
Keywords
Version Management, Object Orientation, Delta
Computation, Optimistic Locking, Merge Algorithms, Long
Transactions

1 INTRODUCTION
This paper addresses the problem of coordinating a team of
software developers concurrently working on a common
software system. The standard approach to coordinate
concurrent activities on a common set of data is locking. Any
part of data used by one person is locked against concurrent
use by another person. The second person has to wait until
the first person has finished his or her task and releases the
lock. In databases, sophisticated locking and transaction
concepts minimize the waiting times for concurrent users by
offering different lock granularities and different locking
levels (e.g. multiple read locks vs. single write locks).
However, these locking strategies assume that locks are hold
for relatively short times (some seconds), only.

In software development, version control systems like RCS
[Tic85] or SCCS [Roc75] employing a pessimistic locking
concept on a per file, per class, or per method basis are used.
However, changes to source code may require some days or
weeks. We call such changes long-transactions. Such long
transactions lock certain source code parts for a long time.
For example, one person may want to do a bug fix in a file
which is locked by a second person. The first person may
have to wait several days until he or she can proceed or he or
she may negotiate with the lock owner. This requires extra
efforts. In large development teams these extra coordination
efforts may become a severe productivity problem.

To overcome these problems, optimistic locking concepts
have proven very successful for software development in
larger teams. CVS [Ced93, CVS] is a well known
configuration and version management system that supports
optimistic locking. Optimistic locking concepts allow
multiple persons to change the same file, class, or method,
concurrently. The management system just keeps track,
which person works on which version of a given piece of
software. When a concurrent change to the same piece of
software happens, the management system computes a delta

comprising the changes of one person and this delta is then
applied to the version of the other person. If the changes do
not actually conflict, the different versions are combined,
automatically. In case of actual conflicts, manual
interventions become necessary. Based on our experiences
with a fairly big software project, the Fujaba (From UML to
Java And Back Again) project, and a number of industrial
projects, actual conflicts occur seldom (1 out of 1000
changes to a file within a 380 000 LOC project with about
500 classes and a team of about 15 developers results in a
merge conflict). Thus, optimistic locking and merging
mechanisms seem to provide a solution to the long
transaction problem.

In large projects, a software system may not only consist of
source code but also of various other documents like class
diagrams, use case diagrams, project plans, and other design
documents. Most of these design documents are stored in
special binary formats. Unfortunately, most version
management systems work with text files, only. They are
based on diff and patch mechanisms that compute changes
between two text files and that are able to apply such
changes to a different version of that file, if that version has
not changed too much. Thus, optimistic locking is usually
not supported for design documents. As design documents
become larger and more important, this becomes a severe
problem for large projects.

Consequently, it is absolutely critical to have also object
structure based delta and merging mechanism to support
optimistic locking concepts for design documents. We will
first discuss a merging mechanism for object structures. This
merging mechanism banks on a textual representation of the
object structure. This do not solve all emerging problems
thus, second we will outline our advanced mechanism
working on graph like object structures.

2 TEXTUAL REPRESENTATION BASED OBJECT
STRUCTURE MERGING
A basic requirement for a textual persistence mechanism that
shall serve as a basis for a merging mechanism is that
reading a textual description and dumping it again without
any modifications should result in exactly the same text. If
the text differs, the textual merging mechanism will create
textual deltas although no modification has happened. This
creates a high likelihood that unnecessary merge conflicts
are created.

Naive implementation of a textual persistence concept may
change the textual representation of an object structure e.g.

Merging graph-like object structures

Albert Zündorf
Technical University of Braunschweig

Institute for Software
Gaussstr. 11

38023 Braunschweig
Germany

zuendorf@ips.cs.tu-bs.de

Jörg P. Wadsack, Ingo Rockel
Department of Mathematics and Computer Science

University of Paderborn
Warburger Str. 100
33098 Paderborn

Germany
[maroc|inro]@uni-paderborn.de

due to different visiting sequences of the contained objects.
Let us for example assume, that an object stores a set of
references to neighbors within a hash table or tree based
container that uses the address or hash code of the stored
object as access key. Typically, the reading mechanism of a
textual persistence concept has no or little influence on the
address or hash code of re-created objects. Thus, the
addresses or hash codes of re-created objects may differ
from the addresses or hash codes that have been used during
storing the object structure. Accordingly, the order in which
a re-created container retrieves the same set of object differs
from the original order used to store the objects the first time.
If the order of the objects changes in the textual
representation of the object structure dramatically, the
textual merging mechanism is screwed.

Similarly, the change of object identities (ids) during the re-
creation of an object structure from its textual representation
creates a problem for the unchanged representation of
references to neighbors. If this representation is based on the
object id provided by the runtime system, all object ids may
have changed on dumping the object structure, again. This
screws the textual merging mechanism, too.

