Merging graph-like object structures

Albert Zindorf Jorg P Wadsack, Ingo Roclel
Technical Unversity of Braunschweig Department of Mathematics and Computer Science
Institute for Softvare University of Raderborn
Gaussstrll Warkurger Str 100
38023 Braunschweig 33098 Rderborn
Germary Germary
zuendorf@ips.cs.tu-bs.de [marodinro]j@uni-paderborn.de
Keywords comprising the changes of one person and this delta is then

Version Management, Object Orientation, Deltaapplied to the @rsion of the other person. If the changes do
Computation, Optimistic Locking, Mge Algorithms, Long not actually conflict, the diérent \ersions are combined,
Transactions automatically In case of actual conflicts, manual
1 INTRODUCTION interventions become necessaBased on ourx@eriences

: N with a fairly big software project, the Fujab&riom UML to
This paper addresses the problem of_ coordinating a team a And Back Again) project, and a number of industrial
software de&elopers concurrently erking on a common ~ . — " X

software system. The standard approach to coordina rojects, actugl cqnf[icts occur_ seldom (1. out .Of 1000
concurrent acm'itie.s on a common set of data is lockingyAn anges to a file within a 380 000 LOC project with about
part of data used by one person is Etlaginst concurrént 500 classes and a team of about lgefiipers results in a
use by another person. The second person hasitantil mege conflict). Thus, optimistic locking and rgerg

. - ; mechanisms seem to pide a solution to the long
the first person has finished his or her task and releases W&nsaetion problem
lock. In databases, sophisticated locking and transaction) ’]
concepts minimize theaiting times for concurrent users by In large projects, a softave system may not only consist of
offering different lock granularities and @fent locking ~source codeut also of warious other documents &kclass
levels (e.g. multiple read locks vs. single write locks).diagrams, use case diagrams, project plans, and other design
However, these locking stragges assume that locks are hold documents. Most of these design documents are stored in
for relatively short times (some seconds), only special binary formats. Unfortunatelymost ‘ersion

. . management systemsovk with text files, only They are
In software deelopment, ersion control systems BKRCS based on difand patch mechanisms that compute changes

[Tic85] or SCCS [ROC?S] empjing a pessimistic Ipcking between tw text files and that are able to apply such
concept on a per file, per class, or per meth(_)d basis are usgﬁanges to a ddrent \ersion of that file, if thatersion has
However, changes 1o source code may require some days Rot changed too much. Thus, optimistic locking is usually

weeks. W call such changes long-transactions. Such Ionﬂot supported for design documents. As design documents

transactions lock certain source code parts for a long time.come lager and more important, this becomes vege
For example, one person mayaw to do a bg fix in a file roblem for lage projects

which is locled by a second person. The first person ma s N _
have to wait several days until he or she can proceed or he ofonsequentlyit is absolutely critical to he also object
she may ngotiate with the lock wner This requiresxira Structure based delta and gieg mechanism to support

efforts. In lage deelopment teams thesgtea coordination Optimistic locking concepts for design documents Will
efforts may become asere productiity problem. first discuss a mging mechanism for object structures. This

meiging mechanism banks on xtigal representation of the
%bject structure. This do not sehall emeging problems

thus, second we will outline our eamhced mechanism
%/vorking on graph lik object structures.

To overcome these problems, optimistic locking concept
have proren \ery successful for sofiave deelopment in
larger teams. CVS [Ced93, CVS] is a well o
configuration and ersion management system that support
optimistic locking. Optimistic locking concepts allo 2 TEXTUAL REPRESENTATION BASED OBJECT
multiple persons to change the same file, class, or methoBTRUCTURE MERGING
concurrently The management system justeps track, A basic requirement for axeial persistence mechanism that
which person wrks on which ersion of a gien piece of shall sere as a basis for a nggng mechanism is that
software. When a concurrent change to the same piece ofading a tetual description and dumping it @ig without
software happens, the management system computes a dedtgy modifications should result ikactly the same . If
the text differs, the tgtual meging mechanism will create
textual deltas although no modification has happened. This
creates a high Ii#ihood that unnecessary rgerconflicts
are created.

