object variable a to the out
parameter attr. Otherwise, an empty reference is returned which is specified by the keyword
null. This notation is taken from Matthias Meyer [Mey09].

Parameters may not have the same name as the attributes of an object used the story diagram.
Otherwise references to that name would be ambiguous during the execution.

3.3.3 Activity Nodes, Activity Edges

A story diagram’s control flow is defined by activity nodes and activity edges, similar to UML
activities. Except for the cases where an activity node represents a call of another story dia-
gram, each node embeds a story pattern to specify the corresponding behavior. Such activity
nodes are called story nodes. Executing a story node results in executing the embedded story
pattern.

In contrast to single story patterns, story patterns contained in story nodes of a story diagram
have a different scope. Here, you can reuse all object variables declared in the story patterns
of preceding story nodes. For example, in Figure 3.35 (p. 39), the object variable parentClass
is reused in the second story pattern by specifying the variable as a bound variable, i.e., the
variable does not have to be matched anymore.

Executing a story node means executing the corresponding story pattern which, in turn,
means finding a subgraph with the specified properties (e.g., finding objects of a certain type,
with certain attribute values, and with certain connections) and performing specified modifi-

3.3. Story Diagrams 43

cations of the found subgraph (e.g., creating or removing objects and links or changing their
attribute values).

We distinguish two kinds of story nodes: modifying story nodes and matching story nodes.
A matching story node contains a story pattern that only matches a specified object structure,
but does not change it. A modifying story node also performs modifications of the matched
object structure. For static analyses of model transformations described with story diagrams,
it is helpful to know which transformations do not modify the instance model.

3.3.4 Activity Final Nodes
In normal UML activities, the final nodes determine where control flow of the activity ends.
Story diagrams reuse this concept but they annotate the nodes with either success or failure.
When the control flow of a story diagram reaches a success final node, the application of that
story pattern is considered to be successful. In contrast, reaching a failure final node indicates
that the transformation is considered to be unsuccessful.

Figure 3.39 shows and example.

class
attributes

►

Match an attribute in the given class

[failure]

failure

[success]

success

a: Attribute

...

...

Figure 3.39: Example of a success and a failure final node.

The upper story node in Figure 3.39 specifies that an attribute of a given class object should
be matched. The failure activity edge leads to a final node also labeled with failure. This
indicates that the application of the story diagram went wrong.

44 Chapter 3. Concepts

If an object of the type Attribute can be matched however, the control flow continues via
the success activity edge to another story node. Finally, it reaches a final node labelled with
success. Reaching a success or failure final nodes indicates if the operation described by a
story diagram is considered to be successful.

While the execution of a story diagram is aborted upon reaching a failure final node, the
effects of the execution up to this point are not reversed automatically. All modifications,
e.g., object creations and deletions persist. The developer of a story diagram has to keep
this in mind when specifying a transformation. If these side effects of failed story diagram
applications are undesired, the story diagram has to be designed such that it is only aborted
if no modifications already took place. Another way would be to explicitly specify activity
nodes which undo the modifications before going to the failure final node.

Note that for story patterns, the success or failure is defined by the language. When the
matching of a story pattern is successful, then the specified modifications can be carried out
and the whole story pattern is considered to be successful. Similarly an unsuccessful matching
always means a failure of the whole story pattern.

For whole story diagrams, the interpretation of its success or failure can be specified by the
developer. The success of a story diagram is not necessarily dependent on the success of all
its constituent story nodes. For example, in the Figure 3.39, the labels of the final nodes could
also be reversed. In that case, the whole story diagram would be considered to be successful
if the first story node failed, i.e., if no attribute could be matched in the class.

3.3.5 Decision Nodes, Guards, and Loops

The behavior of a story node is defined by its story pattern. Therefore, since trying to find a
subgraph defined by a story pattern can fail, each execution of a story node can also fail.

To distinguish the cases of a successful story node execution and its failure, the outgoing
activity edges can be provided with the guards [success] and [failure] (see Figure 3.40 a)). The
control flow is following the activity edge with the success guard in case of a successful story
node execution, i.e., a successful matching of the corresponding story pattern. Otherwise it
follows the activity edge with the failure guard. If an outgoing activity edge has no guard,
it covers both cases, success and failure. The guards [success] and [failure] can only be used
pair-wise (exactly two outgoing activity edges with exactly these two guards). The first story
node in Figure 3.35 (p. 39), for example, uses these guards.

Besides [success] and [failure], boolean expressions can be used as guards (see Figure 3.40
b)). We use the junction node – depicted as a diamond – for decisions that do not depend on
a previous story node. In this case, the boolean expression of the outgoing activity edge is
evaluated to true or false. There can be arbitrarily many outgoing activity edges with boolean
guard expressions. The boolean expressions have to mutually exclude each other and the
corresponding guards have to be combined with an outgoing activity edge with the guard
[else]. I.e., if there is a guard with a boolean expression, there is also an activity edge with the
guard [else].

3.3. Story Diagrams 45

[failure][success]

...

... ...

...

a)

[else][x < 5]

...

... ...
[x > 17]

...

b)

Figure 3.40: Examples For Decisions

[failure][success]

...

...

...

a)

...

...

...

b)

...

...

[else][x < 5]

... ...
[x > 17]

...

c)

[else][x < 5]

...

... ...

[x > 17]

...

...

d)

Figure 3.41: Examples For Control Flow Simplifications: case a) is semantically equivalent to
b), case c) is semantically equivalent to d)

The junction node can also be used to merge several control flows into one (several activity
edges point to a junction node which has only one outgoing activity edge, see Figure 3.41 a)).

In order to simplify the control flow as shown in Figures 3.41 a) and c), we also allow short-
hand notations as illustrated in Figures 3.41 b) and d). The control flow in case b) is semanti-
cally equivalent to that in case a). The control flows in cases c) and d) are also equivalent.

Activity edges and guards can be used to model loops as illustrated in Figures 3.42 a) and b).
There is an additional construct to model loops which allows to perform the same operations
with each occurrence of a certain object structure. For that purpose, we use a special activity
node that we call for-each activity node and special guards [each time] and [end].

The for-each activity node is depicted by a cascaded activity node (see Figure 3.42 c)). The
second activity node in Figure 3.35 (p. 39), for example, is a for-each activity node. Such a
node represents a loop where the contained story pattern is executed as often as new subgraphs
can be matched that differ from the previously matched graphs by at least one other matched
object. For instance, the story pattern in the for-each activity node in Figure 3.35 is matched
for each existing pair of a method (object variable anyMethod) and corresponding call object
(object variable c). Besides the matching itself, all destroy and create steps are also executed

46 Chapter 3. Concepts

...

...

...

[success]

[failure]

...

a)

...

...

[x < 5]

[else]

...

...

b)

...

...

...

[each time]

[end]

...

c)

Figure 3.42: Examples For Loops

for each of these matched subgraphs. In general, after execution of the story pattern in the
for-each activity node, the control flow follows the activity edge with the guard [each time],
if available (see Figure 3.42 c)). This edge is optional and can be omitted like in Figure 3.35.
The [each time] edge leads to the activity node (or a sequence of such nodes) that is to be
executed after each successful execution of the for-each activity node. After that, the control
flow returns to the for-each activity node in order to match and process the next object structure
that can be matched by the for-each activity node.6 If there is an activity edge with the guard
[each time], there has also to be such an activity edge leading back to the for-each activity
node. This constitutes a loop. Finally, the control flow is guided by the activity edge with
the guard [end] which leads to the activity node to be executed after the loop. Each for-each
activity node must have such an outgoing [end] activity edge.

3.3.6 Propagation of Matchings

The control flow specified by the activity edges determines how matchings of story patterns are
propagated through the story diagram. An initial matching associating objects of the instance
model with object variables is established by the input parameters of the story diagram. In a
story pattern inside a story node, we refer to matched objects by using bound variables. Then,
the story pattern inside a story node is matched. If the matching process was successful, the
matching is extended by the objects which were newly matched by the story pattern and is
propagated via the success activity edge to the next activity node. If the matching process was
not successful, the matching is not changed and the original matching which was passed to
the activity node is propagated along the failure activity edge. The matching process includes

6Note that we search for a new matching of the for-each pattern whenever returning to the for-each node during
the loop. This semantics is called fresh matching, in contrast to pre-selection where the matchings are only
computed once at the beginning of the for-each loop.

3.3. Story Diagrams 47

both, the matching step and the modification step. If a match could be obtained, but the
modification step fails, e.g., due to unsatisfiable link constraints (cf. Section 3.2.8), the story
pattern is also considered to be failed and the story node is left via the failure activity edge. If
a story pattern failed, it also does not change the instance model.

In case of a loop, the matching which is propagated into the for-each activity node is ex-
tended by the matching of the story pattern which is contained in this activity node. If the
matching is successful, the extended matching is propagated along the each time activity edge.
The matching may then be extended and changed by the subsequent activity nodes forming
the loop body. If the control flow returns to the for-each activity node, the matching needs
to be restricted to the object variables that were initially passed to the for-each activity node.
That has two basic consequences. First, if a variable which was part of the matching that was
initially provided to the for-each activity node has been changed to another object (by using
its name in an unbound node), that change is preserved for the next iteration. Second, if a
variable which was not part of the matching that was initially provided to the for-each activity
node has been bound in the loop, it is removed from the matching for the next iteration. As a
result, the matching which is propagated down the end activity edge only contains those ob-
ject variables which were initially passed to the for-each activity node. The object variables,
however, may be bound to different objects after executing the loop. Objects and links created
throughout the loop remain in instance model although the object variables they were bound
to are no longer visible in the matching. That semantics corresponds to the semantics of loops
in programming languages as, e.g., Java.

Figure 3.43 gives an example for the propagation of matchings. The initial matching con-
sists of two objects of type Package which are bound to the input parameters p1 and p2. This
matching is passed to the for-each activity node A. In this activity node, the story pattern tries
to match a class in the package bound to c. For each class that is found, the matching is ex-
tended by the corresponding class and propagated along the each time activity edge to the
activity node B. In B, the object variable c is unbound. Thus, a new matching for c is to be
obtained. If the story pattern is matched successfully, the matching that is propagated down
the activity edge to C consists of the two packages as well as a class contained in the package
bound to p2. If the story pattern in B cannot be matched, then the matching is propagated
unchanged. Then the matching in C contains the two packages as well as a class which is
contained in the package bound to p1. If the control flow reaches the for-each activity node A
again, then the matching is reduced to the object variables p1 and p2 because they constituted
the matching initially propagated in A. If p1 or p2 were bound to a new object during the loop
body, that change would be preserved and the new objects bound to p1 or p2 are used in the
next iteration. The object variable c is removed from the matching and may not be used for
the next iteration.

If the control flow reaches a final node, only objects that are contained in the matching which
is propagated to the final node may be returned. The use of decision nodes in combination
with activity edges having a boolean guard does not change the propagation of matchings.
The boolean condition at the edge only defines where the matching is propagated.

48 Chapter 3. Concepts

matchClass(p1: Package, p2: Package): void

p1
classes

►

A: Match a class in the package p1

[end]

[each time]

c: Class

p2
classes

►

B: Match a class in the package p2

c: Class

...

C: …

c

...

Figure 3.43: Propagation of Matchings through a Story Diagram

3.3. Story Diagrams 49

3.3.7 Story Diagram Calls

Story diagram calls are special nodes in a story diagram which are used to invoke other story
diagrams. Similar to method calls, this reduces redundancy and promotes reuse.

As described in Section 3.3.2, a story diagram can have an arbitrary number of in and out
parameters. When calling a story diagram, concrete arguments have to be assigned to the in
parameters. Consequently, if an object variable named n is bound somewhere in the story
diagram, the identifier n can be used to pass this object variable as an argument to a call. If the
called story diagram has out parameters, those are bound explicitly by assignments at the stop
activity node. They can be used in the calling story diagram by specifying object variables
whose names match those of the out parameters.

For in parameters, we use a call-by-reference semantics. If an object that is passed as an in
parameter is modified in the called story diagram, those modifications remain after the called
story diagram has terminated. The object in question can be used in the calling story diagram
after the call but the call may have modified its attributes or its links.

An example of a story diagram call is shown in Figure 3.44.

package

class1: Class class2: Class

class1 class2

assoc

Call

CreateBidirectionalAssociation(class1, class2) : assoc

▼ classes

classes

►

 ►

associations
 ◄

associations

[success]

[failure]

...

Figure 3.44: Example of a story diagram call

The first story pattern in Figure 3.44 shows the bound object variable package. Two new
object variables class1 and class2 are bound in that pattern. The next node with the grey
background is a story diagram call which is also signified by its label Call. Beneath the label,
the name of the called story diagram is given, in this case CreateBidirectionalAssociation.
Assume that the called story diagram has two in parameters of the type Class and one out
parameter of the type Association. The two classes that were bound in the first story pattern,
class1 and class2 are passed to the call as arguments. They can be used in the story node
after the call without passing the back as out parameters. The modifications carried out by
the called story diagram (i.e., the creation of the assoc object and its connection to class1
and class2) are retained after the call terminates. The result of the call is bound to the object
variable assoc. The type of this variable is determined by the out parameter type, i.e., in this
case the type Association.

If a story diagram has no out parameters, the keyword void follows the colon instead of the
out parameter’s names (see Figure 4.2 for an example).

50 Chapter 3. Concepts

When one story diagram calls another, the calling story diagram’s further execution may
depend on the successful application of the called story diagram’s. For example, the calling
story diagram might need a return value of the called story diagram or it may only continue in
a meaningful way if the called transformation has succeeded. Story diagrams have success and
failure final nodes for this (see Section 3.3.4). When the execution of a called story diagram
ends at a success stop node, then the call activity is left via the activity edge labeled with
[success]. Otherwise, the [failure] edge is taken. If the outgoing edges of a call node are not
guarded with success or failure, the success or failure of the called activity is not considered
in the further execution of the calling activity.

3.4 Expressions
Story diagrams and story patterns use a mainly graphical syntax. Though, some things can
compactly be described by text, e.g., restrictions of attribute values to a certain range. For this
purpose we added a small textual language for expressions to story diagrams to cover value
comparisons, value assignments, simple arithmetic expressions, etc. In this first version of this
technical report we do not describe expressions in detail.

Besides our small textual language for certain expressions, we support embedding OCL
expressions, for example, to determine a value to be assigned to an attribute7. In future, this
will be extended to also cover arbitrary other textual expressions that have to be interpreted by
a given interpreter.

7Currently, the OCL tools in Eclipse (http://www.eclipse.org/modeling/mdt/?project=ocl), as far as possible,
comply with the OMG OCL standard 2.3 (http://www.omg.org/spec/OCL/2.3/Beta2/PDF). We use these
tools to interpret the OCL expressions. More details about this issue can be found here:
http://www.eclipse.org/projects/project-plan.php?planurl=http://www.eclipse.org/modeling/mdt/ocl/project-
info/plan_indigo.xml&component=Eclipse

http://www.eclipse.org/modeling/mdt/?project=ocl
http://www.omg.org/spec/OCL/2.3/Beta2/PDF
http://www.eclipse.org/projects/project-plan.php?planurl=http://www.eclipse.org/modeling/mdt/ocl/project-info/plan_indigo.xml&component=Eclipse
http://www.eclipse.org/projects/project-plan.php?planurl=http://www.eclipse.org/modeling/mdt/ocl/project-info/plan_indigo.xml&component=Eclipse

51

Chapter 4

Complete Example

This chapter presents a complete example of a transformation with story diagrams. The setting
of the example is explained in Section 4.1. The next section then presents several complex
story diagrams that specify the desired transformation.

4.1 Motivation of the Example

A well-known principle of object-oriented programming says “Program to an interface, not an
implementation.” [GHJV95]. By only accessing interfaces instead of concrete classes from a
given class, that class remains independent of concrete implementations. The accessed classes
can be exchanged transparently without breaking the program. If this principle is neglected,
accidentally or intentionally, this is known as an interface violation.

class A implements IA {

 IB ib = …

 m1() {

 …

 B b = (B) ib;

 b.m3();

 …

 }

}

class B implements IB {

 m2() {…}

 m3() {…}

}

interface IA {

 m1();

}

interface IB {

 m2();

}

A
B

IA IB

m1() m2()

m3()

1

1

a) Source Code b) Class Diagram

Figure 4.1: Example of an Interface Violation

In Figure 4.1, a simple example of an interface violation is depicted. The classes A and
B implement the interfaces IA and IB, respectively. Following the design principle “Program

52 Chapter 4. Complete Example

to an interface, not an implementation”, the classes are expected to interact through their
interfaces. However, A calls the method m3() from B because m3() is not provided by the
interface IB. A down-casts the object ib to the concrete type B in order to access m3(). This
intentional bypassing of the interface IB is an interface violation.

There are several possibilities to remove an interface violation from a program. A trivial
solution would be to delete the downcast and the call from the implementation of m1. This
would, of course, remove the interface violation but also change the program behavior. A
more reasonable solution which will be used in this chapter is the extension of the interface IB
such that it contains the method declaration of m3. By adding this declaration to IB, the class
A can call m3 via the interface. The downcast becomes unnecessary and can be removed. At
the same time, the behaviour of m1 is preserved.

To this point, the refactoring is very similar to the Extract Interface refactoring described
by Fowler [Fow99]. Extending an existing interface, however, is a little more complicated
as there may already be other classes that implement IB. If m3 is added to IB, those other
implementing classes all have to be extended by a (possibly empty) method implementation
of m3 in order to remain compilable.

A refactoring that removes an interface violation by extending an interface as described
above is modeled with story diagrams and presented in the following section.

4.2 Story Diagram: Remove Interface Violation

Figure 4.2 shows the story diagram to remove an interface violation. The underlying type
graph is the GAST metamodel that was introduced in Section 2.4. The story diagram consists
of six story nodes and two activity calls. This section explains the story diagram step by step.

The story diagram has four in-parameters: call, interface, castStmt, and accessedMethod-
Owner. call represents the interface violation, i.e., the statement that calls the method in the
concrete class (the call of m3 in m1). interface is the interface that will be extended (IB in the
example). castStmt refers to the statement that down-casts the interface type to the concrete
class type (i.e., the statement B b = (B) ib;). Finally, accessedMethodOwner is the class that
contains the called method (B in the example). The story diagram has no out parameter.

The first story node (after the initial node) checks if a method with the same name as the
accessedMethod already exists in the interface. This is accomplished by matching all methods
of the interface in the set object interfaceMethods. Then the pattern constraint ensures that
none of these methods has the same name as the parameter method1. If this is not the case,
i.e. if a method of the name in question already exists in the interface, the application of the
story diagram fails. Otherwise, the control flow continues via the activity edge labelled with
[success].