Naive implementation of a xéual persistence concept may
change the tdual representation of an object structure e.g.

due to diferent visiting sequences of the contained objectsthe re-creation of the object structure.

Let us for @ample assume, that an object stores a set Gf,

f iahb thi hash’ tabl b sohe these problems, separated name spaces for
references to neighbors within a hash table or tree as\ﬁ& sistent object ids created in concurrent sessions should be
container that uses the address or hash code of the sto

. X : . loyjed. A simple vay to achige this is to emplp a
object as ac_:cessa)k Typically, the readm_g m(_achamsm ofa unigu%/ session iollD Whic)f/'l is used as a basis (pref?%) for the
textual persistence concept has no or little !nfluence on thearsistent object ids created in that session.
address or hash code of re-created objects. Thus, the))
addresses or hash codes of re-created objects nfay dif!f one user has at most one session at a time, we could use
from the addresses or hash codes thee baen used during Permanent user ids as name space @®fiXhis wuld also
storing the object structure. Accordingtite order in which @ddress the problem of finding independent insertion
a re-created container refrés the same set of objectfeis ~ Positions for ne objects. If we prepend the user id to the
from the original order used to store the objects the first timéersistent object id and if we useitel order based on the
If the order of the objects changes in thextual Persistent object id, each user id gets iendnsertion

representation of the object structure dramaticalhe —Compartment. Objects created byfeliént users (in diérent

textual meging mechanism is sared. sessions) wuld be inserted into thextedump at diferent

positions, thus\aiding unnecessaryxtial mege conflicts.

However, they still have to take care that concurrently

created ne user compartments are inserted afedint text
sitions.

Similarly, the change of object identities (ids) during the re
creation of an object structure from itgtigal representation
creates a problem for the unchanged representation
references to neighbors. If this representation is based on the

object id preided by the runtime system, all object ids mayDumping and reading the object structue

have changed on dumping the object structur@jragThis Due to the discussion aim huilt-in serialization
scravs the t&tual meging mechanism, too. mechanisms praded by modern programming languages
To sohe these problems, thextaal consistenc concept are ES“?‘”V nothappropnate EI‘S a pa3|s fertue hmeglngh
should emplg its ovn persistent object ids that must not mebc «’;jr]llsms. Thus, awdextual persistence mechanism has
change on multiple dumps and readings of an objec,IP € fonid.

structure. In addition, these persistent object ids should b& standard \ay to implement such axial persistenc
used as sorting and hashing criterias for containers storirgpncept is to empioa base class that pides appropriate
sets of references to neighbor objects in order to welde read and write methods for all atwiies of that class. All
stable visiting order during thexteal dumping. classes that shall become persistent inherit from this base
class andxdend the read and write methods in order tgeco
guarantee a certain visiting order for containers ofi€ attributes introduced in that class. The persistent base
references. Hash based containers may gamire class shou_ld introduce an attrib for_the persistent object id
themseles on the insertion or deletion of objects. Thus,Of the objects and perhaps static aties to store the
inserting one n& object to such a container may change thexeSston id and a counter used to createuréque persistent

textual representation of the whole object structure,ObjeCtidS' Dumping an object structure just starts with a root

dramatically This may be woided by sorting the object object. Reference atttites are dumped using the persistent

: : . ; object id of the tayet object and later on the gat object is
based on their persistersyfs during the dumping process. iy vocursiely. Some kind of maskr or an object table

Another group of problems is related to independeninay be used tovaid multiple dumps of a single object. The
additions of objects to an object structure byedént users. read procedure needs the type of the persistent objects in
Usually we would epect that the mging mechanism order to create meinstances of the correct class. Then, the
should mege these independent changes without problemsead method is used to restore the attghalues. In case of
However, nave text dump mechanisms tend to append/ne reference attrites, a look-up table is empked to turn the

objects at the end of the object structure. This may fopersistent object id into a reference to the corresponding
example happen if persistent object ids are created ippject.