1There are, of course other ways of checking this constraint, e.g., similar to story node 1 in Figure 4.4. The
check here, however, allows us to show an application of a non-trivial pattern constraint in combination with
a set object.

4.2. Story Diagram: Remove Interface Violation 53

call

interface

targetFunction

►

removeInterfaceViolation

(call: FunctionAccess, interface: GASTClass, castStmt: Statement, accessedMethodOwner: GASTClass): void

methods

►

targetFunction

►

▲ overriddenMember

interface

class: GASTClass

implements: InheritanceTypeAccess

▼ inheritanceTypeAccesses

▼ accessedClass

[end]

[each time]

method: Method

returnType: GASTType

typeAccessOld:

DeclarationTypeAccess

typeAccessNew:

DeclarationTypeAccess
returnTypeAccess

►
methodDecl: Method

visibility := PUBLIC

abstract := true

name := method.name

returnTypeAccess

►

▼ accessedTarget

▲ accessedTarget

castStmt

varAccess1: VariableAccess

call

var1: Variable

varAccess2: VariableAccess

stmt: Statement varAccessNew: VariableAccess

var2: Variable

interface

accesses ▲

targetVariable

►

▲ targetVariable

▲ accesses

accesses

◄

accesses

►

▲ targetVariable

▲ type

method2: Method

▼ localVariables

localVariables

◄

2. Add method declaration to interface and set it as accessed target

4b. Remove cast statement, local variable and accesses, create new access

5. For each implementing class...

castStmt

call

accesses ▼

3. Decide if cast and call are

done in same statement

[failure]

cast: CastTypeAccess[success] castStmt

4a. Remove cast

accesses

◄accessedMethodOwner
accessedTarget

◄

Call

generateMethodStub(class, methodDecl)

«destroy»

«create»

«create»

«create»

«create» «create»

«create»

Call

copyParameters(method, methodDecl):void

«destroy» «destroy» «destroy» «destroy»

«destroy»
«destroy» «destroy» «destroy»

«destroy»

«destroy»

«destroy»

«destroy»

«destroy»

«create»«create»

«create»

«create»

«create»«create»

1. Check if accessed method already exists in interface

interface interfaceMethodsinterfaceMethods: Method

interfaceMethods -> forAll (name <> method.name)

methods

►

«create»

interfaceMethodsinterfaceMethods

methods ▼

«create»

[success]

[failure]

success

failure

failure

[success]

[failure]

Figure 4.2: Story Diagram: removeInterfaceViolation

54 Chapter 4. Complete Example

The second story node creates a method declaration in the interface (methodDecl). This
new method declaration is declared as public (attribute assignment visibility := PUBLIC) and
abstract (attribute assignment abstract := true). The declaration receives the same name as the
formerly called method (attribute assignment name := method.name, m3 in the example). The
new method declaration is added to the methods of the interface by creating a method link be-
tween interface and methodDecl. It is also added to the previously matched set interfaceMeth-
ods by creating a corresponding inclusion link. The target accessed by the call is changed by
deleting the link between call and method and recreating it between call and methodDecl. The
return type of the method is set by creating a new object typeAccessNew of the type Declara-
tionTypeAccess and connecting it to methodDecl. It points to the same GASTType as the old
declaration type access of the method.

The next node is an activity call node. It calls the story diagram copyParameters which
is described in detail in Section 4.2.1. This story diagram is responsible for copying all the
parameters of the formerly called method to the newly created declaration methodDecl.

The following story node contains only the two bound, mandatory object variables castStmt
and call. Its responsibility is to try and match the link accesses between those object variables.
If the link exists, the cast and the call are part of the same statement. In that case, the matching
of the story node is successful and the control flow continues along the transition labelled with
[success] to story node 4a. If the matching fails, i.e., the link does not exist and the cast and
the call are therefore not part of the same statement, the story node is left via the [failure]
transition. This distinction is necessary because the effort to remove the cast statement is
much greater if the cast is not done in the same statement as the call (compare story nodes 4a
and 4b).

If the cast is in the same statement as the call, story node 4a is executed: The castStmt and
its access to B are deleted. If the cast is not in the same statement as the call that means that
the cast is executed at some point before the call and the resulting down-cast object is stored
in a temporary variable. In this case, this temporary variable can be deleted along with the
accesses to it from the call and the cast statements. Instead, a new variable of the interface
type (IB in the example) is created and then accessed by the call statement (4b)2. In both cases,
activity node 5 is executed next.

Activity node 5 is responsible for adapting all other classes that implement the now changed
interface. Thus, the node is a for-each activity node that binds a class which is connected to
the interface in each iteration. For each of those bindings, the node that is reachable via the
[each time] edge is executed (see Section 3.3). In this case, that is a story diagram call of the
story diagram generateMethodStub which is explained in the following section. In contrast to
the previous call to copyParameters, the called story diagram here can either succeed or fail.
If the generation of the method stub fails, the application of the calling diagram is also aborted
with a failure.

2Although this example is more complex than the other story diagrams shown in this report, it is still slightly
simplified. For example, the story diagram only considers a local variable to be the target of the type cast.
Other cases like fields, global variables, or parameters are neglected here. Moreover, the possibility that the
variable is accessed in other parts of the method is not considered here.

4.2. Story Diagram: Remove Interface Violation 55

When no new classes implementing the interface can be found, i.e. method stubs have been
generated for all implementing classes, the story diagram terminates at the success final node.

4.2.1 Story Diagram: Copy Parameters

The story diagram copyParameters (see Figure 4.3) copies all the parameters from a
sourceMethod to a targetMethod. Both methods are provided as parameters. The diagram
consists of two story nodes.

typeAccessNewParam:

DeclarationTypeAccess

typeDeclaration

►

accessedTarget

◄

sourceMethod

param: FormalParameter

▼ formalParameters

[each time]

1. For each parameter in

the source method...

targetMethod newParam: FormalParameterformalParameters

►
name := param.name

type: GASTType
type

►
param

2. … create a parameter in the target method.

copyParameters

(sourceMethod: Method, targetMethod: Method): void

[end]

«create» {last} «create» «create»

«create»
«create»

success

Figure 4.3: Story Diagram: copyParameters

The first activity node is a for-each activity node. It successively binds all formal parameters
of the given sourceMethod to the object variable param. Each time a new parameter is bound,
the second node is executed. There, a new formal parameter newParam is created in the
targetMethod. Its name is set to the same name as the original parameter’s by the expression
’name := param.name’. The type is also set accordingly by binding the type of param. Then,
a new access to that type is created and connected to newParam. The newParam is inserted
at the last position in the list of parameters as indicated by the link position constraint {last} at
the new formalParameters link.

4.2.2 Story Diagram: Generate Method Stub

The story diagram generateMethodStub is shown in Figure 4.4. It creates a method which
implements a method methodDecl from an interface. This is accomplished by two story nodes
and one story diagram call. The first node checks if the given class contains a method with
the same name as the given declaration methodDecl. The check is performed by the attribute
constraint ’name = methodDecl.name’. Since the object variable method is negative (crossed-
out), the matching of this story node is considered successful if no such method exists in the
class. In that case the next story node is executed. If a method of the name in question already

56 Chapter 4. Complete Example

class

methodDecl

▼ methods

▼ overriddenMember

methodStub: Method

visibility := PUBLIC

name := methodDecl.name

returnType: GASTType

newTypeAccess:

DeclarationTypeAccess
returnTypeAccess

►

▼ accessedTarget

2. … generate method stub

generateMethodStub

(class: GASTClass, methodDecl: Method): void

Call

CopyParameters(method, methodStub)

class
methods

1. If no method of the given name already exists...

method: Method

name = methodDecl.name

[success]

[failure]
►

«create»

«create»
«create»

«create»

«create»

«create»

success

failure

oldTypeAccess:

DeclarationTypeAccess
►

returnTypeAccess

▲ accessedTarget

Figure 4.4: Story Diagram: generateMethodStub

4.2. Story Diagram: Remove Interface Violation 57

exists, the execution of the first story node fails and the story diagram terminates at the failure
final node.

The second story node creates a new methodStub in the given class. The visibility of this
method is set to public and its name is set to the name of the method declaration as signified
by the expression ’name := methodDecl.name’. The correct return type for the method is set
by creating a newTypeAccess from the methodStub to the returnType that is also accessed by
the methodDecl.

Finally, the story diagram CopyParameters is called in the story diagram call node. The
methodDecl and the methodStub are passed as parameters. The called diagram then copies
all parameters from the given method to the newly created methodStub as explained in Sec-
tion 4.2.1.

59

Chapter 5

Related Work

In this chapter, we give an overview about scientific publications related to story diagrams.
First, we provide an extensive summary of previous work about story diagrams in Section 5.1,
including their origins. In Section 5.2, we report on extensions and applications of story dia-
grams. Finally, we briefly describe related and similar concepts in the literature in Section 5.3.

5.1 Origins and Previous Work on Story Diagrams

Story diagrams have first been described by Fischer et al. [FNTZ00] and Jahnke and Zündorf
[JZ98] in 1998. The foundations of story diagrams lie in the programmed graph rewriting sys-
tems PROGRES [SWZ95] which has been developed at the University of Aachen since 1989.
Story diagrams (or story flow diagrams as they were called in early publications) adapt and
enhance the PROGRES approach to a UML-like notation and an object-oriented data model
[JZ98]. They have an easily comprehensible graphical syntax and well-defined semantics.
Zündorf [Zün01] describes the syntax and semantics of story diagrams in detail. A graph
grammar that formally describes the syntax of the control flow of story diagrams was defined
by Klein [Kle99].

Story diagrams are embedded in a rigorous and systematic software development method
called story-driven modeling (SDM) [Zün01, DGZ04]. While existing approaches like UML
focus on the specification of the static structure of software, SDM combines, amongst others,
UML class diagrams and story diagrams to allow completely specifying the structure and
behavior of software systems. Furthermore, SDM describes how such a software specification
can be derived from requirements. First, each use-case in the requirements is refined by a set of
sample scenarios defined by so-called story boards. A story board is a sequence of single snap
shots of graph-like object structures, describing changes in these object structures. Next, the
static class structure of the system is derived from the story boards and further refined. Given
the sample scenarios, the general dynamic behavior of the system is then defined using story
diagrams. Finally, the implementation of the software system can be automatically generated
from these formal models.

60 Chapter 5. Related Work

From the beginning, tool support for story diagrams was a main focus. FUJABA, an acronym
for “From UML to Java And Back Again”1, was the first tool which implemented the concept
of story diagrams. In December 1997, the project started at the University of Paderborn. A
first prototype was implemented in the course of a master’s thesis [FNT98]. As story diagrams
specify the behavior of software, the execution of story diagrams is an important requirement.
For instance, Zündorf, Schürr and Winter [ZSW99] describe how story diagrams can be com-
piled into Java code. This code generation approach was also integrated into FUJABA.

A first public tool demonstration of FUJABA was presented at the ICSE 2000 [NNZ00],
showing advanced class and story diagram modeling facilities as well as graphical debugging
and simulation.

In the following, story diagrams and FUJABA have been modified and enhanced. Originally,
story diagrams used expressions of the target programming language to define constraints, re-
turn values etc., i.e. if a story diagram was to be compiled into Java code, Java expressions had
to be used. Stölzel, Zschaler and Geiger [SZG07] integrated OCL into story diagrams, mak-
ing them more platform-independent. They connected FUJABA to the Dresden OCL toolkit
[WTF11], allowing a code generation for story diagrams including the OCL constraints.

To improve flexibility for the execution of story diagrams, Giese, Hildebrand and Seibel
[GHS09] present an interpreter for story diagrams. In contrast to executing generated Java
code, with this approach generated story diagrams can be executed immediately. This allows,
for instance, to create higher-order transformations where story diagrams are created by other
story diagrams and can immediately be executed. As interpreting in general is slower than
compiling, the authors implemented a new dynamic matching policy for their interpreter.

Tichy, Meyer and Giese [TMG06] identified some semantic issues in story diagrams. First,
when creating more than one element in a story pattern, the order of creation is undefined.
In general, this is no problem; however, in certain failure situations and when creating links
in ordered associations, this may lead to non-deterministic behavior. However, defining a
creation order would contradict the declarative nature of story patterns. Thus, we decided not
to include an explicit creation order. In case the creation of objects or links fails, an exception
is thrown. To define a link order in an ordered association, LinkConstraints as introduced in
Section 3.2.8 can be used to define an insertion order.

Second, when having a link between two collection variables (formerly known as “set vari-
ables”) setA and setB, the intuitive semantics would be to have every collection element in
setA connected to every element in setB. However, this is neither supported by the tools nor
allowed by the formal semantics described by Zündorf [Zün01]. As described in Section 3.2.6,
we still forbid links between two collection variables.

Third, consider there is a class with two qualified associations (to other classes) that have
each other as a qualifiers. When creating one link for each of the two qualified association in
one story pattern, the first association that is created is qualified by the null value although it
could be qualified using the correct object (considering this is already bound). This issue is

1The acronym is derived from a preceding tool called FUCABA (”From UML to C++ And Back Again”)
[JZ97].

5.2. Applications and Extensions of Story Diagrams 61

solved by the use of EMF which requires to specify MapEntry classes explicitly for the keys
of a qualified reference. Then, the key and value objects are all bound and created before
creating the corresponding links.

Forth, the set of possible bindings that match in a for-each activity may be extended by this
very for-each activity, i.e., the activity changes something that makes new elements match for
the for-each condition. In the original work on story patterns, it was not clear how this should
be handled. Thus, we define that we use a fresh matchings semantics for for-each activities (in
contrast to a pre-select semantics) in Section 3.3.5.

Fifth, as creations may fail, e.g., due to resource constraints, the authors propose that a story
diagram should be able to react to the result of a creation. As mentioned before, an exception
transition can be used to deal with such failures.

The control flow of story diagrams is modeled explicitly. However, in certain situations,
it is useful to only implicitly define the execution order, as it may significantly improve the
comprehensibility of a story diagram. Thus, Meyers and Van Gorp [MG08] propose to add a
new language construct for the non-deterministic selection of a execution order.

In [Sta08], Stallmann presents an extension of story patterns which is called enhanced story
pattern. They extend story patterns by so-called insets. Insets carry a qualifier which applies
to all object and link variables in the inset. That allows to mark sub-graphs as negative, to
specify and and or conditions on subgraphs and to qualify a subgraph by ∀. We will adopt
these ideas in future versions of this document.

Becker et al. present means for structuring complex transformations into several indepen-
dent story diagrams which can be called in a well-defined manner [BvDHR11]. They propose
inventing explicit call activities which invoke other story diagrams and also support polymor-
phic dispatching. Polymorphic dispatching can also be used for the aforementioned case of
non-deterministic execution order. Calls are described in Section 3.3.7. We will give details on
the polymorphic dispatching mechanism in story diagrams in later versions of this document.

Until 2010, different branches of story diagrams and of FUJABA were developed, leading to
severe difficulties when exchanging data due to incompatibilities. In an effort to again unify
the different branches, a task force was started in 2010. A first result of this joint effort of the
SDM community was a new unified and consolidated meta-model for story diagrams based on
EMF [HRvD+11]. This new meta-model is the foundation for future projects; this technical
report is also based on this meta-model. One extension is the support for explicitly modeling
expressions. However, this is not described in detail here.

5.2 Applications and Extensions of Story Diagrams

In the area of reengineering, Niere et al. [NSW+02] propose to specify design patterns with
a graphical DSL which has strong relations to story patterns. In order to detect the specified
patterns in source code, these DSL patterns are translated into story diagrams which are then
executed through code generation. This approach has first been implemented in FUJABA and
later in the Reclipse Tool Suite [vDMT10]. In follow-up work by Fockel [Foc10], the gen-

62 Chapter 5. Related Work

erated story diagrams are no longer transformed into executable code but are interpreted to
allow for easier debugging of the pattern specifications.

Giese and Klein extend story patterns to so called Story Decision Diagrams (SDDs) that
allow to express complex safety properties [GK06]. Basically, they require story patterns of
SDDs to be non-modifying (i.e., no «create» or «destroy» elements) and add features
of logics such as quantification, implication, and negation. After the evaluation of such a
property, a regular story pattern may be specified which describes a change operation that
should be executed.

Giese and Klein also present Timed Story Scenario Diagrams (TSSDs), which are used to
specify structural and temporal properties of systems in an integrated way [KG07].

Tichy et al. [THHO08] describe how story diagrams can be used to describe reconfigu-
rations of component-based architectures, as, for instance, in MechatronicUML [BBD+12].
A transformation language called Component Story Diagrams is used to specify reconfigura-
tion steps. Component Story Diagrams use the concrete syntax of components for specifying
the reconfiguration operations. This language is transformed to story diagrams that can be
executed to perform the actual reconfigurations.

Zündorf [Zün09] proposes a framework for computing the state-space of a specification in
terms of story diagrams and an initial instance model. It has been used for model checking the
leader election protocol and for a case study presented in [HSJZ10].

Meyer [Mey09] adds a few specialized constructs to story diagrams thereby extending them
to transformation diagrams. Some of these extensions, such as multiple out parameters or
success and failure final nodes, have been integrated into the story diagrams presented in
this report (see Section 3.3.2). Similar to our complete example (Chapter 4), Meyer uses the
transformation diagrams to specify refactorings of object-oriented source code. To verify that
certain properties of the code (e.g. variable accesses) are preserved by the refactorings, he
extends Schilling’s approach [Sch06] to proving inductive invariants.

In [HH11], Heinzemann and Henkler extend story diagrams to timed story diagrams. Timed
story diagrams are based on timed graph transformation systems [EHH+11] that extend graph
transformation systems by clocks as known from timed automata [AD94]. They are used to
model time-dependent reconfigurations of an instance model. In [EHH+11], they are used
as a means to define the semantics of reconfigurations in real-time systems. In [HSE10],
a framework for reachability analysis on timed story diagrams has been introduced which
explores the state-space defined by the timed story diagrams and an initial instance model. It
is based on the framework introduced in [Zün09].

5.3 Work Related to Story Diagrams

Model transformation has become an important research topic during the last years. Several
concepts and tools with different scopes and applications have been proposed.

Several model transformation approaches exist which are similar to story diagrams.

5.3. Work Related to Story Diagrams 63

Here, we focus on those solutions that have a reasonable documentation available. For a
more comprehensive overview of transformation approaches see, for example, [CH06]. Cur-
rent transformation tools can, for instance, be found in [MRG10].