consecutie order and if these ids are used as sorting criteri
for the textual dump. If this happens, concurrently create
nev objects will both be inserted at the end of the
corresponding t¢ dump. Thus, a ® based mejing
mechanism will hee a mege-conflict due to concurrent

changes at the samextposition, although the changes do like Color or Point. It is not allaved to modify such library

ngt gctually interfere. _ - classes in order to mekthem persistent. In & the
Similarly, a seere problem is created if éfent users create additional problem that multiple inheritance is restricted to

different objects concurrently and if these objects get thiterface classes iméed. Thus the inheritance of persisgenc
same persistent object ids, by accident. If thetu# properties may become complicate.

representation of these fdifent objects are placed at
different positions in the dumpedktethe meging algorithm
may mege these changes withoutyaproblems. Hwever,
this may create aw&al representation that uses the sam
persistent object id, twice. This createsese problems for

However, using persistent object ids may not figef to

glsue to our gperiences the read/write method approach
creates serious maintenance problems. Each timewa ne
attribute is inserted into a persistent class, it hasctended

to the corresponding read and write methods, accordingly
This is easily fogotten. Another problem are library classes

We overcome these problems by using a generic, tablerdri
persisteng mechanism. Implementing in\daallovs us to
eexploit Java runtime type information to inspect instances of
persistent classes and to store andwuectheir attrilites.

The classes are mark as persistent either by inheriting independently created classes with the same name. In
from a certain base class or by adding it to a persistent clagyure3 the meged class diagram is shino as (XML-) text
table. The latter mechanism ails to cwer library classes, dump, in lines 5-7 and 11-13 a cla&@mtract is declared. In

too. To exclude certain attriltes from the persistepc our meta model (cf. Figur®), classUMLDiagram emplg/s a
mechanism, the vya keyword transientmay be used. Similar qualified association items to hold the contained classes. The
information may be praded by the persistepdable. This corresponding cardinality constraint guarantees unique
generic persisteycmechanism is easily adapted forwne qualifiers. This means, our data model does noivatt
programs. In addition, the mechanism ealv the store tw classes with the same name within one class
maintenance problem caused by the introduction @ ne diagram. Thus, in ourxample the reader auld hae a
attributes. problem to restore an object structure where a successful
textual mege has added twclasses with the same name.

Remaining memge conflict problems This is shavn in Figure4 for classe€ontract.

The persistenc and meging mechanism described sar f
works already fine for mansituations. Hwever, some 1) ... // in class UMLDi agram

principle problems remain. 2) <attri bu_t e> <id>2.3</id> <type>Attr</type>
. 3) <nane>i t ens</ name> <val ue>Cust oner </ val ue>
Consider for gample a cutout of the abstract syntax graph of4) </attribute>

an UML CASE tool. The basestsion may just consist of a |5) <attribute> <id>2.14</id> <type>Attr</type>
an empty class diagram. Usear oc may hav enter a class ?; L Shame t i’;“’ name> <val ue>Contract </ val ue>
Customer and user zuendorf a class Car. These g _ i iputes <id>1.3</id> <type>Attr</type>
independent changes should not create gyeneonflict. If 9) <name>i t ens</ name> <val ue>Car </ val ue>

we hare prepared diérent text compartments for diérent 10) </attribute>

users, the addition of the weJMLClass objects to the tet 11) <attribute> <id>1.16</id> <type>Attr</type>
dump will not create a problem. Wever, in our meta model 123 </<';f‘?fi>'btufg‘i</ name> <val ue>Cont ract </ val ue>
the class diagram holds a set of references to all contain,d3 Fi M del di

classes in its attrilie items, cf. Figurel. The addition of a Igures Vierged class diagram