5.3.1 Endogenous, In-Place Model Transformations
Henshin [BESW10] is a model transformation language for in-place transformations of EMF-
based models. It uses pattern-based rewrite rules (called “transformation rules”) and control-
flow-based operational semantics (called “transformation units”) on top of it. Transformation
units can also be called by other transformation units, also including parameters.

MOLA [KBC04] is an in-place model transformation language with a graphical syntax sim-
ilar to story diagrams. Transformation rules may consist of multiple matching and modifica-
tion patterns and the control flow inside a transformation rule can be specified with a focus on
the loop construct. Furthermore, it also allows calling other transformations rules.

Groove [Ren04] is a graph transformation tool with a focus on analyzing graph transfor-
mation systems. Its rules consist of single rewrite patterns. For instance, given a rule set and
a start graph, Groove can explore the graph state space and use this for model checking. It
also features so called “control programs” which allow the user to restrict which rules can be
applied and in which order. It provides model checking of LTL properties [Ren08] and CTL
properties [KR06].

VIATRA [VB07], a textual language, uses abstract state machines to specify the control
flow and graph transformation rules for elementary model manipulations. It also addresses
modularization by reusable patterns that are called from the graph transformation rules.

5.3.2 Exogenous, Inter-Model Transformations
In general, Story Diagrams can also be used to specify inter-model transformations. In this
case, a story diagram would contain elements from both the source and the target model. If
necessary, a trace model could also be created. In comparison to dedicated inter-model trans-
formation languages, story diagrams may be more tedious to use in this application scenario.
However, when a transformation requires extensive pre-computations or complex distinction
of cases, story diagrams are a reasonable alternative.

QVT Operational [Obj11b] is a operational model transformation language designed for
writing unidirectional transformations which is part of the OMG QVT standard. How-
ever, QVT-O is a textual transformation language which may not be well-suited in many
cases [Moo09].

In declarative inter-model transformation languages like Triple Graph Grammars (TGGs)
[Sch94], the control flow cannot be defined explicitly. Instead, the order of the rule application
is implicitly defined by preconditions of the transformation rules. However, when more than
one rule has a fitting precondition, the rule to be applied is selected non-deterministically,
dependent on the concrete transformation tool implementation, or by a given rule priority.
This can make the comprehension of a TGG rule set difficult.

64 Chapter 5. Related Work

In QVT Relations [Obj11b], which is similar to TGGs, control flow may also be explicitly
specified by using where clauses.

The Atlas Transformation Language (ATL) [JABK08] is a hybrid inter-model transforma-
tion language, integrating declarative and operational aspects. It is similar to QVT, but only
has a textual representation of the transformation rules.

65

Chapter 6

Conclusions and Future Work

In this technical report, we presented a consolidated version of the endogenous, graphical
in-place model transformation language story diagrams. Story diagrams combine imperative
modeling of control flow using UML Activity Diagrams which a declarative graph rewriting
language called story pattern. Story patterns are based on typed attributed graph transforma-
tions and formally define the behavior of the activity nodes of story diagrams. We briefly
covered the foundations and explained the most important language concepts and the con-
crete syntax of, both, story patterns and story diagrams. That includes the idea of story pat-
terns and their usage in story diagrams as well as a concepts for invoking story diagrams from
which other story diagrams. We illustrated these concepts with a comprehensive example
that showed the application of several story patterns for the purpose of removing an interface
violation in a program.

In the past, story diagrams have proven to be useful, both, as a model transformation lan-
guage and as a language for specifying behavior of object-oriented programs. In the appendix,
we provide the description of a reference implementation of an interpreter for story diagrams.
It also contains the technical documentation of the current abstract syntax of story diagrams.

Work on and with story diagrams will continue in the future. The new metamodel for
story diagrams which is described in detail in Appendix C has been proposed quite recently
[HRvD+11]. It will definitely be extended and refined. This ensures that story diagrams will
proceed to form the basis of scientific approaches in such diverse fields as reverse engineering
[vDMT10] or verification of embedded systems [HSE10].

Several advanced concepts of story patterns and story diagrams are currently not presented
in this report. We refer to the related publications presented in Sections 5.1 until these concepts
have been included in this report. In future versions will elaborate on advanced concepts in
story diagrams, like the use of sub patterns in story patterns, complex expressions, and the
application of templates. It will also contain concise portrayals of the different approaches
that build on story patterns.

Acknowledgments

This report would not have been possible without the support of many people. The authors
would like to thank Steffen Becker, Christopher Brink, and Matthias Becker for their proof-

66 Chapter 6. Conclusions and Future Work

reading and helpful comments. Thanks go also to Ingo Budde and Aljoscha Hark for their
technical support and their help with the implementation of story diagrams.

The continuous development of story diagrams could only be achieved with the help of all
the people that (besides the authors of this report) worked on story diagrams and their various
applications over the years.

These are (in alphabetical order): Steffen Becker, Manuel Bork, Thomas Buchmann, Ira
Diethelm, Alexander Dotor, Thorsten Fischer, Markus Fockel, Leif Geiger, Holger Giese, Ste-
fan Henkler, Jörg Holtmann, Ruben Jubeh, Felix Klar, Thomas Klein, Hans Köhler, Alexan-
der Königs, Ingo Kreuz, Marius Lauder, Elodie Legros, Matthias Meyer, Bart Meyers, Ulrich
Nickel, Jörg Niere, Ulrich Norbisrath, Simon Oberthür, Carsten Reckord, Wilhelm Schäfer,
Daniela Schilling, Christian Schneider, Andy Schürr, Florian Stallmann, Mirko Stölzel, Ingo
Stürmer, Matthias Tichy, Lars Torunski, Oleg Travkin, Pieter Van Gorp, Jörg Wadsack, Robert
Wagner, Jens Weber, Ingo Weisemöller, Lothar Wendehals, Jim Welsh, Andreas Winter, Stef-
fen Zschaler, and – especially – Albert Zündorf.

67

Bibliography

[AD94] Rajeev Alur and David L. Dill. A Theory of Timed Automata. Theoretical
Computer Science, 126(2):183–235, 1994. 62

[BBD+12] Steffen Becker, Christian Brenner, Stefan Dziwok, Thomas Gewering, Chris-
tian Heinzemann, Uwe Pohlmann, Claudia Priesterjahn, Wilhelm Schäfer, Ju-
lian Suck, Oliver Sudmann, and Matthias Tichy. The MechatronicUML Method
– Process, Syntax, and Semantics. Technical Report tr-ri-12-318, Software Engi-
neering Group, Heinz Nixdorf Institute, University of Paderborn, February 2012.
62

[BESW10] Enrico Biermann, Claudia Ermel, Johann Schmidt, and Angeline Warning. Vi-
sual Modeling of Controlled EMF Model Transformation using Henshin. In Pro-
ceedings of the 4th International Workshop on Graph-Based Tools, 2010. 63

[BvDHR11] Steffen Becker, Markus von Detten, Christian Heinzemann, and Jan Rieke.
Structuring Complex Story Diagrams by Polymorphic Calls. Technical Report
tr-ri-11-323, Software Engineering Group, Heinz Nixdorf Institute, University
of Paderborn, March 2011. 61

[CH06] Krzysztof Czarnecki and Simon Helsen. Feature-based Survey of Model Trans-
formation Approaches. IBM Systems Journal, 45:621–645, July 2006. 11, 62

[DGZ04] Ira Diethelm, Leif Geiger, and Albert Zündorf. Systematic Story Driven Mod-
eling, A Case Study. In Workshop on Scenarios and State Machines: Models,
Algorithms, and Tools, May 2004. 59

[EEPT06] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Fundamen-
tals of Algebraic Graph Transformation. Monographs in Theoretical Computer
Science. Springer, 2006. 4, 6, 7

[EHH+11] Tobias Eckardt, Christian Heinzemann, Stefan Henkler, Martin Hirsch, Claudia
Priesterjahn, and Wilhelm Schäfer. Modeling and Verifying Dynamic Commu-
nication Structures based on Graph Transformations. Computer Science - Re-
search and Development, pages 1–20, July 2011. 62

[Epp95] David Eppstein. Subgraph Isomorphism in Planar Graphs and Related Prob-
lems. In Proceedings of the 6th annual ACM-SIAM Symposium on Discrete Al-

68 Bibliography

gorithms, pages 632–640. Society for Industrial and Applied Mathematics, 1995.
4, 12

[FNT98] Thorsten Fischer, Jörg Niere, and Lars Torunski. Konzeption und Realisierung
einer integrierten Entwicklungsumgebung für UML, Java und Story-Driven-
Modeling. Diploma thesis, University of Paderborn, Germany, July 1998. In
German. 60

[FNTZ00] Thorsten Fischer, Jörg Niere, Lars Torunski, and Albert Zündorf. Story Dia-
grams: A New Graph Rewrite Language Based on the Unified Modeling Lan-
guage and Java. In TAGT ’98 Selected papers, volume 1764 of Lecture Notes in
Computer Science, pages 296–309. Springer, 2000. 1, 11, 59

[Foc10] Markus Fockel. Interpretation von Graphtransformationsregeln zur statischen
Erkennung von Software-Mustern. Master’s thesis, University of Paderborn,
Germany, October 2010. (In German). 61

[Fow99] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-
Wesley, 1999. 52

[GHJV95] Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.
51

[GHS09] Holger Giese, Stephan Hildebrandt, and Andreas Seibel. Improved Flexibility
and Scalability by Interpreting Story Diagrams. In Proceedings of the 8th Inter-
national Workshop on Graph Transformation and Visual Modeling Techniques
(GT-VMT ’09), volume 18 of Electronic Communications of the EASST, 2009.
60, 77

[GK06] Holger Giese and Florian Klein. Beyond Story Patterns: Story Decision Dia-
grams. In Proceedings of the 4th International Fujaba Days 2006, 2006. 1,
61

[HH11] Christian Heinzemann and Stefan Henkler. Timed Story Driven Modeling. Tech-
nical Report tr-ri-11-326, Software Engineering Group, Heinz Nixdorf Institute,
University of Paderborn, Germany, July 2011. 62

[HRvD+11] Christian Heinzemann, Jan Rieke, Markus von Detten, Dietrich Travkin, and
Marius Lauder. A new Meta-Model for Story Diagrams. In Proceedings of the
8th International Fujaba Days, May 2011. 61, 65

[HSE10] Christian Heinzemann, Julian Suck, and Tobias Eckardt. Reachability Analysis
on Timed Graph Transformation Systems. In Proceedings of the 4th Interna-
tional Workshop on Graph-Based Tools, 2010. 62, 65

Bibliography 69

[HSJZ10] Christian Heinzemann, Julian Suck, Ruben Jubeh, and Albert Zündorf. Topology
Analysis of Car Platoons Merge with FujabaRT & TimedStoryCharts - a Case
Study. In Transformation Tool Contest, 2010. 62

[JABK08] Frederic Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. ATL: A model
transformation tool. Science of Computer Programming, 72(1-2):31 – 39, 2008.
63

[JZ97] Jens H. Jahnke and Albert Zündorf. Rewriting poor Design Patterns by good
Design Patterns. In Proceedings of the ESEC / FSE ’97 Workshop on Object-
Oriented Reengineering. Technical University of Vienna, Austria, 1997. 59

[JZ98] Jens H. Jahnke and Albert Zündorf. Specification and Implementation of a Dis-
tributed Planning and Information System for Courses based on Story Driven
Modeling. In Proceedings of 9th International Workshop on Software Specifica-
tion and Design, 1998. 59

[KBC04] Audris Kalnins, Janis Barzdins, and Edgars Celms. Model Transformation Lan-
guage MOLA. In Proceedings of Model-Driven Architecture: Foundations and
Applications, 2004. 63

[KG07] Florian Klein and Holger Giese. Joint Structural and Temporal Property Spec-
ification using Timed Story Scenario Diagrams. In Proceedings of the 10th In-
ternational Conference on Fundamental Approaches to Software Engineering,
2007. 1, 62

[Kle99] Thomas Klein. Rekonstruktion von UML-Aktivitäts- und Kollaborationsdia-
grammen aus Java-Quelltexten. Diploma thesis, University of Paderborn, Oc-
tober 1999. 41, 59

[KR06] Harmen Kastenberg and Arend Rensink. Model Checking Dynamic States in
GROOVE. In Model Checking Software, volume 3925 of Lecture Notes in Com-
puter Science, pages 299–305. Springer, 2006. 63

[Küh06] Thomas Kühne. Matters of (Meta-) Modeling. International Journal on Software
and Systems Modeling, 5(4):369 – 385, December 2006. 7

[Mey09] Matthias Meyer. Musterbasiertes Re-Engineering von Softwaresystemen. PhD
thesis, University of Paderborn, 2009. 12, 41, 42, 62

[MG08] Bart Meyers and Pieter Van Gorp. Towards a Hybrid Transformation Language:
Implicit and Explicit Rule Scheduling in Story Diagrams. In Proceedings of the
6th International Fujaba Days, 2008. 61

70 Bibliography

[Moo09] Daniel L. Moody. The "Physics" of Notations: Toward a Scientific Basis for
Constructing Visual Notations in Software Engineering. IEEE Transactions on
Software Engineering, 35(6):756 – 779, 2009. 63

[MRG10] Steffen Mazanek, Arend Rensink, and Pieter Van Gorp, editors. Transformation
Tool Contest 2010, Malaga, Spain, 2010. 62

[NNZ00] Ulrich A. Nickel, Jörg Niere, and Albert Zündorf. Tool demonstration: The
FUJABA environment. In Proceedings of the 22nd International Conference on
Software Engineering, pages 742 – 745. ACM Press, 2000. 60

[NSW+02] Jörg Niere, Wilhelm Schäfer, Jörg P. Wadsack, Lothar Wendehals, and Jim
Welsh. Towards Pattern-Based Design Recovery. In Proceedings of the 24th
International Conference on Software Engineering, pages 338–348. ACM Press,
May 2002. 61

[Obj10a] Object Management Group. Object Constraint Language (OCL), Version 2.2,
2010. Document formal/2010-02-01. 21

[Obj10b] Object Management Group. Unified Modeling Language (UML) 2.3 Superstruc-
ture Specification, May 2010. Document formal/2010-05-05. 6, 11

[Obj11a] Object Management Group. Meta Object Facility (MOF) 2.4.1 Core Specifica-
tion, 2011. Document formal/2011-08-07. 6

[Obj11b] Object Management Group. Query/View/Transformation (QVT), Version 1.1,
2011. Document formal/2011-01-01. 63

[QBe06] QBench project, 2006. http://www.fzi.de/index.php/de/forschung/forschungsbereiche/se/
projekte/abgeschlossene-projekte/135-projekt-qbench. 8

[Ren04] Arend Rensink. The GROOVE Simulator: A Tool for State Space Generation. In
Applications of Graph Transformation with Industrial Relevance, volume 3062
of Lecture Notes in Computer Science, pages 479–485. Springer Berlin / Heidel-
berg, 2004. 63

[Ren08] Arend Rensink. Explicit State Model Checking for Graph Grammars. In Con-
currency, Graphs and Models, volume 5065 of Lecture Notes in Computer Sci-
ence, pages 114–132. Springer Berlin / Heidelberg, 2008. 63

[Roz97] Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing by
Graph Transformation: Vol. I. Foundations. World Scientific Publishing Co.,
Inc., 1997. 3, 4, 6, 12

Bibliography 71

[SBPM08] David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF:
Eclipse Modeling Framework. The Eclipse Series. Addison-Wesley, 2nd edition,
2008. 6

[Sch94] Andy Schürr. Specification of Graph Translators with Triple Graph Grammars.
In 20th International Workshop on Graph-Theoretic Concepts in Computer Sci-
ence, volume 903 of Lecture Notes in Computer Science (LNCS), pages 151–
163. Springer, 1994. 63

[Sch06] Daniela Schilling. Kompositionale Softwareverifikation mechatronischer Sys-
teme. PhD thesis, University of Paderborn, 2006. 12, 62

[Sta08] Florian Stallmann. A Model-Driven Approach to Multi-Agent System Design.
PhD thesis, University of Paderborn, April 2008. 61

[SWZ95] Andy Schürr, Andreas Winter, and Albert Zündorf. Graph Grammar Engineer-
ing with PROGRES. In Proceedings of the 5th European Software Engineering
Conference, pages 219–234. Springer, 1995. 59

[SZG07] Mirko Stölzel, Steffen Zschaler, and Leif Geiger. Integrating OCL and Model
Transformations in Fujaba. Electronic Communications of the EASST, 5, 2007.
60

[THHO08] Matthias Tichy, Stefan Henkler, Jörg Holtmann, and Simon Oberthür. Compo-
nent Story Diagrams: A Transformation Language for Component Structures
in Mechatronic Systems. In Postproceedings of the 4th Workshop on Object-
oriented Modeling of Embedded Real-Time Systems, pages 27–39, 2008. 62

[TMG06] Matthias Tichy, Matthias Meyer, and Holger Giese. On Semantic Issues in Story
Diagrams. In Proceedings of the 4th International Fujaba Days, 2006. 2, 36, 60

[Tra11] Oleg Travkin. Kombination von Clustering- und musterbasierten Reverse-
Engineering-Verfahren. Master’s thesis, University of Paderborn, June 2011.
In German. 8

[VB07] Daniel Varró and Andras Balogh. The model transformation language of the
VIATRA2 framework. Science of Computer Programming, 68(3):214 – 234,
2007. Special Issue on Model Transformation. 63

[vDMT10] Markus von Detten, Matthias Meyer, and Dietrich Travkin. Reverse Engineering
with the Reclipse Tool Suite. In Proceedings of the 32nd International Confer-
ence on Software Engineering, pages 299–300. ACM, May 2010. 61, 65

[WTF11] Claas Wilke, Michael Thiele, and Björn Freitag. Dresden OCL – Manual for
Installation Use and Development. Technical report, TU Dresden, Germany,
2011. 60

72 Bibliography

[WW01] Kan-Hung Wan and Kan-Sing Wan. Java Codegenerierung für Negative-Knoten
und Multilinks einer Graphersetzungsregel, 2001. 29

[ZSW99] Albert Zündorf, Andy Schürr, and Andreas Winter. Story Driven Model-
ing. Technical Report tr-ri-99-211, Software Engineering Group, Universitiy
of Paderborn, Germany, 1999. 1, 60

[Zün01] Albert Zündorf. Rigorous Object Oriented Software Development. Habilitation,
University of Paderborn, 2001. 1, 11, 59, 60

[Zün09] Albert Zündorf. Model Checking the Leader Election Protocol with Fujaba. In
5th International Workshop on Graph Based Tools, pages 1–11, 2009. 41, 62

73

Appendix A

User Guide

This section should contain a user guide for the available story diagram tools.

A.1 Installation

A.1.1 Installation Using the Eclipse Update Site – Users

A.1.2 Getting the Source Code From Repository – Developers

A.2 Getting Started – User Interface

A.2.1 Story Diagram Editor

A.2.2 Story Diagram Interpreter (Stephan)
The story diagram interpreter is split into a core and a metamodel-specific connector. For
more details, see Sect. B.1. In addition, the interpreter can be used inside Eclipse, which is
the easiest way, or stand-alone without Eclipse, which requires some additional steps.

A.2.2.1 Using the interpreter in Eclipse

To use the interpreter in Eclipse in your own code, simply create a new instance of Story-
DrivenEclipseInterpreter and execute its executeActivity operation. The ClassLoader param-
eter is required to allow executing Java operations via reflection in Story Diagrams.

//Get the activity to execute
Activity activity = ...;

//Compile the list of parameters of the activity
List<Variable<EClassifier>> parameters = ...;

//Create the interpreter
StoryDrivenEclipseInterpreter interpreter =

74 Appendix A. User Guide

new StoryDrivenEclipseInterpreter(getClass().getClassLoader());

//Execute the activity
interpreter.executeActivity(activity, parameters);

The interpreter also provides a notification mechanism. Clients can register a Notifica-
tionReceiver at the interpreter to be informed of all relevant execution steps. This inter-
face defines a notifyChanged method that receives all kinds of InterpreterNotifications. Sto-
ryDrivenOutputStreamNotificationReceiver is an example implementation of NotificationRe-
ceiver that writes all notifications to an output stream (or System.out if none specified.).

//Create the interpreter like above
StoryDrivenEclipseInterpreter interpreter =

new StoryDrivenEclipseInterpreter(getClass().getClassLoader());

//Register a NotificationReceiver
interpreter.getNotificationEmitter().addNotificationReceiver(

new StoryDrivenOutputStreamNotificationReceiver());

A.2.2.2 Using the interpreter without Eclipse

If the interpreter is used without Eclipse, two things have to be noted. First, while the SDM
metamodel is based on EMF, the initialization normally done by EMF automatically, has to be
performed manually. This is done by accessing the metamodel package’s eINSTANCE field
and registering the appropriate resource factory. This is also required for all other EMF-based
metamodels that are used in the application.

//Create a ResourceSet.
ResourceSet resourceSet = new ResourceSetImpl();

//Register the XMIResourceFactory as the default resource
//factory for *.sdm files.
resourceSet.getResourceFactoryRegistry().

getExtensionsToFactoryMap.put("sdm",
new XMIResourceFactoryImpl());

//Register the org.storydriven.core.CorePackage package
//with its nsURI in the package registry.
resourceSet.getPackageRegistry().

put(CorePackage.eNS_URI, CorePackage.eINSTANCE);

//Register all the meta model packages that you will
//use with their nsURIs in the package registry.

A.2. Getting Started – User Interface 75

resourceSet.getPackageRegistry().
put(YourPackage.eNS_URI, YourPackage.eINSTANCE);

Second, all expression interpreters responsible for evaluating expressions in a story diagram
(e.g., OCL expressions) have to be registered manually with the SDM interpreter.

//Create the expression interpreter manager
StoryDrivenExpressionInterpreterManager

expressionInterpreterManager =
new StoryDrivenExpressionInterpreterManager(
getClass().getClassLoader());

//Register expression interpreters for specific expression
//languages
expressionInterpreterManager.registerExpressionInterpreter(

new OCLExpressionInterpreter<Expression>(), "OCL", "1.0");

//Create the interpreter and execute the story diagram
StoryDrivenInterpreter interpreter =

new StoryDrivenInterpreter(expressionInterpreterManager);

77

Appendix B

Execution of Story Diagrams

In general, there are two possibilities to execute models: Executing them directly using an
interpreter [GHS09] or generating GPL code, which is either compiled or interpreted.

FUJABA can generate Java or C code from story diagrams and their accompanying class
diagrams. Here, a story diagram describes the behavior of a single method. Therefore, this
method and its containing class must be defined first.

Interpreting a story diagram does not impose this restriction. In the following sections, we
describe the structure and operation principles of an interpreter for story diagrams.

B.1 Interpreting Story Diagrams

B.1.1 Interpreter Architecture

Figure B.1 shows the package structure of the story diagram interpreter. Cur-
rently, there are multiple story diagram metamodels in use that must all be sup-
ported by the interpreter. Therefore, the interpreter is divided into a metamodel-
independent core (de.mdelab.sdm.interpreter.core) and multiple metamodel-dependent exten-
sions (org.storydriven.storydiagrams.interpreter and de.mdelab.sdm.interpreter.sde). The ex-
tension org.storydriven.storydiagrams.interpreter is responsible for the metamodel described
in this paper. This separation of metamodel-dependent and independent parts allows for eas-
ier maintenance of the interpreter. The classes of the core package define a quite extensive
list of generic type parameters (not shown in the subsequent class diagrams), e.g., for activity
nodes, classifiers, or features. Subclasses in the metamodel-dependent packages replace these
generic types with the concrete types defined in the respective metamodel.

Furthermore, those parts of the interpreter that depend on Eclipse are also separated
(*.eclipse packages). This allows to use the interpreter in stand-alone applications without
Eclipse. In addition, the interpreters for expression languages like OCL are also separated
(de.mdelab.sdm.interpreter.ocl). The story diagram interpreter provides an extension mecha-
nism to add interpreters for other expression languages. The Eclipse-specific plug-ins provide
the additional functionality that expression languages and interpreters for them are registered
automatically using an extension point. Otherwise, the registration of expression languages
must be performed explicitly by the interpreter user. This is the only difference between the

78 Appendix B. Execution of Story Diagrams

de.mdelab.sdm.interpreter.core

de.mdelab.sdm.interpreter.core.eclipse

de.mdelab.sdm.interpreter.sde org.storydriven.storydiagrams.interpreter

de.mdelab.sdm.interpreter.sde.eclipse org.storydriven.storydiagrams.interpreter.
eclipse

de.mdelab.sdm.interpreter.ocl

Figure B.1: Overview of the Packages of the Interpreter

core and the Eclipse-based plug-ins. Therefore, the *Eclipse classes will not be explained in
detail in the following sections.

B.1.1.1 Story Diagram Interpreter

Figure B.2 shows the main classes of the interpreter core. SDMInterpreter is the abstract
superclass of all story diagram interpreters. It is responsible for the execution of a whole
story diagram. StoryDrivenInterpreter and StoryDrivenEclipseInterpreter inherit from it to
narrow the generic type parameters of SDMInterpreter to the specific types of the particular
metamodel. The SDMInterpreter provides the executeActivity() method to execute a story
diagram.

A VariableScope is a collection of Variables that are valid in a specific scope. A Variable is
a triple of the name, the classifier, and the value of the variable. The SDMInterpreter maintains
multiple VariableScopes, one for each activity node.

The ExpressionInterpreterManager is responsible for managing the interpreters for expres-
sion languages and delegating the evaluation of an expression to the appropriate Expression-
Interpreter. The evaluateExpression() method is provided for that purpose. Subclasses of Ex-
pressionInterpreters have to be registered at the ExpressionInterpreterManager via the regis-
terExpressionInterpreter() method before expressions of that language can be handled, e.g.,
the OCLExpressionInterpreter has to be registered for OCL expressions before OCL expres-
sions in a story diagram can be evaluated. Similarly, the CallsInterpreter is registered for

B.1. Interpreting Story Diagrams 79

+executeActivity()

SDMInterpreter

+evaluateExpression()
+registerExpressionInterpreter()

ExpressionInterpreterManager

MetamodelFacadeFactory +facadeFactory

1

1

+expressionInterpreterManager

11VariableScope +variableScopes

* 1

+findNextMatch() : bool
+applyMatch()

StoryPatternMatcher

-storyPatternMatchers *

1

-name
-classifier
-value

Variable

+variables

*

1

+evaluateExpression() : Variable

ExpressionInterpreter

-expressionInterpreters *

-expressionInterpreterManager 1

StoryDrivenMetamodelFacadeFactory

StoryDrivenInterpreter

StoryDrivenEclipseInterpreter

CallsInterpreter OCLExpressionInterpreter

PatternPartBasedMatcher

StoryDrivenPatternMatcher

StoryDrivenEclipsePatternMatcher

EclipseExpressionInterpreterManager

de.mdelab.sdm.interpreter.core

de.mdelab.sdm.interpreter.ocl

de.mdelab.sdm.interpreter.eclipse

org.storydriven.storydiagrams.interpreter

org.storydriven.storydiagrams.interpreter
.eclipse

Figure B.2: Main classes of the interpreter core

80 Appendix B. Execution of Story Diagrams

Calls. The EclipseExpressionInterpreterManager performs this registration automatically.
The plug-in de.mdelab.sdm.interpreter.eclipse defines an extension point for ExpressionIn-
terpreters. All interpreters extending this extension point are registered automatically by the
EclipseExpressionInterpreterManager. If the interpreter is not used within Eclipse, Expres-
sionInterpreters have to be registered explicitly before executing a story diagram.

The abstract class ExpressionInterpreter only defines the evaluateExpression() method that
must be implemented by subclasses such as the OCLExpressionInterpreter and the CallsIn-
terpreter. The method performs the execution of the expression, which may have side effects,
and has to return a Variable with the return type and return value of the expression. In this
method, the current VariableScope can also be accessed and modified so that variables of the
story diagram can be used in expressions.

The interpreter often needs to access specific properties of story diagram elements, e.g., the
name of elements or incoming and outgoing edges of activity nodes. While the interpreter core
is metamodel-independent, it cannot access these properties directly but needs a facade for that
purpose. The MetamodelFacadeFactory provides access to these facades. There are several
interfaces for common kinds of story diagram elements (e.g., story nodes, junction nodes,
object variables or link variables), which have to be implemented for specific story diagram
metamodels. Subclasses of MetamodelFacadeFactory create the facades for the specific story
diagram metamodel.

A StoryPatternMatcher is responsible for the execution of a single story pattern. This ab-
stract superclass defines the methods findNextMatch() to search for the next match of a story
pattern and applyMatch() to execute the graph transformation rule’s side effects on the last
match. The class StoryPatternMatcher does not implement a particular matching strategy,
i.e., a particular algorithm how to search for matches of the pattern. This is done by Pat-
ternPartBasedPatternMatcher. This pattern matching strategy is explained in more detail in
Section B.1.1.2.

B.1.1.2 Story Pattern Matcher

Figure B.3 shows the classes of the story pattern matcher. Currently, only one pattern match-
ing strategy is implemented. The PatternPartBasedPatternMatcher splits the story pattern into
multiple PatternParts. What exactly constitutes a PatternPart is not specified in the interpreter
core. This has to be implemented in the metamodel specific subclasses. Currently, the Sto-
ryDrivenPatternMatcher enforces the following semantics: A pattern part consists either of a
single variable that has no incoming or outgoing links (VariableOnlyPatternPart), or of a sin-
gle link and its adjacent object variables (StoryDrivenLinkVariablePatternPart, StoryDriven-
ContainmentRelationPatternPart, and StoryDrivenPathPatternPart depending on the kind of
link). This implies that a variable can be contained in more than one pattern parts. This se-
mantics can also be modified to support, e.g., complex application conditions or subpatterns,
which form a distinct subunit of the pattern. But this remains transparent to the basic Pattern-
PartBasedPatternMatcher. MatchStates are used by PatternParts to temporarily store infor-
mation about the current matching state, e.g., the iterator of a link to improve performance.

B.1. Interpreting Story Diagrams 81

+findNextMatch() : bool
+applyMatch()

StoryPatternMatcher

+calculateMatchingCost() : int
+check() : ECheckResult
+createLinks()
+createObjects()
+destroyLinks()
+destroyObjects()
+getMatchType() : EMatchType
+match(in matchState : MatchState) : bool
+createMatchState() : MatchState

PatternPart

+FAIL
+OK
+UNKNOWN

«enumeration»
ECheckResult

+MANDATORY
+OPTIONAL
+NEGATIVE

«enumeration»
EMatchType

1

+patternParts

*#createPatternParts()

PatternPartBasedMatcher

StoryDrivenPatternMatcher

+getNextPatternPartForMatching() : PatternPart

MatchingStrategy

1

-matchingStrategy

1

DefaultMatchingStrategy

StoryDrivenPatternPart

StoryDrivenVariableOnlyPatternPart

StoryDrivenLinkVariablePatternPart

StoryDrivenContainmentRelationPatternPart

StoryDrivenPathPatternPart

de.mdelab.sdm.interpreter.core

org.storydriven.storydiagrams.interpreter

MatchState

Figure B.3: Main classes of the story pattern matcher

82 Appendix B. Execution of Story Diagrams

Subclasses are specific for pattern parts and have to define appropriate attributes, e.g., fields
for iterator objects. More information can be found in Sec. B.1.3.2.

The MatchingStrategy determines the order in which pattern parts are matched. The De-
faultMatchingStrategy matches pattern parts in the order of their matching cost estimates, i.e.,
getNextPatternPartForMatching() returns that pattern part with the lowest cost estimate.

There are also two additional pattern matching strategies: DefaultMatchingStrategyWithLog
and LogReproducingMatchingStrategy. These are required for for-each story nodes. For more
information, see Sec. B.1.2.

PatternPart defines several abstract methods:

1. getMatchType() returns whether matching the pattern parts is mandatory or optional, or
whether the pattern part is a negative application condition (cf. Section 3.2.4.2).

2. check() checks whether the link exists in the instance graph, which requires that all
variables of the pattern part are already bound to an instance object. If this is not the
case, check() returns UNKNOWN.

3. calculateMatchingCost() provides an estimate of the cost to match a variable using the
link of the pattern part. This estimate can be based, e.g., on the number of elements con-
tained in the link. If it is currently not possible to match this pattern part (e.g., because
all variables of the pattern part are still unbound), -1 is returned. This operation is called
by the MatchingStrategy to select the PatternPart that the pattern matcher should use to
match the next variable.

4. createMatchState() creates a MatchState object that is by the match() operation to store
information about the matching process.

5. match(MatchState matchState) implements the pattern matching for this kind of pattern
part. It is called after calculateMatchingCost(). To find a match, at least one variable of
the pattern part has to be bound and at least one has to be unbound. Then, match() tries
to find matches for all unbound variables. This part of the pattern matching algorithm
is highly implementation specific. It is not only different for different metamodels, it
also has to be implemented differently for different kinds of link variables. For exam-
ple, matching an object via an ordinary LinkVariable has to be done differently than
matching via a Path or a ContainmentRelation. However, this also allows to exploit cer-
tain features of the metamodel to improve execution performance. For example, Sto-
ryDrivenContainmentRelationPatternPart uses EMF’s eContainer() method to navigate
containment links in the opposite direction. The matchState parameter can be used to
store information about the matching process, e.g., the iterator object of the link.

6. createLinks() and createObjects() create those elements of the pattern part, that are
marked with «create».

B.1. Interpreting Story Diagrams 83

7. destroyLinks() and destroyObjects() destroy links and objects. In contrast to the creation
of elements, these steps are separated to ensure an orderly deletion of story pattern
variables in the VariableScope. 1

B.1.1.3 Notification Mechanism

Notifier

+activityExecutionStarted(in a : Activity, in vs : VariableScope, in n : Notifier)
+...()

NotificationEmitter

* -notificationEmitter1

+notifyChanged(in n : InterpreterNotification)

«interface»
NotificationReceiver

-notificationType : NotificationTypeEnum

InterpreterNotification

*

-notificationReceivers*

+ACTIVITY_EXECUTION_FINISHED
+ACTIVITY_EXECUTION_STARTED
+...

«enumeration»
NotificationTypeEnum

*

-notifier

1

SDMInterpreter

ActivityExecutionStartedNotification

VariableScope

ExpressionInterpreterManager

StoryPatternMatcher

Figure B.4: Relevant classes of the interpreter’s notification mechanism

The interpreter and its subcomponents provide a notification mechanism to inform clients
of all important steps during the execution of a story diagram. This is an implementation of
the observer design pattern.

SDMInterpreter, StoryPatternMatcher, VariableScope, and ExpressionInterpreterManager
extend the Notifier superclass, see Fig. B.4. Notifier defines a reference to a NotificationEmit-

1Background: There are two ways to execute story patterns with deleted elements: Destroy all links first and
then all objects, or the other way round. EMF also supports unidirectional references. Therefore, deleting
objects as implemented in EcoreUtil.delete() is done by going from the deleted object to the root of the
containment hierarchy (usually the Resource or ResourceSet) and searching for cross-references to the deleted
object. If the links are deleted first when the story pattern is executed, the destroyed object may be removed
from its containment hierarchy (if a destroyed link represents this containment). After that, existing cross-
references to the destroyed object that are not represented by a link in the story pattern (remember that story
patterns have SPO semantics) cannot be found and deleted. For this reason, the interpreter first deletes all
objects and then all links.

84 Appendix B. Execution of Story Diagrams

ter. This class provides an operation for each type of notification defined in NotificationType-
Enum that creates an InterpreterNotification and forwards it to all registered NotificationRe-
ceivers by calling their notifyChanged() operations. Clients can add their own NotificationRe-
ceivers to the NotificationEmitter’s list of receivers.

By default, each Notifier uses the default implementation in NotificationEmitter. However,
it is also possible to create Notifiers with custom implementations of NotificationEmitter to
directly process notifications there or process notifications asynchronously, for example.

B.1.2 Interpreting Story Diagrams

create VariableScope

create Variables for parameters

nextNode := StartNode of story diagram

nextNode := executeStoryNode()

nextNode := executeDecisionNode()

nextNode := executeStatementNode()

nextNode := executeActivityNode()

[nextNode instanceof StoryNode]

[nextNode instanceof DecisionNode]

[nextNode instanceof StatementNode]

[else]

[else]

[nextNode = null]

compile and return map of output parameter variables

Figure B.5: Execution Scheme of the SDMInterpreter

The overall interpretation of a story diagram is a simple graph traversal algorithm. The
interpretation starts at the story diagram’s StartNode and traverses the story diagram until it
reaches a StopNode. All activity nodes are executed by specialized methods, which return the
next activity node to execute afterwards. The activity diagram in Figure B.5 shows the overall
execution scheme of the interpreter.

The interpreter is started with the executeActivity() method. This method creates the root
VariableScope and a Variable for each parameter of the story diagram. Then, the StartNode of
the story diagram is obtained and executed.