D

signs n
UMLDiagram [jtems classes n [ymLClass Customer Contract
naming
Figurel UML meta model (cut out) Car |n_Dbelongs to n[~o o conflict

class to a class diagram adds a reference to the items Ei 4 Nami flict
attribute, too. Thus, after the addition of one class to the Igure4 Naming conflic
class diagram, thextial dump of the class diagram object To summarize, a % based mejing mechanism has no
will contain one line for the items atttite describing the knawledge about the semantic constraints introduced by the
reference to the added class. Unfortunatfely both users meta model of our object structure. Thus, thetu

this line is added atxactly the same position in thexte meging mechanisms is not able to deal with a number of
dump, cf. lines 3 to 5 in Figu Thus, a tetual meging mege problems related to such constraints. Consequently
mechanism will report a mge-conflict, which actually does we hae deeloped an object structure based girey

not exist. mechanism, described in thexhehapter
g Irtext. ﬁ“g})a;;(’ﬂwﬁﬁf;g?iﬁfc - 3 OBJECT STRUCTURE BASED MERGING
3) <attributes <id>2. 3</id> <type>Attr</type> O_ur object structure bas_ed rgﬂsrg_mechanlsm is b_ased ona
4) <name>i t ens</ name> <val ue>Cust omer </ val ue> simple meta model pwiding objects, labeled links, and
5) </attribute>

e i Attributes
1) /* text dunp fromuser zuendorf */ Object attrs n -
2) ... I/ in class UMLDi agram id: string id: string
3) <attribute> <id>1.3</id> <type>Attr</type> type: string - type: string
4) <name>i t ems</ name> <val ue>Car </ val ue> name: string Link name: string
5) </attribute> - _ value: string id: string value: string

Figure2 Position conflict type: string
) I—n name: string

Let us nev assume, that we are able twercome this links label: string
problem by some reganization of the te¢ dump. Thus, user) -
zuendor f and usenar oc may hae successfully mged Figure5 Text dumping meta model

their two classesCar and Customer. They both tale this
common ersion and concurrently add a classtract. If we
are able to wrk around the insertion problem to the items
attribute of the UMLDiagram object, a tetual meging * create / delete an object
mechanism wuld probably mege these concurrent changes« create / delete a link
without ary problems. Hwever, this would create the e change an attrilte \alue
problem that the mged class diagram contains aw

attributes, cf. Figur&. The elementary change operations of
this meta model are

al gorithmdelta(A, B)
1) input A B: set of object structures deltabz bv deltabm
2) output D: delta of the object structures \
3) local variables OA OB, ON, OD object mv
4) local variables LA LB, LN, LD Ilink ZV
5) begin
6) for all (OA OB) = pairWthSamel D (A B)
7) if QA attrs # OB.attrs apply deltabm cVv
8) then D. addChangeAttributeEntries (OA OB) Ei 7C . . b Vi
9) fi igure7 Computing common version by applying
10) for all LB = (OB.link - QA link) deltabm to zv
11) D. addCr eat eLi nkEnt ry(LB)]]]
12) for all LA = (QAlink - OB.link) 3-Way Merging / Applying an Object Structure Delta
1‘31; . D-I ?dcglemﬁu nl;';ntry (LA) Let us assume, we V& a base ersion bv of an object
or a = -
15) D. addCr eat eChj ect Ent ry (ON) structure and_ usersu%ndorf and malroc crealge vo
16) D. addChangeAt tri but eEntry (ON attrs) successor arsionszv andmy, concurrently We would nav
17) for all LN = (ON.1ink) like to mege these changes into a commarsioncy, cf.
18) D. addCr eat eLi nkEntry (LN) Figure7.
19) for all OD = (A - B) . .
20) D. addDel et eCbj ect Entry (OD) Basm_ally the common ersion cv. may pe computed by
21) D. addChangeAt tributeEntry (OD. attrs) applying deltabm to versionzv. A delta is applied to an
22) for all LD = (OD.1ink) object structure by ,just* »ecuting the corresponding
23) D. addRemoveli nkEntry (LD) create/delete object, create/delete link, and changeutrib
24) end . .
Ei 6 The delta aldorith entries of the delta. Aggn we need a lookup table to turn
Igure6 The deita algorithm persistent object ids from the delta into references to actual

Computing Object Structure Deltas objects. V@ use session or user id prefixto the persistent