B.1. Interpreting Story Diagrams 85

In general, the execution of activity nodes works as follows: First, the kind of the activity
node is determined. Then, it is executed by the appropriate execution method. StoryNodes,
JunctionNodes, StopNodes, and StatementNodes require special handling by distinct execution
methods. All other kinds of activity nodes are skipped. After execution of a node, the next
node to execute is returned by the execution methods. This process is repeated until a StopN-
ode is reached, which has no subsequent nodes. Then, the loop terminates. The return value
expressions of all outgoing parameters are evaluated and put into a map, which is returned by
executeActivity(). This map maps the parameter names to their values.2

A non-for-each StoryNode is executed using the StoryPatternMatcher (cf. Section B.1.1.2)
with the DefaultMatchingStrategy. It searches for a match of the story pattern and applies
the graph transformation rule if a match was found. For for-each nodes, the process is more
complex. If the story pattern is executed for the first time, a new StoryPatternMatcher is
created and stored in a local map for this StoryNode. The pattern matcher is executed with
the DefaultMatchingStrategyWithLog, which keeps a log of the order in which elements were
matched. If a match was found, the next activity node of the loop body is returned, i.e.,
that activity node that is connected to the for-each node via a for-each edge. The interpreter
executes that node and eventually the control flow returns to the for-each node. Now, the
existing StoryPatternMatcher is reused so that it continues pattern matching where it left off.
This time, however, the pattern matcher uses the LogReproducingMatchingStrategy. This
ensures, that all elements are matched in the same order as the first time. For-each nodes are
executed with the fresh matching semantics (cf. Section 3.3.5). After a match was found,
the story pattern’s side effects are executed immediately. Then, the next match is sought.
Side-effects may influence subsequent matches, they may create new matches or eliminate
existing ones. They may also influence they matching order if they change the number of
elements in references, which changes the cost estimates (for details, see Section B.1.3). If the
DefaultMatchingStrategy would be used in each iteration of the for-each node, it may choose
a different matching order in subsequent iterations. Due to the way how previous matches are
managed, this may cause the pattern matcher to return a match multiple times or skip valid
matches. Therefore, the DefaultMatchingStrategyWithLog is used in the first iteration of a for-
each story node to log the matching order, and the LogReproducingMatchingStrategy is used
in all subsequent iterations, which matches elements in exactly the same order.

The stored mapping between the StoryNode and the pattern matcher is discarded after the
last loop iteration. If the story diagram’s control flow returns to the for-each node again, the
pattern matching process starts anew.

In addition to the fresh matching semantics, it is also possible to add other execution se-
mantics for for-each nodes, e.g., pre-select, which searches for all matches before executing
side-effects.

2For backward compatibility, all variables of the story diagram are currently returned, not only parameters.

86 Appendix B. Execution of Story Diagrams

B.1.3 Interpreting Story Patterns

The execution of a single story pattern comprises three steps: Initialization of the pattern
matcher and analysis of the story pattern (Section B.1.3.1), pattern matching (Section B.1.3.2),
and pattern application (Section B.1.3.3). These steps are executed in the constructor of the
pattern matcher, the findNextMatch(), and the applyMatch() operations respectively. find-
NextMatch() can be called successively to return all matches for a story pattern one-by-one.
These operations are separated, to allow for additional operations between these phases by the
user of the pattern matcher. The pattern matcher can also be used without the story diagram
interpreter to execute a single story pattern.

B.1.3.1 Initialization and Pattern Analysis

A StoryPatternMatcher is instantiated for a specific story pattern. Therefore, the StoryPattern-
Matcher’s constructor already requires the story pattern as a parameter. In the constructor, the
matcher’s internal data structures are set up. These comprise lists of the bound and unbound
pattern variables3, checked and unchecked PatternParts, bound instance objects, the matching
history, and the stack of match transactions. The matching history is a mapping between pat-
tern variables and lists of instance objects, that were previously bound to that pattern variable.
The match transaction stack is a stack that contains stack elements for each relevant action of
the matcher. Each time, a pattern part is matched or checked, or a pattern variable is bound
to an object, a match transaction is executed and pushed onto the stack. A transaction usually
involves a manipulation of the internal data structures of the matcher, e.g., moving an element
from the list of unbound to that of bound pattern variables. When the matcher has to step back,
these match transactions are popped from the stack and rolled back. After initializing these
data structures, the story pattern is divided into pattern parts as described in Sec. B.1.1.2.

B.1.3.2 Pattern Matching

findNextMatch() is responsible for searching for the next valid match of the story pattern in the
instance model. The operation returns a boolean value indicating whether a match was found
or not. If a match was found, the pattern matcher’s VariableScope is manipulated accordingly.
If no match was found, the VariableScope is left untouched. Fig. B.6 shows the overall scheme
of this method.

First, a new variable scope is created, which is a child of the current variable scope. During
pattern matching, this child variable scope is modified but its parent is left untouched. Next,
all pattern variables that are marked as bound are bound to the appropriate variables in the
VariableScope. Pattern variables with binding expressions are also handled here. After that,
all unchecked pattern parts are checked. After binding all pattern variables, some pattern parts
may contain only bound objects. These pattern parts can be checked already at this point. If

3Subsequently, we use the term pattern variable to refer to object variables or primitive variables in a story
pattern in contrast to Variables to refer to Variable objects used internally by the pattern matcher.

B.1. Interpreting Story Diagrams 87

1 c r e a t e c h i l d v a r i a b l e scope of c u r r e n t v a r i a b l e scope ;
2
3 b ind bound o b j e c t s ;
4
5 check unchecked p a t t e r n p a r t s ;
6
7 b o o l e a n match = t rue ;
8
9 do {

10 whi le (n e x t P a t t e r n P a r t =
11 m a t c h i n g S t r a t e g y . g e t N e x t P a t t e r n P a r t () != n u l l) {
12
13 commit m a t c h P a t t e r n P a r t t r a n s a c t i o n ;
14 match = n e x t P a t t e r n P a r t . match () ;
15
16 i f (not match) {
17 r o l l back l a s t two m a t c h P a t t e r n P a r t t r a n s a c t i o n s ;
18
19 i f (m a t c h i n g S t a c k i s empty)
20 break ;
21 }
22 }
23
24 i f (match) {
25 match = c h e c k S t o r y P a t t e r n C o n s t r a i n t s () ;
26 i f (not match)
27 r o l l back l a s t m a t c h P a t t e r n P a r t t r a n s a c t i o n ;
28 }
29 } whi le (m a t c h i n g S t a c k i s not empty and not match)
30
31 i f (match) {
32 merge c h i l d v a r i a b l e scope i n t o i t s p a r e n t scope ;
33 }

Figure B.6: Overall pattern matching algorithm

88 Appendix B. Execution of Story Diagrams

a check fails, there can be no match for the story pattern and the pattern matcher terminates.
Otherwise, the actual pattern matching algorithm starts.

In two nested loops, the matching strategy returns the next pattern part to use for match-
ing. The matching strategy may use arbitrary heuristics to choose a pattern part from the list of
unchecked pattern parts. The default strategy returns that pattern part with the lowest cost esti-
mate. This pattern part must contain at least one bound and one unbound object and it must be
possible to navigate from the bound objects to the unbound objects. The calculateMatching-
Cost() operation used in both metamodel specific implementations checks this. A transaction
for matching the current pattern part is pushed on the stack and the pattern part’s match() op-
eration is called. This operation is specific to the actual type of the link of the pattern. In case
of ordinary LinkVariables, match() simply follows the link from the bound instance object and
tries to bind the unbound pattern variable to an instance object of the object graph.

If matching the pattern part was successful, i.e. match() returned true, the loop continues
with the next pattern part. When all pattern parts have been matched, the matching strategy
returns null instead of a pattern part. Now, all constraints are checked that are defined for
the whole story pattern. If these conditions are also satisfied, a valid match has been found.
Now, the child variable scope is merged into its parent scope to persist the match, i.e. the
Variables created for the matched objects are merged into the parent scope so that the caller
of the pattern matcher can access the matched objects.

In case the match() operation did not find a match, the last transactions including the one
committed in line 13 of Fig. B.6 for matching pattern parts have to be rolled back. Of course,
this also rolls back all bindings of pattern variables that were performed in the meantime. Here,
also the second last transaction has to be rolled back because the pattern variable matched in
that transaction has now shown to be an invalid match and a new match has to be found for
it. A roll back is also performed if the constraints defined on the whole story pattern are not
satisfied. If a roll back leads to an empty matching stack, the pattern matching process is
terminated because no valid match exists.

B.1.3.3 Pattern Application

After finding a match for a story pattern, the story pattern can be applied, i.e. its side-effects
can be executed. This is done in applyMatch(), which must be called be the caller of the
pattern matcher explicitly. First, all attribute assignments are evaluated and their results are
stored in a list. After that, all objects marked as «destroy» are deleted and then all links.
Finally, all objects and links marked for creation are created and all attributes are assigned
their new values.

It is important that all objects are deleted before deleting any links. Object deletion is
performed via the EcoreUtil.delete() operation, which also deletes all cross-references to the
deleted object. To do so, this operation walks the containment hierarchy upwards and searches
for cross-links in the whole model tree. If the pattern matcher would delete links first, it might
not be possible to walk the containment hierarchy upwards if the deleted link pointed to the
container of a deleted object. Then, it would be impossible to delete all cross-references.

B.1. Interpreting Story Diagrams 89

Attribute assignment expressions are evaluated at the beginning to support expressions that
refer to deleted elements. If attribute assignments would be evaluated at the end, it would not
be possible to evaluate expressions with references to deleted elements because these do not
exist anymore in the VariableScope.

91

Appendix C

Technical Reference

C.1 Package core

C.1.1 Package Overview

The core package is the root package for the storydriven core meta-model. It defines several
abstract super classes which implement an extension mechanism as well as recurring structural
features like, e.g., names of elements. The classes in this package are intended to be sub-
classed by any meta-model element.

C.1.2 Detailed Contents Documentation

C.1.2.1 Class CommentableElement
Overview Abstract super class for all meta-model elements that may carry a comment in
form of a string.

Class Properties Class CommentableElement has the following properties:

comment : EString [0..1]

The comment string that can be used to attach arbitrary information to Com-
mentableElements.

Parent Classes

• ExtendableElement see Section C.1.2.2 on Page 91

C.1.2.2 Class ExtendableElement
Overview Abstract base class for the whole story diagram model. The ExtendableElement
specifies the extension mechanism that can be used to extend an object by an Extension con-
taining additional attributes and references.

92 Appendix C. Technical Reference

0
..1

e
xt
e
n
d
a
b
le
B
a
se

*

e
xt
e
n
si
o
n

H
a
sE
xt
e
n
si
o
n

0
..1

a
n
n
o
ta
te
d
E
le
m
e
n
t

*

a
n
n
o
ta
ti
o
n

H
a
sA
n
n
o
ta
ti
o
n

1

/
e
R
a
w
T
yp
e

1

0
..1

e
C
la
ss
if
ie
r 1

0
..1

ty
p
e
d
E
le
m
e
n
t

0
..1

g
e
n
e
ri
cT
yp
e

H
a
sG
e
n
e
ri
cT
yp
e

*

ty
p
e
d
E
le
m
e
n
t

0
..1

/
ty
p
e

H
a
sT
yp
e

*

e
xt
e
n
si
o
n

0
..1

/
o
w
n
in
g
A
n
n
o
ta
ti
o
n

*

e
xt
e
n
si
o
n

1

/
b
a
se

H
a
sE
xt
e
n
d
e
d
O
b
je
ct

0
..1

/
m
o
d
e
lB
a
se

*

/
e
xt
e
n
si
o
n

H
a
sM
o
d
e
lE
xt
e
n
si
o
n

*

e
A
n
n
o
ta
ti
o
n
s

0
..1

e
M
o
d
e
lE
le
m
e
n
t

*

co
n
te
n
ts

1

*

re
fe
re
n
ce
s

1

E
x
te
n
d
a
b
le
E
le
m
e
n
t

g
e
tE
xt
e
n
si
o
n
(
ty
p
e
:
E
C
la
ss
)
:
E
xt
e
n
si
o
n

p
ro
vi
d
e
E
xt
e
n
si
o
n
(
ty
p
e
:
E
C
la
ss
)
:
E
xt
e
n
si
o
n

g
e
tA
n
n
o
ta
ti
o
n
(
so
u
rc
e
:
S
tr
in
g
)
:
E
A
n
n
o
ta
ti
o
n

p
ro
vi
d
e
A
n
n
o
ta
ti
o
n

(
so
u
rc
e
:
S
tr
in
g
)
:
E
A
n
n
o
ta
ti
o
n

«
M
e
ta
cl
a
ss
»

E
G
e
n
e
ri
cT
y
p
e

«
M
e
ta
cl
a
ss
»

E
C
la
ss
if
ie
r

N
a
m
e
d
E
le
m
e
n
t

n
a
m
e
:S
tr
in
g

T
y
p
e
d
E
le
m
e
n
t

E
x
te
n
si
o
n

C
o
m
m
e
n
ta
b
le
E
le
m
e
n
t

co
m
m
e
n
t
:S
tr
in
g
=
"n
o
 c
o
m
m
e
n
t
p
ro
vi
d
e
d
"

[0
..1
]

«
M
e
ta
cl
a
ss
»

E
A
n
n
o
ta
ti
o
n

so
u
rc
e
:E
S
tr
in
g
[0
..1
]

d
e
ta
ils
:E
S
tr
in
g
T
o
S
tr
in
g
M
a
p
E
n
tr
y

[0
..*
]
«
...
»

«
M
e
ta
cl
a
ss
»

E
M
o
d
e
lE
le
m
e
n
t

g
e
tE
A
n
n
o
ta
ti
o
n
(
so
u
rc
e
:
E
S
tr
in
g
)
:
E
A
n
n
o
ta
ti
o
n

«
M
e
ta
cl
a
ss
»

E
O
b
je
ct

Figure C.1: Class Structure of the core Package

C.1. Package core 93

Parent Classes

• EObject

C.1.2.3 Class Extension
Overview Abstract super class for an Extension that can be defined for an object.

Parent Classes

• ExtendableElement see Section C.1.2.2 on Page 91

C.1.2.4 Class NamedElement
Overview Abstract super class for all meta-model elements that carry a name.

Class Properties Class NamedElement has the following properties:

name : EString

The name attribute of a meta-model element.

Parent Classes

• ExtendableElement see Section C.1.2.2 on Page 91

C.1.2.5 Class TypedElement
Overview Abstract super class for all meta-model elements that are typed by means of an
EClassifier or an EGenericType.

Parent Classes

• ExtendableElement see Section C.1.2.2 on Page 91

94 Appendix C. Technical Reference

C.2 Package core::expressions

C.2.1 Package Overview
The base package for all expressions which can be used for modeling activities and patterns.

CommentableElement

comment : String = "no comment provided" [0..1]

TextualExpression

expressionText : String

language : String

languageVersion : String [0..1]

Expression

Figure C.2: Class Structure of the core::expressions Package

C.2.2 Detailed Contents Documentation

C.2.2.1 Class Expression
Overview Represents any expression in an embedded textual language, e.g. OCL or Java.
An expression’s type is dynamically derived by an external mechanism (see TypedElement).

Parent Classes

• CommentableElement see Section C.1.2.1 on Page 91

C.2.2.2 Class TextualExpression
Overview Represents any expression in a textual language embedded into Story Diagrams,
e.g. OCL or Java .

Class Properties Class TextualExpression has the following properties:

expressionText : EString

Holds the expression, e.g. in OCL or Java.

C.2. Package core::expressions 95

language : EString

String representation of the used language which has to be unique. Examples are
OCL and Java.

languageVersion : EString [0..1]

String representation of the used language’s version. The format is <Ma-
jor>.<Minor>[.<Revision>[.<Build>]] Examples: 1.4 or 3.0.1 or 1.0.2.20101208.

Parent Classes

• Expression see Section C.2.2.1 on Page 94

96 Appendix C. Technical Reference

C.3 Package core::expressions::common

C.3.1 Package Overview

0..1

revEnclosedExpression

1

enclosedExpression

HasEnclosedExpression

0..1

revLeftExpression

1

leftExpression

HasLeftExpression

0..1

revRightExpression

1

rightExpressionHasRightExpression

Expression

LogicalExpression

operator : LogicOperator

ComparisonExpression

operator : ComparingOperator

ArithmeticExpression

operator : ArithmeticOperator

BinaryExpression

«enumeration»

LogicOperator

AND

OR

XOR

IMPLY

EQUIVALENT

«enumeration»

ComparingOperator

LESS

LESS_OR_EQUAL

EQUAL

GREATER_OR_EQUAL

GREATER

UNEQUAL

REGULAR_EXPRESSION

«enumeration»

ArithmeticOperator

PLUS

MINUS

TIMES

DIVIDE

MODULO

«enumeration»

UnaryOperator

NOT

PLUS

MINUS

LiteralExpression

value : String [0..1]

UnaryExpression

operator : UnaryOperator

TextualExpression

expressionText : String

language : String

languageVersion : String [0..1]

Figure C.3: Class Structure of the core::expressions::common Package

C.3.2 Detailed Contents Documentation

C.3.2.1 Class ArithmeticExpression
Overview Represents arithmetic expressions like a + 5 or a * 7.

Class Properties Class ArithmeticExpression has the following properties:

C.3. Package core::expressions::common 97

operator : ArithmeticOperator see Section C.3.2.2 on Page 97

Specifies the expression’s arithmetic operator, e.g. +, -, *, /, or MODULO.

Parent Classes

• BinaryExpression see Section C.3.2.3 on Page 97

C.3.2.2 Enumeration ArithmeticOperator
Overview Defines the operators for arithmetic expressions.

Enum Properties Enumeration ArithmeticOperator has the following literals:

PLUS = 0
MINUS = 1
TIMES = 2
DIVIDE = 3
MODULO = 4

C.3.2.3 Class BinaryExpression
Overview Represents any binary expression like v < 5 or x + 7.

Parent Classes

• Expression see Section C.2.2.1 on Page 94

C.3.2.4 Enumeration ComparingOperator
Overview Defines the operators for comparing expressions.

Enum Properties Enumeration ComparingOperator has the following literals:

LESS = 0
LESS_OR_EQUAL = 1
EQUAL = 2
GREATER_OR_EQUAL = 3
GREATER = 4
UNEQUAL = 5
REGULAR_EXPRESSION = 6

For comparison of a String with a regular expression.

98 Appendix C. Technical Reference

C.3.2.5 Class ComparisonExpression
Overview Represents comparing expressions like a < 5 or a >= 7.

Class Properties Class ComparisonExpression has the following properties:

operator : ComparingOperator see Section C.3.2.4 on Page 97

Specifies the expression’s comparing operator, e.g. <, >=, !=.

Parent Classes

• BinaryExpression see Section C.3.2.3 on Page 97

C.3.2.6 Class LiteralExpression
Overview Represents any literal, i.e. a value whose type is an EDataType. Literals are, for
example, 5, 3.14, ’c’, "text", true.

Class Properties Class LiteralExpression has the following properties:

value : EString [0..1]

String representation of the value, e.g. "5", "3.14", "c", "text", or "true".

Parent Classes

• Expression see Section C.2.2.1 on Page 94

C.3.2.7 Enumeration LogicOperator
Overview Defines the operators for binary logic expressions. The unary logic expression
representing negated expressions is reflected by the NotExpression.

Enum Properties Enumeration LogicOperator has the following literals:

AND = 0

OR = 1

XOR = 2

IMPLY = 3

EQUIVALENT = 4

C.3. Package core::expressions::common 99

C.3.2.8 Class LogicalExpression
Overview Represents binary, logic expressions like a AND b and a OR b.

Class Properties Class LogicalExpression has the following properties:

operator : LogicOperator see Section C.3.2.7 on Page 98

Specifies the expression’s logic operator, e.g. AND, OR, or XOR.

Parent Classes

• BinaryExpression see Section C.3.2.3 on Page 97

C.3.2.9 Class UnaryExpression
Overview Represents a negated expression, e.g. NOT (a < 5).

Class Properties Class UnaryExpression has the following properties:

operator : UnaryOperator see Section C.3.2.10 on Page 99

Class References Class UnaryExpression has the following references:

enclosedExpression : Expression see Section C.2.2.1 on Page 94

Represents the operand of a NotExpression, e.g. a < 5 in NOT (a < 5).

Parent Classes

• Expression see Section C.2.2.1 on Page 94

C.3.2.10 Enumeration UnaryOperator
Overview

Enum Properties Enumeration UnaryOperator has the following literals:

NOT = 0

PLUS = 1

MINUS = 2

100 Appendix C. Technical Reference

C.4 Package storydiagrams

C.4.1 Package Overview
The storydiagram package is the root package for the story diagram meta-model. It defines
the type Variable and otherwise is only used to contain more specific sub-packages.

*

typedElement

0..1

/ type

HasType

Variable

/ variableName : String [0..1] «... »

TypedElement

genericType : EGenericType [0..1] «... »

«Metaclass »

EClassifier

Figure C.4: Class Structure of the storydiagrams Package

C.4.2 Detailed Contents Documentation

C.4.2.1 Class Variable
Overview Represents a variable which can be, for example, an object variable, an attribute,
or any other kind of variable.

Class Properties Class Variable has the following properties:

/variableName : EString [0..1]

Parent Classes

• TypedElement see Section C.1.2.5 on Page 93

C.5. Package storydiagrams::activities 101

C.5 Package storydiagrams::activities

C.5.1 Package Overview

C.5.2 Detailed Contents Documentation

C.5.2.1 Class Activity
Overview The diagram that describes the control flow of an operation. It is used to structure
a number story patterns into a stroy diagram. Story patterns are contained in activity nodes
which are connected by activity edges. In addition, there are special nodes like start, stop, and
juction nodes.

Parent Classes

• Callable see Section C.7.2.1 on Page 110,

• NamedElement see Section C.1.2.4 on Page 93

C.5.2.2 Class ActivityCallNode
Overview The ActivityCallNode is a special ActivityNode which represents the calling
of another story diagram within an activity. To support polymorphic dispatching, multiple
activities can be assigned to it (all of which must have the same call signature, i.e. matching
in and out parameters). All assigned activities are then called in the given order and the first
one whose precondition is fulfilled is executed (Chain of Responsibilty).

Parent Classes

• ActivityNode see Section C.5.2.5 on Page 104,

• Invocation see Section C.7.2.2 on Page 110

C.5.2.3 Class ActivityEdge
Overview The ActivityEdge represents the control flow in an activity. It is a dericted con-
nection from one activity to another one. There exist different kinds of activity edges which
are differentiated by the guard attribute.

Class Properties Class ActivityEdge has the following properties:

guard : EdgeGuard see Section C.5.2.6 on Page 104

The guard defines the kind of the activity edge. The possible kinds of guards are
specified by the EdgeGuard enum.

102 Appendix C. Technical Reference

0
..1

o
w
n
in
g
A
ct
iv
it
yN

o
d
e

*

o
w
n
e
d
A
ct
iv
it
yN

o
d
e

C
o
n
ta
in
sC

h
ild

N
o
d
e

*

a
ct
iv
it
y

0
..1

p
re
co

n
d
it
io
n

H
a
sP

re
co

n
d
it
io
n

1

so
u
rc
e

*

o
u
tg

o
in
g

H
a
sO

u
tg

o
in
g
E
d
g
e

*

o
w
n
e
d
A
ct
iv
it
yN

o
d
e

0
..1

o
w
n
in
g
A
ct
iv
it
y

C
o
n
ta
in
sA

ct
iv
it
yN

o
d
e

*

in
co

m
in
g

1

ta
rg

e
t

H
a
sI
n
co

m
in
g
E
d
g
e

1

a
ct
iv
it
yE

d
g
e

*

g
u
a
rd

E
xc

e
p
ti
o
n

C
o
n
ta
in
sG

u
a
rd

E
xc

e
p
ti
o
n

1

o
w
n
in
g
A
ct
iv
it
y

*

o
w
n
e
d
A
ct
iv
it
yE

d
g
e

C
o
n
ta
in
sA

ct
iv
it
yE

d
g
e

*

e
xc

e
p
ti
o
n
V
a
ri
a
b
le
E
xp

re
ss
io
n

1

e
xc

e
p
ti
o
n
V
a
ri
a
b
le

0
..1

o
w
n
in
g
O
p
e
ra
ti
o
n

0
..1

o
w
n
e
d
A
ct
iv
it
y

H
a
sA

ct
iv
it
y

*

o
p
e
ra
ti
o
n
E
xt
e
n
si
o
n

0
..1

/
o
p
e
ra
ti
o
n

0
..1

o
p
e
ra
ti
o
n
E
xt
e
n
si
o
n

0
..1

re
tu
rn
V
a
lu
e

o
u
tP
a
ra
m
e
te
r

*

e
P
a
ra
m
e
te
rs

0
..1

e
O
p
e
ra
ti
o
n

*

a
ct
iv
it
yC

a
llN

o
d
e

1
..*

ca
lle

d
A
ct
iv
it
y H

a
sC

a
lle

d
A
ct
iv
it
y

S
to
ry
N
o
d
e

fo
rE
a
ch

:B
o
o
le
a
n

/
st
o
ry
P
a
tt
e
rn

:S
to

ry
P
a
tt
e
rn

«
...
»

S
tr
u
ct
u
re
d
N
o
d
e

M
o
d
if
y
in
g
S
to
ry
N
o
d
e

o
w
n
e
d
R
u
le

:S
to

ry
P
a
tt
e
rn

M
a
tc
h
in
g
S
to
ry
N
o
d
e

o
w
n
e
d
P
a
tt
e
rn

:M
a
tc
h
in
g
P
a
tt
e
rn

A
ct
iv
it
y
N
o
d
e

A
ct
iv
it
y
E
d
g
e

g
u
a
rd

:E
d
g
e
G
u
a
rd

=
N
O
N
E

g
u
a
rd

E
xp

re
ss
io
n

:E
xp

re
ss
io
n

[0
..1

]

E
x
ce
p
ti
o
n
V
a
ri
a
b
le

n
a
m
e
:S

tr
in
g

e
xc

e
p
ti
o
n
T
yp

e
:E

C
la
ss
if
ie
r
[0
..*
]
«
...
»

g
e
n
e
ri
cE

xc
e
p
ti
o
n
T
yp

e
:E

G
e
n
e
ri
cT

yp
e

[0
..*
]

E
x
ce
p
ti
o
n
V
a
ri
a
b
le
E
x
p
re
ss
io
n

O
p
e
ra
ti
o
n
E
x
te
n
si
o
n

«
M
e
ta
cl
a
ss

»

E
O
p
e
ra
ti
o
n

«
M
e
ta
cl
a
ss

»

E
P
a
ra
m
e
te
r

A
ct
iv
it
y

A
ct
iv
it
y
C
a
ll
N
o
d
e

Ju
n
ct
io
n
N
o
d
e

A
ct
iv
it
y
F
in
a
lN

o
d
e

/
re
tu
rn
V
a
lu
e

:E
xp

re
ss
io
n

[0
..1

]
«
...
»

re
tu
rn
V
a
lu
e
s
:E

xp
re
ss
io
n

[0
..*
]

su
cc

e
ss

:B
o
o
le
a
n

=
tr
u
e

In
it
ia
lN

o
d
e

S
ta
te
m
e
n
tN

o
d
e

st
a
te
m
e
n
tE
xp

re
ss
io
n

:E
xp

re
ss
io
n

«
e
n
u
m
e
ra
ti
o
n
»

E
d
g
e
G
u
a
rd

N
O
N
E

S
U
C
C
E
S
S

FA
IL
U
R
E

E
A
C
H
_T

IM
E

E
N
D

E
LS

E

B
O
O
L

E
X
C
E
P
T
IO

N

FI
N
A
LL

Y

F
lo
w
F
in
a
lN

o
d
e

Figure C.5: Class Structure of the storydiagrams::activities Package

C.5. Package storydiagrams::activities 103

Class References Class ActivityEdge has the following references:

guardException : ExceptionVariable [0..∗] see Section C.5.2.7 on Page 105

Declares variables representing the Exceptions that lead to firing this transition.

guardExpression : Expression [0..1] see Section C.2.2.1 on Page 94

Points to an expression in case the transition guard is BOOL. The expression has
to evaulate to a boolean value.

owningActivity : Activity see Section C.5.2.1 on Page 101

Points to the activity this ActivityEdge is contained in.

source : ActivityNode see Section C.5.2.5 on Page 104

The source node of this ActivityEdge.

target : ActivityNode see Section C.5.2.5 on Page 104

The target node of this ActivityEdge.

Parent Classes

• ExtendableElement see Section C.1.2.2 on Page 91

C.5.2.4 Class ActivityFinalNode
Overview At a StopNode, the execution of an activity terminates. If the activity specifies
any out-parameters, they have to be bound to a return expression.

Class Properties Class ActivityFinalNode has the following properties:

success : EBoolean

Class References Class ActivityFinalNode has the following references:

/returnValue : Expression [0..1] see Section C.2.2.1 on Page 94

Convenience method when dealing with activities that implement an EOperation.
In this case, only one out parameter is supported. This attributes then returns the
first out parameter.

returnValues : Expression [0..∗] see Section C.2.2.1 on Page 94

Defines the return values of the activity. These return values will be assigned to
the out-parameters.

Parent Classes

• ActivityNode see Section C.5.2.5 on Page 104

104 Appendix C. Technical Reference

C.5.2.5 Class ActivityNode

Overview Abstract super class for all kinds of nodes that may be added to an activity.
This class provides the basic functionality of connecting the activity nodes in the activity by
ActivityEdges.

Parent Classes

• NamedElement see Section C.1.2.4 on Page 93,

• CommentableElement see Section C.1.2.1 on Page 91

C.5.2.6 Enumeration EdgeGuard

Overview This enum is used to model different kinds of activity edges.

Enum Properties Enumeration EdgeGuard has the following literals:

NONE = 0

No guard, only one outgoing activity edge of this kind is supported per activity
node. If an edge with EdgeGuard NONE is used, it must be the only edge leaving
a state.

SUCCESS = 1

Edge will be taken if execution of the souce activity node was successful, e.g., a
story pattern was matched successfully. There must be another edge leaving the
same node which is of kind FAILURE.

FAILURE = 2

Edge will be taken if execution of the source activity node was not successful, e.g.,
a story pattern could not be matched. There must be another edge leaving the same
node which is of kind SUCCESS

EACH_TIME = 3

Edge may only leave a StoryNode whose forEach attribute is true. It will be taken
for each match that can be identified for the story pattern in the foreach StoryNode.
There must be another edge leaving the same node which is of kind END

END = 4

Edge may only leave a StoryNode whose forEach attribute is true. It will be taken
if no more fresh matches for the story pattern in the foreach node can be found.

C.5. Package storydiagrams::activities 105

ELSE = 5

Complement to the BOOL guard, ELSE may only be used if at least one BOOL
activity edge leaves the same state. The edge will be taken if none of the BOOL
guards can be evaluated to true

BOOL = 6

An activity edge specifying a boolean guard using variables that have been previ-
ously used in the activity. Edge will be taken if the guardExpression of the activity
edge evaluates to true. More than one BOOL edge is allowed to leave an activity
node.

EXCEPTION = 7

An EXCEPTION edge will be taken if an exception of the type defined by the Ex-
ceptionVariable connected to the activity edge occured while executing the source
activity node of the edge. More than one edge of kind EXCEPTION is allowed to
leave a node.

FINALLY = 8

An activity edge of kind FINALLY may only leave an activity node that has at
least one other outgoing edge of kind EXCEPTION. The finally edge will be taken
after the source node has been executed and after, possibly, the EXCEPTION edge
has been taken.

C.5.2.7 Class ExceptionVariable
Overview Declares a variable representing an Exception that leads to firing a transition
(ActivityEdge). Can only be applied to ActivityEdge whose guard is set to EXCEPTION.

Class Properties Class ExceptionVariable has the following properties:

name : EString

Specifies the name of the declared exception variable.

Class References Class ExceptionVariable has the following references:

activityEdge : ActivityEdge see Section C.5.2.3 on Page 101

Specifies the transition (activity edge) where the exception variable is declared.

exceptionType : EClassifier [0..∗]

Specifies the type of the declared exception variable.

genericExceptionType : EGenericType [0..∗]

106 Appendix C. Technical Reference

Parent Classes

• Variable see Section C.4.2.1 on Page 100

C.5.2.8 Class FlowFinalNode
Overview

Parent Classes

• ActivityFinalNode see Section C.5.2.4 on Page 103

C.5.2.9 Class InitialNode
Overview The start node of an activity defines the starting point for the execution of the
activity.

Parent Classes

• ActivityNode see Section C.5.2.5 on Page 104

C.5.2.10 Class JunctionNode
Overview A JunctionNode represents a pseudo-activity which is used for branching and
merging the control flow in an activity. It is visualized by a diamond shaped figure.

Parent Classes

• ActivityNode see Section C.5.2.5 on Page 104

C.5.2.11 Class MatchingStoryNode
Overview A MatchingStoryNode may only contain a MatchingPattern which does not
change the graph. I.e., no element contained in this activity carries a create or destroy an-
notation. Thus, after executing a MatchingStoryNode, the underlying graph is guaranteed to
be unchanged.

Parent Classes

• StoryNode see Section C.5.2.15 on Page 107

C.5. Package storydiagrams::activities 107

C.5.2.12 Class ModifyingStoryNode
Overview A ModifyingStoryNode contains a story pattern which may change the underly-
ing graph upon execution.

Parent Classes

• StoryNode see Section C.5.2.15 on Page 107

C.5.2.13 Class OperationExtension
Overview An OperationExtension is a stand-in for an EOperation in our model. It is nec-
essary because we cannot change the type EOperation. Thus, OperationExtension points to an
EOperation but adds the reference to an Activity that describes the operations behavior.

Parent Classes

• Extension see Section C.1.2.3 on Page 93,

• Callable see Section C.7.2.1 on Page 110

C.5.2.14 Class StatementNode
Overview A statement node is a node that just contains an expression defining its behav-
ior. In combination with a textual expression, arbitrary souce code might be added by using
StatementNodes.

Parent Classes

• ActivityNode see Section C.5.2.5 on Page 104

C.5.2.15 Class StoryNode
Overview An activity node containing a story pattern.

Class Properties Class StoryNode has the following properties:

forEach : EBoolean

Specifies whether just one match should be found for the contained pattern (forE-
ach = false) or whether all matches should be found (forEach = true).

Class References Class StoryNode has the following references:

/storyPattern : StoryPattern see Section C.9.2.18 on Page 123

108 Appendix C. Technical Reference

Parent Classes

• ActivityNode see Section C.5.2.5 on Page 104

C.5.2.16 Class StructuredNode
Overview A structured node is a node that contains several other activities.

Parent Classes

• ActivityNode see Section C.5.2.5 on Page 104

C.6. Package storydiagrams::activities::expressions 109

C.6 Package
storydiagrams::activities::expressions

C.6.1 Package Overview

*

exceptionVariableExpression

1

exceptionVariable

*

exceptionVariable

*

exceptionType

1

activityEdge

*

guardException

ContainsGuardException

ActivityEdge

target : ActivityNode

source : ActivityNode

guard : EdgeGuard = NONE

guardExpression : Expression [0..1]

owningActivity : Activity

ExceptionVariable

name : String

genericExceptionType : EGenericType [0..*]

ExceptionVariableExpression

« Metaclass »

EClassifier

Figure C.6: Class Structure of the storydiagrams::activities::expressions Package

C.6.2 Detailed Contents Documentation

C.6.2.1 Class ExceptionVariableExpression
Overview Represents the value of an exception variable declared as a transition guard (the
guard of an activity edge).

Parent Classes

• Expression see Section C.2.2.1 on Page 94

110 Appendix C. Technical Reference

C.7 Package storydiagrams::calls

C.7.1 Package Overview

This package contains all classes for modeling calls to activities and EOperations from within
an activity.

C.7.2 Detailed Contents Documentation

C.7.2.1 Class Callable
Overview An entity which can be called by an Invocation. A Callable can have a number of
(ordered) parameters which are either in or out parameters. In the case of activities, the number
of in and out parameters is unbounded, whereas OperationExtensions and OpaqueCallables
can only have one out parameter (This is enforced by an OCL constraint).

Parent Classes

• CommentableElement see Section C.1.2.1 on Page 91

C.7.2.2 Class Invocation
Overview Superclass for invocations of behavior which is specified elsewhere, e.g. in
methods (MethodCallExpression) or activities (ActivityCallNode). An invocation has one
parameter binding for each parameter (in or out) of the called method/activity. For Callables
which are contained in the model (i.e. Activities and OperationExtensions) the Invocation di-
rectly points to the callee. OpaqueCallables are directly referenced by (and contained in) the
MethodCallExpressions.

Parent Classes

• CommentableElement see Section C.1.2.1 on Page 91

C.7.2.3 Class OpaqueCallable
Overview An OpaqueCallable represents an external method which is not explicitly mod-
eled (e.g. a method in an external library). Because it is not contained anywhere in the model
it is directly referenced by and contained in the MethodCallExpression.