We first describe an algorithm computing a delta betweeRPI€ct ids in order towid concurrently created objects with
two object structures in terms of these elementary changu@l persistent ids as described foxtual meging
operations, cf. algorithmdelta in Figure6. The delta mechanisms. If no conflicts ocguthis algorithm wrks
algorithm emplgs two sets of knen objects for object stralg_ht forvard and creates an object structufe that
structuresA (old) andB (new) that are to be compared. Our contains the changes of both users. Most of the problems
algorithm iterates through the sets of vmoobjects of the ~discussed for tual mege mechanisms do not occéor

two object structures and rewiss pairs of objects with the €@mple adding a class created by useroc to the class
same persistent object idrfeach such pair of objeatss diagram does not create a gerconflict, since the items set
andOB we compare the set of basic attis, cf. line 7. If has no dedicated insertion position where a conflict could
the attriite \alues difer we add an appropriate occur However, there are still conflicts possible.

changeAttribute (line 8) entry to the computed delta. Then conflicts on object structure based meging

we consider all links attached to the objects (lines 10 to 13fhe simplest conflict occurs if both usersdanodified the
Two links with the same label are considered equal Bf thesame basic attn'hey e.g. both users Change the name of an
taget objects with the same persistent object id. If olg)ect existing class in dferent ways. Similarly createLink

has a link with label taigeting and objeadX andOA does gperations may conflict if the corresponding association has
not have such a link, then an appropriateateLink entry is cardinality to-one. It mayven be considered as a conflict if
added to the delta (line 18). If a link is reved we add a one user deletes a to-one link and another user replaces that
removeLink entry to the delta (line 13). link by a link to another tget. In addition, one user may
Once all pairs of objects with the same persistent object ilave deleted an object while the other user changes an
have been considered, our algorithm considers the remainir@ftribute of that object or adds a link to that object.

objects (line 14 to 18). Each objedN existing in object An object structure based ngérg mechanism must detect
structureB but not in ObjeCt structura has been added to such situations and deal with them, sonvehd Simp]e
object structure B. Thus we create corresponding approach is to alays prioritize the changes of one of the
CreateObject and changeAttribute entries to the delta (|ineS users. Another idea is to Compute a kind Ofg’edrresu“_

15 & 16). In addition, we add all links attacheddid to our For string based attrites one could just concatenate the
delta (lines 17 to 18). conflicting names. In our CASE tookample this weuld
Objects contained in object structukebut not in object result in a class with a concatenated name. The user could
structureB have been remeed in object structur®. For identify this problem within the CASE tool and resolthe
such object®D we adddeleteObject entries to the delta. In conflict manually Generally this is a ery dangerous
our approach we addhangeAttribute entries for deleted approach. Probahly special table of attrites that shall be
objects to the delta, too (lines 20 & 21). Although, thishandled this w&y should be used. Mever, conflicts related
information may not be necessary for the geeprocess, it t0 to-one links and conflicts related to deleted and
allows to use the delta as aveese delta, if required. This concurrently modified objects can not be sdlthis vay. In
means, the delta can be used to reconstruct object stracturgeneral, such mge conflicts require a user decision.

from its successor object structude Accordingly we add ynfortunately our object structure based miag

deleted links attached to deleted objects to the delta (line 23echanism may report nggr conflicts on an object structure
& 23).

level, only The user of a CASE tool may e some violated. Havever, usually tools impose other hidden
difficulties to resole a conflict saying ,conflicting consisteng constraints on object structuresrfxample an
assignments to attiitbe age of object 2.33 of type XYZ". explicit attribute, counting the number okisting classes
The user wuld probably lile to deal with such conflicts via may be emplged. Adding and remang class objects
the GUI of his or her CASE tool. should change this countegno. This is not knen to our

4 CONCLUSIONS AND FUTURE WORK meige mechanism. Due to oukperiences, tools that are

There hae been a number of approaches trying to iv@ro able to read a x¢ based representation of the_ir obje_zct
mege mechanisms for sofmzp documen%/s g[w;glb structure are usually well prepared to deal with object
YHR92, LvO92, BHR95]. Most of these appro:alches triéd tostruct_urgas that can be represented by suqh xeuate
exploit F\i her I&;el seman.tic knwledge in order to deal with description. Thus, we plan to apply our mechanism to XML