Class Properties Class OpaqueCallable has the following properties:

name : EString

C.7. Package storydiagrams::calls 111

*

re
vI
n
P
a
ra
m
e
te
r

*

in
P
a
ra
m
e
te
r

H
a
sI
n
P
a
ra
m
e
te
r

*

re
vO

u
tP
a
ra
m
e
te
r

*

o
u
tP
a
ra
m
e
te
r

H
a
sO

u
tP
a
ra
m
e
te
r

*

in
vo

ca
ti
o
n

0
..1

ca
lle
e

H
a
sC

a
lle
e

*

co
n
ta
in
e
d
P
a
ra
m
e
te
rs

*

re
vC

o
n
ta
in
e
d
P
a
ra
m
e
te
rs

C
o
n
ta
in
sP
a
ra
m
e
te
r

0
..1

o
w
n
in
g
O
p
e
ra
ti
o
n

0
..1

o
w
n
e
d
A
ct
iv
it
y

H
a
sA

ct
iv
it
y

1

in
vo

ca
ti
o
n

*

o
w
n
e
d
P
a
ra
m
e
te
rB
in
d
in
g
s

C
o
n
ta
in
sP
a
ra
m
e
te
rB
in
d
in
g
s

*

p
a
ra
m
e
te
rB
in
d
in
g

0
..1

p
a
ra
m
e
te
r

H
a
sP
a
ra
m
e
te
r

*

re
vI
n
P
a
ra
m
e
te
r

*

in
P
a
ra
m
e
te
r

O
p
a
q
u
e
C
a
lla
b
le
C
o
n
ta
in
sI
n

*

re
vO

u
tP
a
ra
m
e
te
r

*

o
u
tP
a
ra
m
e
te
r

O
p
a
q
u
e
C
a
lla
b
le
C
o
n
ta
in
sO

u
t

0
..1

p
a
ra
m
e
te
rB
in
d
in
g

1

va
lu
e
E
xp

re
ss
io
n

C
o
n
ta
in
sV

a
lu
e
E
xp

re
ss
io
n

0
..1

m
e
th
o
d
C
a
llE
xp

re
ss
io
n

0
..1

ta
rg
e
t

C
o
n
ta
in
sT
a
rg
e
t

1

ca
llE
xp

re
ss
io
n

0
..1

o
p
a
q
u
e
C
a
lla
b
le

C
o
n
ta
in
sO

p
a
q
u
e
C
a
lla
b
le

C
a
ll
a
b
le

O
p
e
ra
ti
o
n
E
x
te
n
si
o
n

/
o
p
e
ra
ti
o
n

:
E
O
p
e
ra
ti
o
n

[0
..1
]

«
...
»

re
tu
rn
V
a
lu
e

:
E
P
a
ra
m
e
te
r

[0
..1
]

In
v
o
ca
ti
o
n

A
ct
iv
it
y
C
a
ll
N
o
d
e

ca
lle
d
A
ct
iv
it
y

:
A
ct
iv
it
y

[1
..*
]

«
M
e
ta
cl
a
ss

»

E
P
a
ra
m
e
te
r

E
x
p
re
ss
io
n

M
e
th
o
d
C
a
ll
E
x
p
re
ss
io
n

P
a
ra
m
e
te
rB
in
d
in
g

A
ct
iv
it
y

O
p
a
q
u
e
C
a
ll
a
b
le

n
a
m
e

:
S
tr
in
g

Figure C.7: Class Structure of the storydiagrams::calls Package

112 Appendix C. Technical Reference

Class References Class OpaqueCallable has the following references:

callExpression : MethodCallExpression see Section C.8.2.1 on Page 113

Parent Classes

• Callable see Section C.7.2.1 on Page 110

C.7.2.4 Class ParameterBinding
Overview Binds a parameter to a certain value for a given invocation. The value of the
parameter is represented by an expression.

Parent Classes

• CommentableElement see Section C.1.2.1 on Page 91

C.7.2.5 Class ParameterExtension
Overview Represents an EParameter and adds functionality to it, especially beiing subtype
of Variable.

Parent Classes

• Variable see Section C.4.2.1 on Page 100,

• Extension see Section C.1.2.3 on Page 93

C.8. Package storydiagrams::calls::expressions 113

C.8 Package
storydiagrams::calls::expressions

C.8.1 Package Overview

C.8.2 Detailed Contents Documentation

C.8.2.1 Class MethodCallExpression
Overview A MethodCallEpression represents the direct invocation of a method. This can
either be a method which is explicitly modeled as an EOperation in a class diagram (referenced
by the OperationExtension) or an unmodeled method in an external library (referenced by an
OpaqueCallable). Therefore, a MethodCallExpression references either an OperationExten-
sion (indirectly via the callee role between Invocation and Callable) or an OpaqueCallable.

Parent Classes

• Expression see Section C.2.2.1 on Page 94,

• Invocation see Section C.7.2.2 on Page 110

C.8.2.2 Class ParameterExpression
Overview An Expressions that represents a parameter value, e.g. the value of an Activity’s
parameter.

Parent Classes

• Expression see Section C.2.2.1 on Page 94

114 Appendix C. Technical Reference

1

in
vo
ca
ti
o
n

*

o
w
n
e
d
P
a
ra
m
e
te
rB
in
d
in
g
s

C
o
n
ta
in
sP
a
ra
m
e
te
rB
in
d
in
g
s

*

in
vo
ca
ti
o
n

0
..1

ca
lle
e

H
a
sC
a
lle
e

0
..1

m
e
th
o
d
C
a
llE
xp
re
ss
io
n

0
..1

ta
rg
e
t

C
o
n
ta
in
sT
a
rg
e
t1

ca
llE
xp
re
ss
io
n

0
..1

o
p
a
q
u
e
C
a
lla
b
le

C
o
n
ta
in
sO
p
a
q
u
e
C
a
lla
b
le

0
..1

p
a
ra
m
e
te
rB
in
d
in
g

1

va
lu
e
E
xp
re
ss
io
n

C
o
n
ta
in
sV
a
lu
e
E
xp
re
ss
io
n

*

o
p
e
ra
ti
o
n
E
xt
e
n
si
o
n

0
..1

/
o
p
e
ra
ti
o
n

0
..1

o
p
e
ra
ti
o
n
E
xt
e
n
si
o
n

0
..1

re
tu
rn
V
a
lu
e

o
u
tP
a
ra
m
e
te
r

*

re
vI
n
P
a
ra
m
e
te
r

*

in
P
a
ra
m
e
te
r

H
a
sI
n
P
a
ra
m
e
te
r

*

re
vO
u
tP
a
ra
m
e
te
r

*

o
u
tP
a
ra
m
e
te
r

H
a
sO
u
tP
a
ra
m
e
te
r

*

co
n
ta
in
e
d
P
a
ra
m
e
te
rs

*

re
vC
o
n
ta
in
e
d
P
a
ra
m
e
te
rs

C
o
n
ta
in
sP
a
ra
m
e
te
r

*

p
a
ra
m
e
te
rB
in
d
in
g

0
..1

p
a
ra
m
e
te
r

H
a
sP
a
ra
m
e
te
r

*

re
vI
n
P
a
ra
m
e
te
r

*

in
P
a
ra
m
e
te
r

O
p
a
q
u
e
C
a
lla
b
le
C
o
n
ta
in
sI
n

*

re
vO
u
tP
a
ra
m
e
te
r

*

o
u
tP
a
ra
m
e
te
r

O
p
a
q
u
e
C
a
lla
b
le
C
o
n
ta
in
sO
u
t

*

e
P
a
ra
m
e
te
rs

0
..1

e
O
p
e
ra
ti
o
n

*

p
a
ra
m
e
te
rE
xt
e
n
si
o
n

0
..1

/
p
a
ra
m
e
te
r

H
a
sP
a
ra
m
e
te
r

*

p
a
ra
m
e
te
rE
xp
re
ss
io
n

0
..1

p
a
ra
m
e
te
r

p
a
ra
m
e
te
r

In
v
o
ca
ti
o
n

M
e
th
o
d
C
a
ll
E
x
p
re
ss
io
n

E
x
p
re
ss
io
n

O
p
e
ra
ti
o
n
E
x
te
n
si
o
n

o
w
n
e
d
A
ct
iv
it
y

:
A
ct
iv
it
y
[0
..1
]

C
a
ll
a
b
le

P
a
ra
m
e
te
rB
in
d
in
g

O
p
a
q
u
e
C
a
ll
a
b
le

n
a
m
e
:S
tr
in
g

«
M
e
ta
cl
a
ss

»

E
O
p
e
ra
ti
o
n

«
M
e
ta
cl
a
ss

»

E
P
a
ra
m
e
te
r

P
a
ra
m
e
te
rE
x
te
n
si
o
n

P
a
ra
m
e
te
rE
x
p
re
ss
io
n

Figure C.8: Class Structure of the storydiagrams::calls::expressions Package

C.9. Package storydiagrams::patterns 115

C.9 Package storydiagrams::patterns

C.9.1 Package Overview

This package contains all classes for modeling story patterns that may be embedded into Sto-
ryActivityNodes of an Activity.

C.9.2 Detailed Contents Documentation

C.9.2.1 Class AbstractLinkVariable
Overview Abstract super class for all kinds of link variables that represent links between
two objects in a story pattern.

Class Properties Class AbstractLinkVariable has the following properties:

bindingOperator : BindingOperator see Section C.9.2.4 on Page 117

The binding operator defines whether this link will be matched, created or de-
stroyed by the story pattern. The default value ist "check_only", i.e., the link will
be matched.

bindingSemantics : BindingSemantics see Section C.9.2.5 on Page 118

The binding semantics defines whether the link must be matched for a successful
application of the containing story pattern, whether it must not be matched or
whether it is optional, i.e., it will be bound if it can be bound but that does not
affect the success of matching the story pattern. The default value is "mandatory"
(i.e., it must be matched).

Class References Class AbstractLinkVariable has the following references:

firstLinkConstraint : LinkConstraint [0..∗] see Section C.9.2.10 on Page 120

pattern : StoryPattern see Section C.9.2.18 on Page 123

secondLinkConstraint : LinkConstraint [0..∗] see Section C.9.2.10 on Page 120

source : ObjectVariable see Section C.9.2.15 on Page 122

target : AbstractVariable see Section C.9.2.2 on Page 117

Parent Classes

• NamedElement see Section C.1.2.4 on Page 93

116 Appendix C. Technical Reference

1

p
a
tt
e
rn

*

va
ri
a
b
le

C
o
n
ta
in
sV
a
ri
a
b
le
s

0
..1

p
a
re
n
tP
a
tt
e
rn

*

co
n
ta
in
e
d
P
a
tt
e
rn

C
o
n
ta
in
sC
h
ild
P
a
tt
e
rn

1

p
a
tt
e
rn

*

lin
k
V
a
ri
a
b
le

C
o
n
ta
in
sL
in
k
V
a
ri
a
b
le
s

0
..1

p
a
tt
e
rn

*

co
n
st
ra
in
t

C
o
n
ta
in
sC
o
n
st
ra
in
ts

0
..1

o
b
je
ct
V
a
ri
a
b
le

*

co
n
st
ra
in
t

C
o
n
ta
in
sC
o
n
st
ra
in
ts

*

in
co
m
in
g
Li
n
k

1

ta
rg
e
t

H
a
sT
a
rg
e
tO

b
je
ct

*

o
u
tg
o
in
g
Li
n
k

1

so
u
rc
e

H
a
sS
o
u
rc
e
O
b
je
ct

*

fi
rs
tL
in
k
C
o
n
st
ra
in
t

1

fi
rs
tL
in
k

H
a
sF
ir
st
Li
n
k

*

se
co
n
d
Li
n
k
C
o
n
st
ra
in
t

0
..1

se
co
n
d
Li
n
k

H
a
sS
e
co
n
d
Li
n
k

*

p
ri
m
it
iv
e
V
a
ri
a
b
le
E
xp
re
ss
io
n

1

p
ri
m
it
iv
e
V
a
ri
a
b
le

*

o
b
je
ct
V
a
ri
a
b
le
E
xp
re
ss
io
n

1

o
b
je
ct

E
xp
re
ss
io
n
H
a
sO

b
je
ct *

a
tt
ri
b
u
te
V
a
lu
e
E
xp
re
ss
io
n

1

o
b
je
ct

H
a
sO

b
je
ct

*

o
b
je
ct
S
e
tS
iz
e
E
xp
re
ss
io
n

1 se
t

H
a
sS
e
t

1

o
b
je
ct
V
a
ri
a
b
le

*

a
tt
ri
b
u
te
A
ss
ig
n
m
e
n
t

C
o
n
ta
in
sA
tt
ri
b
u
te
E
xp
re
ss
io
n

*

lin
k
O
rd
e
rC
o
n
st
ra
in
t

1

re
fe
re
n
ci
n
g
O
b
je
ct

Li
n
k
C
o
n
st
ra
in
tH
a
sO

b
je
ct
V
a
ri
a
b
le

S
to
ry
P
a
tt
e
rn

b
in
d
in
g
S
e
m
a
n
ti
cs

:B
in
d
in
g
S
e
m
a
n
ti
cs

=
M
A
N
D
A
T
O
R
Y

te
m
p
la
te
S
ig
n
a
tu
re

:T
e
m
p
la
te
S
ig
n
a
tu
re

[0
..1
]

M
a
tc
h
in
g
P
a
tt
e
rn

«
e
n
u
m
e
ra
ti
o
n
»

B
in
d
in
g
O
p
e
ra
to
r

C
H
E
C
K
_O

N
LY

C
R
E
A
T
E

D
E
S
T
R
O
Y

«
e
n
u
m
e
ra
ti
o
n
»

B
in
d
in
g
S
ta
te

U
N
B
O
U
N
D

B
O
U
N
D

M
A
Y
B
E
_B
O
U
N
D

«
e
n
u
m
e
ra
ti
o
n
»

B
in
d
in
g
S
e
m
a
n
ti
cs

M
A
N
D
A
T
O
R
Y

N
E
G
A
T
IV
E

O
P
T
IO
N
A
L

A
b
s
t
r
a
c
t
V
a
r
ia
b
le

b
in
d
in
g
S
ta
te
:B
in
d
in
g
S
ta
te

=
U
N
B
O
U
N
D

b
in
d
in
g
E
xp
re
ss
io
n
:E
xp
re
ss
io
n
[0
..1
]

A
b
s
t
r
a
c
t
L
in
k
V
a
r
ia
b
le

b
in
d
in
g
S
e
m
a
n
ti
cs

:B
in
d
in
g
S
e
m
a
n
ti
cs

=
M
A
N
D
A
T
O
R
Y

b
in
d
in
g
O
p
e
ra
to
r
:B
in
d
in
g
O
p
e
ra
to
r
=
C
H
E
C
K
_O

N
LY

L
in
k
V
a
ri
a
b
le

/
so
u
rc
e
E
n
d
:E
R
e
fe
re
n
ce

[0
..1
]
«
...
»

ta
rg
e
tE
n
d
:E
R
e
fe
re
n
ce

q
u
a
lif
ie
rE
xp
re
ss
io
n
:E
xp
re
ss
io
n
[0
..1
]

P
a
th

p
a
th
E
xp
re
ss
io
n
:E
xp
re
ss
io
n

In
cl
u
si
o
n
L
in
k

P
ri
m
it
iv
e
V
a
ri
a
b
le

cl
a
ss
if
ie
r
:E
D
a
ta
T
yp
e
«
...
»

P
ri
m
it
iv
e
V
a
ri
a
b
le
E
x
p
re
ss
io
n

O
b
je
ct
V
a
ri
a
b
le
E
x
p
re
ss
io
n

A
tt
ri
b
u
te
V
a
lu
e
E
x
p
re
ss
io
n

a
tt
ri
b
u
te
:E
A
tt
ri
b
u
te

C
o
n
st
ra
in
t

co
n
st
ra
in
tE
xp
re
ss
io
n
:E
xp
re
ss
io
n

«
e
n
u
m
e
ra
ti
o
n
»

L
in
k
C
o
n
st
ra
in
tT
y
p
e

FI
R
S
T

LA
S
T

N
E
X
T

IN
D
IR
E
C
T
_S
U
C
C
E
S
S
O
R

IN
D
E
X

A
tt
ri
b
u
te
A
ss
ig
n
m
e
n
t

a
tt
ri
b
u
te
:E
A
tt
ri
b
u
te

va
lu
e
E
xp
re
ss
io
n
:E
xp
re
ss
io
n

C
o
ll
e
ct
io
n
S
iz
e
E
x
p
re
ss
io
n

O
b
je
ct
V
a
ri
a
b
le

b
in
d
in
g
S
e
m
a
n
ti
cs

:B
in
d
in
g
S
e
m
a
n
ti
cs

=
M
A
N
D
A
T
O
R
Y

b
in
d
in
g
O
p
e
ra
to
r
:B
in
d
in
g
O
p
e
ra
to
r
=
C
H
E
C
K
_O

N
LY

cl
a
ss
if
ie
r
:E
C
la
ss

«
...
»

L
in
k
C
o
n
st
ra
in
t

in
d
e
x
:I
n
te
g
e
r

co
n
st
ra
in
tT
yp
e
:L
in
k
C
o
n
st
ra
in
tT
yp
e
=
N
E
X
T

n
e
g
a
ti
ve

:B
o
o
le
a
n

C
o
ll
e
ct
io
n
V
a
ri
a
b
le

a
tL
e
a
st
O
n
e
:B
o
o
le
a
n

u
n
iq
u
e
:B
o
o
le
a
n

Figure C.9: Class Structure of the storydiagrams::patterns Package

C.9. Package storydiagrams::patterns 117

C.9.2.2 Class AbstractVariable
Overview Abstract super class for object and primitive variables.

Class Properties Class AbstractVariable has the following properties:

bindingState : BindingState see Section C.9.2.6 on Page 118

The binding state defines whether the variable is already bound or whether a match
has to be obtained for it. The default value is "unbound".

Class References Class AbstractVariable has the following references:

bindingExpression : Expression [0..1] see Section C.2.2.1 on Page 94

A binding expression can be used to bind a variable in a different way than just by
pattern matching. This way, for example, the return value of a call can be bound
to a variable.

constraint : Constraint [0..∗] see Section C.9.2.8 on Page 119

All constraints which are defined for this variable. For a successful matching, all
constraints for this variable must evaluate to true.

incomingLink : AbstractLinkVariable [0..∗] see Section C.9.2.1 on Page 115

pattern : StoryPattern see Section C.9.2.18 on Page 123

Parent Classes

• Variable see Section C.4.2.1 on Page 100,

• NamedElement see Section C.1.2.4 on Page 93

C.9.2.3 Class AttributeAssignment
Overview An AttributeAssignment is used to set the value of a certain attribute of an object.
It references the attribute that is to be set and the value. The value can be an expression to
allow for calculations or calls that determine the final value. AttributeAssignments are carried
out during the final phase of pattern application, i.e. after the matching and destruction are
completed.

C.9.2.4 Enumeration BindingOperator
Overview The BindingOperator enum defines all possible operations for object and link
variables. An object or link variable may be checked for existence be the story pattern (black
object/link variable), it may be created (green object/link variable), or it may be destroyed (red
object/link variable).

118 Appendix C. Technical Reference

Enum Properties Enumeration BindingOperator has the following literals:

CHECK_ONLY = 0

CHECK_ONLY is the default value of this enum. It requires an object or link
variable just to be matched by the story pattern.

CREATE = 1

An object or link variable marked as CREATE will be created by the story pattern.

DESTROY = 2

An object or link variable marked as DESTROY will be destroyed be the story
pattern.

C.9.2.5 Enumeration BindingSemantics
Overview The binding semantics defines which kind of match will be obtained for the
object or link variable.

Enum Properties Enumeration BindingSemantics has the following literals:

MANDATORY = 0

For a mandatory object or link variable, a match has to be found for a pattern to be
successfully applied.

NEGATIVE = 1

If an object or link variable is marked as NEGATIVE, no match may be found for
that object or link variable. If a match can be found, the execution of the story
pattern fails.

OPTIONAL = 2

For an OPTIONAL object or link variable, the matching tries to find a match. If
no match can be found, this does not affect the success of the pattern application.
If a match can be found, the respective object or link is bound to the variable.

C.9.2.6 Enumeration BindingState
Overview The BindingState defines whether an object or link variable is already bound to
a concrete value or not.

Enum Properties Enumeration BindingState has the following literals:

UNBOUND = 0

UNBOUND is the default value for this enum. If an object or link variable in a
story pattern is unbound, a new match has to be obtained for that variable.

C.9. Package storydiagrams::patterns 119

BOUND = 1

A bound variable has already been bound to a concrete value. The concrete value
has to be passed either as a parameter or it has to be bound in a previous activity. If,
during the execution of a story pattern, a bound variable has no value, the execution
of the story pattern fails.

MAYBE_BOUND = 2

A variable marked with maybe_bound indicates that it is unknown (or unimpor-
tant) at design time whether the variable is bound or not. If, during the execution
of the pattern, the variable is not bound, an object is matched and bound to the
variable. If it is already bound, it is not altered. If the variable is still unbound
after this process, the matching fails (except for OPTIONAL variables).

C.9.2.7 Class CollectionVariable
Overview Represents a set of objects of the same type that are represented by a single node.
The context for contained Constraints and AttributeAssignments is every single object in the
set. E.g., if the constraint is "name = ’abc’", only objects with that name are matched and
added to the set. The use of the binding operator "CREATE" is not defined for ObjectSetVari-
ables, i.e., the sets can only be matched and deleted.

Class Properties Class CollectionVariable has the following properties:

atLeastOne : EBoolean

unique : EBoolean

Parent Classes

• ObjectVariable see Section C.9.2.15 on Page 122

C.9.2.8 Class Constraint
Overview A constraint represents a condition which must be fulfilled for a successful pat-
tern matching. It can either be contained in the story pattern or in a variable. In the former
case, the constraint is evaluated after the matching of the object structure is complete. It still
has to be true for the pattern application to be sucessful (and therefore for creations and de-
structions to be carried out). If the constraint is contained in a variable, it constrains the match-
ing of that variable, i.e., it is evaluated during the matching of the containing variable and has
to be true for a successful matching. If the variable is an ObjectSetVariable, the constraint has
to be true for every object in the set.

120 Appendix C. Technical Reference

C.9.2.9 Class InclusionLink
Overview Specifies the containment of an object in a set (represented by a ContainerVari-
able). Will be displayed by a line having a circle with a plus inside at the end of the container
(the source end of the link). A create modifier specifies that the object will be added to the
container, delete that it will be removed, and none that it will be checked to be contained.

Parent Classes

• AbstractLinkVariable see Section C.9.2.1 on Page 115

C.9.2.10 Class LinkConstraint
Overview Link constraints (formerly known as MultiLinks in old meta-model) constrain
the ordering of links of the referencingObject is a collection. This way objects can be required
to have a certain position in the collection (FIRST, LAST, INDEX) or a certain ordering rela-
tive to each other (DIRECT_SUCCESSOR, INDIRECT_SUCCESSOR). While the first kind
of LinkConstraint can be imposed upon a single link, the second kind requires two links that
are related to each other (e.g., have the same referencingObject).

Class Properties Class LinkConstraint has the following properties:

constraintType : LinkConstraintType see Section C.9.2.11 on Page 121

The constraint type of the LinkConstraint.

index : EInt

The index of the linked object in the collection. The semantics of this attribute is
only defined if the constraintType of the LinkConstraint is INDEX.

negative : EBoolean

If the negative attribute is true, the link constraint may not be fulfilled for the
complete pattern application to be successful.

Class References Class LinkConstraint has the following references:

firstLink : AbstractLinkVariable see Section C.9.2.1 on Page 115

referencingObject : ObjectVariable see Section C.9.2.15 on Page 122

secondLink : AbstractLinkVariable [0..1] see Section C.9.2.1 on Page 115

Parent Classes

• ExtendableElement see Section C.1.2.2 on Page 91

C.9. Package storydiagrams::patterns 121

C.9.2.11 Enumeration LinkConstraintType
Overview The LinkConstraintType represents the different uses of LinkConstraints. Ob-
jects can be required to have a certain position in their containing collection (FIRST,
LAST, INDEX) or a certain ordering relative to each other (DIRECT_SUCCESSOR, INDI-
RECT_SUCCESSOR).

Enum Properties Enumeration LinkConstraintType has the following literals:

FIRST = 0

LAST = 1

NEXT = 2

INDIRECT_SUCCESSOR = 3

INDEX = 4

C.9.2.12 Class LinkVariable
Overview A link variable represents one link between two object variables. It is typed over
one of the associations between the classes of those objects. Because EMF only directly sup-
ports references, the two link ends are typed over these references. In case of a uni-directional
association, only the targetEnd is typed. In case of a bi-directional association, the reference
that types the source end is automatically determined.

Parent Classes

• AbstractLinkVariable see Section C.9.2.1 on Page 115

C.9.2.13 Class MatchingPattern
Overview A MatchingPattern is a special kind of story pattern that does not change the un-
derlying graph. Thus, no contained object or link may carry an create or destroy BindingOp-
erator.

Parent Classes

• StoryPattern see Section C.9.2.18 on Page 123

C.9.2.14 Class MaybeLink
Overview

122 Appendix C. Technical Reference

Parent Classes

• AbstractLinkVariable see Section C.9.2.1 on Page 115

C.9.2.15 Class ObjectVariable
Overview An ObjectVariable holds a value of a complex type which is defined by an
EClass.

Class Properties Class ObjectVariable has the following properties:

bindingOperator : BindingOperator see Section C.9.2.4 on Page 117

The binding operator defines whether this object will be matched, created or de-
stroyed by the story pattern.

bindingSemantics : BindingSemantics see Section C.9.2.5 on Page 118

The binding semantics defines whether the object must be matched for a successful
application of the containing story pattern, whether it must not be matched or
whether it is optional, i.e., it will be bound if it can be bound but that does not
affect the success of matching the story pattern.

Class References Class ObjectVariable has the following references:

attributeAssignment : AttributeAssignment [0..∗] see Section C.9.2.3 on
Page 117

classifier : EClass

The type of this ObjectVariable, given as an EClass.

linkOrderConstraint : LinkConstraint [0..∗] see Section C.9.2.10 on Page 120

outgoingLink : AbstractLinkVariable [0..∗] see Section C.9.2.1 on Page 115

Parent Classes

• AbstractVariable see Section C.9.2.2 on Page 117

C.9.2.16 Class Path
Overview A path is a special link variable that specifies an indirect connection between
two objects. That means, the connected objects have other links and objects "between them".
Exactly which types of links may be traversed during the matching of a path can be constrained
by a path expression.

C.9. Package storydiagrams::patterns 123

Parent Classes

• AbstractLinkVariable see Section C.9.2.1 on Page 115

C.9.2.17 Class PrimitiveVariable
Overview Represents a variable that holds a value of a primitive type, e.g. integer, boolean,
String.

Parent Classes

• AbstractVariable see Section C.9.2.2 on Page 117

C.9.2.18 Class StoryPattern
Overview A Story Pattern is a graph rewrite rule that may be embedded into a StoryActiv-
ityNode of an Activity.

Class Properties Class StoryPattern has the following properties:

bindingSemantics : BindingSemantics see Section C.9.2.5 on Page 118

Class References Class StoryPattern has the following references:

constraint : Constraint [0..∗] see Section C.9.2.8 on Page 119

All constraints which are defined for this story pattern. For a successful matching,
all constraints for this story pattern must evaluate to true.

containedPattern : StoryPattern [0..∗] see Section C.9.2.18 on Page 123

linkVariable : AbstractLinkVariable [0..∗] see Section C.9.2.1 on Page 115

parentPattern : StoryPattern [0..1] see Section C.9.2.18 on Page 123

templateSignature : TemplateSignature [0..1] see Section C.11.2.3 on Page 128

variable : AbstractVariable [0..∗] see Section C.9.2.2 on Page 117

Parent Classes

• CommentableElement see Section C.1.2.1 on Page 91

124 Appendix C. Technical Reference

C.10 Package
storydiagrams::patterns::expressions

C.10.1 Package Overview

C.10.2 Detailed Contents Documentation

C.10.2.1 Class AttributeValueExpression
Overview Represents the value of an object’s attribute, e.g. obj.attr for an object obj and
an attribute attr.

Parent Classes

• Expression see Section C.2.2.1 on Page 94

C.10.2.2 Class CollectionSizeExpression
Overview Represents the number of elements in the set of objects that is represented by an
object set variable. For example, if you have an object set variable mySet, then this expression
would represent something like mySet.size(). The expression can be used to constrain the
pattern application, e.g., to only a apply the pattern when at least two objects can be matched
for the set.

Parent Classes

• Expression see Section C.2.2.1 on Page 94

C.10.2.3 Class ObjectVariableExpression
Overview Represents the reference to an object in an expression, i.e. the value of an object
variable.

Parent Classes

• Expression see Section C.2.2.1 on Page 94

C.10.2.4 Class PrimitiveVariableExpression
Overview Represents the value of a primitive variable, e.g., 5 or "MyName".

C.10. Package storydiagrams::patterns::expressions 125

*

a
tt
ri
b
u
te
V
a
lu
e
E
xp
re
ss
io
n

1

o
b
je
ct

H
a
sO

b
je
ct

*

o
b
je
ct
V
a
ri
a
b
le
E
xp
re
ss
io
n

1

o
b
je
ct

E
xp
re
ss
io
n
H
a
sO

b
je
ct

*

o
b
je
ct
S
e
tS
iz
e
E
xp
re
ss
io
n

1 se
t

H
a
sS
e
t

0
..1

a
tt
ri
b
u
te
E
xp
re
ss
io
n

1

va
lu
e
E
xp
re
ss
io
n

H
a
sV
a
lu
e

1

o
b
je
ct
V
a
ri
a
b
le

*

a
tt
ri
b
u
te
A
ss
ig
n
m
e
n
t

C
o
n
ta
in
sA
tt
ri
b
u
te
E
xp
re
ss
io
n

*

a
tt
ri
b
u
te
V
a
lu
e
E
xp
re
ss
io
n

1

a
tt
ri
b
u
te

H
a
sA
tt
ri
b
u
te

*

a
tt
ri
b
u
te
E
xp
re
ss
io
n

1

a
tt
ri
b
u
te

B
in
d
sP
ro
p
e
rt
y

0
..1

o
w
n
in
g
O
b
je
ct

0
..1

b
in
d
in
g
E
xp
re
ss
io
n

H
a
sB
in
d
in
g
E
xp
re
ss
io
n

*

p
ri
m
it
iv
e
V
a
ri
a
b
le
E
xp
re
ss
io
n

1

p
ri
m
it
iv
e
V
a
ri
a
b
le

0
..1

o
w
n
in
g
C
o
n
st
ra
in
t

1

co
n
st
ra
in
tE
xp
re
ss
io
n

C
o
n
ta
in
sC
o
n
st
ra
in
tE
xp
re
ss
io
n

0
..1

o
b
je
ct
V
a
ri
a
b
le

*

co
n
st
ra
in
t

C
o
n
ta
in
sC
o
n
st
ra
in
ts

O
b
je
ct
V
a
ri
a
b
le
E
x
p
re
ss
io
n

A
tt
ri
b
u
te
V
a
lu
e
E
x
p
re
ss
io
n

C
o
ll
e
ct
io
n
S
iz
e
E
x
p
re
ss
io
n

P
ri
m
it
iv
e
V
a
ri
a
b
le
E
x
p
re
ss
io
n

C
o
ll
e
ct
io
n
V
a
ri
a
b
le

A
tt
ri
b
u
te
A
ss
ig
n
m
e
n
t

«
M
e
ta
cl
a
ss
»

E
A
tt
ri
b
u
te

O
b
je
ct
V
a
ri
a
b
le

A
b
st
ra
ct
V
a
ri
a
b
le

P
ri
m
it
iv
e
V
a
ri
a
b
le

E
x
p
re
ss
io
n

C
o
n
st
ra
in
t

Figure C.10: Class Structure of the storydiagrams::patterns::expressions Package

126 Appendix C. Technical Reference

Parent Classes

• Expression see Section C.2.2.1 on Page 94

C.11. Package storydiagrams::templates 127

C.11 Package storydiagrams::templates

C.11.1 Package Overview

0..1

templateBinding

1

bindingExpression

0..1

propertyBinding

1

bindingExpression

1

pattern

0..1

templateSignature
ContainsTemplateSignature

*

propertyBinding

1

boundProperty

HasBoundProperty

1

owningTemplate

*

typeParameter

ContainsTypeParameter

*

templateBinding

1

boundParameter

HasBoundParameter

1

template
*

templateBinding

ContainsBinding

1

templateBinding

*

propertyBinding

StoryPattern

TemplateBinding

TemplateSignature

PropertyBinding

«Metaclass»

EStructuralFeature Expression

«Metaclass»

EClassifier

Figure C.11: Class Structure of the storydiagrams::templates Package

C.11.2 Detailed Contents Documentation

C.11.2.1 Class PropertyBinding
Overview

Parent Classes

• ExtendableElement see Section C.1.2.2 on Page 91

C.11.2.2 Class TemplateBinding
Overview

Parent Classes

• ExtendableElement see Section C.1.2.2 on Page 91

128 Appendix C. Technical Reference

C.11.2.3 Class TemplateSignature
Overview

	1 Introduction
	1.1 Extensions since the previous version
	1.2 Structure

	2 Foundations
	2.1 Graphs and Graph Transformations
	2.2 Typed Attributed Graph Transformations
	2.3 Model Transformations
	2.4 The Type Graph in The Running Example

	3 Concepts
	3.1 Story Diagrams and Story Patterns in a Nutshell
	3.2 Story Patterns
	3.2.1 General Idea
	3.2.2 Objects and Object Variables
	3.2.3 Links and Link Variables
	3.2.4 Binding of Variables
	3.2.5 Using Object Attributes
	3.2.6 Collection Variables
	3.2.7 Inclusion Links
	3.2.8 Link Constraints
	3.2.9 Maybe Links
	3.2.10 Pattern Constraints

	3.3 Story Diagrams
	3.3.1 General Idea
	3.3.2 Activities, Activity Parameters and Return Values
	3.3.3 Activity Nodes, Activity Edges
	3.3.4 Activity Final Nodes
	3.3.5 Decision Nodes, Guards, and Loops
	3.3.6 Propagation of Matchings
	3.3.7 Story Diagram Calls

	3.4 Expressions

	4 Complete Example
	4.1 Motivation of the Example
	4.2 Story Diagram: Remove Interface Violation
	4.2.1 Story Diagram: Copy Parameters
	4.2.2 Story Diagram: Generate Method Stub

	5 Related Work
	5.1 Origins and Previous Work on Story Diagrams
	5.2 Applications and Extensions of Story Diagrams
	5.3 Work Related to Story Diagrams
	5.3.1 Endogenous, In-Place Model Transformations
	5.3.2 Exogenous, Inter-Model Transformations

	6 Conclusions and Future Work
	Bibliography
	A User Guide
	A.1 Installation
	A.1.1 Installation Using the Eclipse Update Site – Users
	A.1.2 Getting the Source Code From Repository – Developers

	A.2 Getting Started – User Interface
	A.2.1 Story Diagram Editor
	A.2.2 Story Diagram Interpreter (Stephan)

	B Execution of Story Diagrams
	B.1 Interpreting Story Diagrams
	B.1.1 Interpreter Architecture
	B.1.2 Interpreting Story Diagrams
	B.1.3 Interpreting Story Patterns

	C Technical Reference
	C.1 Package core
	C.1.1 Package Overview
	C.1.2 Detailed Contents Documentation

	C.2 Package core::expressions
	C.2.1 Package Overview
	C.2.2 Detailed Contents Documentation

	C.3 Package core::expressions::common
	C.3.1 Package Overview
	C.3.2 Detailed Contents Documentation

	C.4 Package storydiagrams
	C.4.1 Package Overview
	C.4.2 Detailed Contents Documentation

	C.5 Package storydiagrams::activities
	C.5.1 Package Overview
	C.5.2 Detailed Contents Documentation

	C.6 Package storydiagrams::activities::expressions
	C.6.1 Package Overview
	C.6.2 Detailed Contents Documentation

	C.7 Package storydiagrams::calls
	C.7.1 Package Overview
	C.7.2 Detailed Contents Documentation

	C.8 Package storydiagrams::calls::expressions
	C.8.1 Package Overview
	C.8.2 Detailed Contents Documentation

	C.9 Package storydiagrams::patterns
	C.9.1 Package Overview
	C.9.2 Detailed Contents Documentation

	C.10 Package storydiagrams::patterns::expressions
	C.10.1 Package Overview
	C.10.2 Detailed Contents Documentation

	C.11 Package storydiagrams::templates
	C.11.1 Package Overview
	C.11.2 Detailed Contents Documentation