P ghe Knoledge I based object structure representations.
meige conflicts more sophisticatedlizike our approach, o]))
mary of these approaches create an object structure baséé hae minimized such constraints in our Fujaba
representation of the soffe documents in order to analyse €nvironment. V¢ hae been successful for class diagrams,
the changes more thorough@ur approach has been tigg ~ but there are still some problems with some beira
influenced by the ark of [Wes91a]. [Vés91a] introduced diagrams. Similarly we hae a preliminary ersion of a
the idea of unique persistent object ids as a basis for obje@eige dialog, onlyWe would like to apply this approach to
structure based nging. Somehw, we follow the idea of Other tools that hee a ,long transactions* problem, in order
Operation based n@ng of [LVOQZ] Havever, [LVOQZ] to validate its feasibility and its genericity
requires the recording of change operations while we emploFor the Fujaba efronment see
a delta algorithm. W assume that xplicit operation http://ww. uni - pader bor n. de/ cs/ f uj aba/
recording is hard to implement.

REFERENCES

We think that our approach imp@s the object structure [BHR95] D. Binkley, S.Horwitz, and TReps. Program in-

merging problem by introducing aewy generic concept that : .
will be easily adapted to meobject structures and tools.ew tegration for languages with procedure caksCM

existing object structures and to generate a geer gy, 4(1):3-35, January 1995.
mechanism for such structures. [Ced93] P.Cederqvist. CVS Manual: Version Manage-

We plan to deal with the nge conflict problem using a ment with CVSSignum Support, 1993.
table drven approach. A configurable conflict resolution[CVS] CVS. Concurrent Versions System - The open
table shall allw to define diferent conflict handling standard for version controhttp://www.cvshome.org/.

strateies for diferent kinds of conflicts on dérent types of ; —
objects, links, and attrittes. One conflict handling method [LVOI\S/BlggirI;:g. Lllril)PpreO?n;c t’;llZaSTh%?/ieprgsr?ﬁmogﬁrgggtcgraesgi

could be to add appropriate conflict marlobjects to the

object structure. Then, the CASE tool could kierded by a velopment Environments (SDESplume 17(5), pages
dialog presenting the nge conflicts in an appropriateay 78-87, Tyson’'s Corner, Virginia, December 1992. ACM
and allaving the user to enter ng® decisions on a logical SIGSOFT Software Engineering Notes.

level. In this way, a generic mge mechanism may be [Roc75] M.J. Rochkind. The source code control system.
integrated with diferent tools. |IEEE Transactions on Software Engineeti¢4):364—
We hare implemented the object structure basedgmgr 370, 1975.

mechanism in our Fujaba CASE tool. This implementationTic85] W.F. Tichy. RCS - a system for version control.

was not as simple as described. First of all, our approach goftware— Practice and Experiencel5(7):637-654,
assumes a graph-8kobject structure. This means, it must be July 1985.

possible to delete some object and to determine all other

objects referencing to this object and to reset all thes es9la] B. WestfechtelRevision Control in an Integrated

obsolete references in order tmal dangling references. In Software Development EnvironmeithD thesis, Aa-
our implementation, all references are implemented as pairs chen University of Technology, Aachen, Germany,
of forward/backvard pointers. This alles to determine all 1991.

neighbors of a deleted object, easily [Wes91b] B. Westfechtel. Structure-Oriented Merging of
Second, we assume that each object has a unique persistent Revisions of Software Documents. In P.H. Feiler, editor,
number gen across session boundaries. Especially does Proc. of the 3rd International Workshop on Software
not allov to compare independently created object Configuration Managemenirondheim, Norway, June
structures. Basicallyhis idea stems from [€¢91b] 1991. ACM Press.

Third, we assume that some adding or deleting of objects v HR92] W. Yang, SHorwitz, and TReps. A program in-
links and some attrite modifications turn aa¥id object tegration algorithm that accommodates semantics-pre-
structure into anotheralid object structure. Theoretically serving transformation&CM Transactions on Software

this holds, since the resulting object structure respects all gnoineering and Methodoloav1(3):310-354. Jul
constraints imposed by the corresponding meta model. F 193|2 "9 oy13): s

example, no coordinately constraints of associations are