To solve these problems, the textual consistency concept
should employ its own persistent object ids that must not
change on multiple dumps and readings of an object
structure. In addition, these persistent object ids should be
used as sorting and hashing criterias for containers storing
sets of references to neighbor objects in order to achieve a
stable visiting order during the textual dumping.

However, using persistent object ids may not suffice to
guarantee a certain visiting order for containers of
references. Hash based containers may reorganize
themselves on the insertion or deletion of objects. Thus,
inserting one new object to such a container may change the
textual representation of the whole object structure,
dramatically. This may be avoided by sorting the object
based on their persistent keys during the dumping process.

Another group of problems is related to independent
additions of objects to an object structure by different users.
Usually, we would expect that the merging mechanism
should merge these independent changes without problems.
However, naive text dump mechanisms tend to append new
objects at the end of the object structure. This may for
example happen if persistent object ids are created in
consecutive order and if these ids are used as sorting criterias
for the textual dump. If this happens, concurrently created
new objects will both be inserted at the end of the
corresponding text dump. Thus, a text based merging
mechanism will have a merge-conflict due to concurrent
changes at the same text position, although the changes do
not actually interfere.

Similarly, a severe problem is created if different users create
different objects concurrently and if these objects get the
same persistent object ids, by accident. If the textual
representation of these different objects are placed at
different positions in the dumped text, the merging algorithm
may merge these changes without any problems. However,
this may create a textual representation that uses the same
persistent object id, twice. This creates severe problems for

the re-creation of the object structure.

To solve these problems, separated name spaces for
persistent object ids created in concurrent sessions should be
employed. A simple way to achieve this is to employ a
unique session id which is used as a basis (prefix) for the
persistent object ids created in that session.

If one user has at most one session at a time, we could use
permanent user ids as name space prefixes. This would also
address the problem of finding independent insertion
positions for new objects. If we prepend the user id to the
persistent object id and if we use lexical order based on the
persistent object id, each user id gets its own insertion
compartment. Objects created by different users (in different
sessions) would be inserted into the text dump at different
positions, thus avoiding unnecessary textual merge conflicts.
However, they still have to take care that concurrently
created new user compartments are inserted at different text
positions.

Dumping and reading the object structure
Due to the discussion above, built-in serialization
mechanisms provided by modern programming languages
are usually not appropriate as a basis for textual merging
mechanisms. Thus, a new textual persistence mechanism has
to be build.

A standard way to implement such a textual persistency
concept is to employ a base class that provides appropriate
read and write methods for all attributes of that class. All
classes that shall become persistent inherit from this base
class and extend the read and write methods in order to cover
the attributes introduced in that class. The persistent base
class should introduce an attribute for the persistent object id
of the objects and perhaps static attributes to store the
session id and a counter used to create new unique persistent
object ids. Dumping an object structure just starts with a root
object. Reference attributes are dumped using the persistent
object id of the target object and later on the target object is
visited recursively. Some kind of marker or an object table
may be used to avoid multiple dumps of a single object. The
read procedure needs the type of the persistent objects in
order to create new instances of the correct class. Then, the
read method is used to restore the attribute values. In case of
reference attributes, a look-up table is employed to turn the
persistent object id into a reference to the corresponding
object.

Due to our experiences the read/write method approach
creates serious maintenance problems. Each time a new
attribute is inserted into a persistent class, it has be extended
to the corresponding read and write methods, accordingly.
This is easily forgotten. Another problem are library classes
like Color or Point. It is not allowed to modify such library
classes in order to make them persistent. In Java, the
additional problem that multiple inheritance is restricted to
interface classes is faced. Thus the inheritance of persistency
properties may become complicate.

We overcome these problems by using a generic, table driven
persistency mechanism. Implementing in Java allows us to
exploit Java runtime type information to inspect instances of
persistent classes and to store and recover their attributes.

The classes are marked as persistent either by inheriting
from a certain base class or by adding it to a persistent class
table. The latter mechanism allows to cover library classes,
too. To exclude certain attributes from the persistency
mechanism, the Java keyword transient may be used. Similar
information may be provided by the persistency table. This
generic persistency mechanism is easily adapted for new
programs. In addition, the mechanism solves the
maintenance problem caused by the introduction of new
attributes.

Remaining merge conflict problems
The persistency and merging mechanism described so far
works already fine for many situations. However, some
principle problems remain.

Consider for example a cutout of the abstract syntax graph of
an UML CASE tool. The base version may just consist of a
an empty class diagram. Usermaroc may now enter a class
Customer and user zuendorf a class Car. These
independent changes should not create a merge conflict. If
we have prepared different text compartments for different
users, the addition of the new UMLClass objects to the text
dump will not create a problem. However, in our meta model
the class diagram holds a set of references to all contained
classes in its attribute items, cf. Figure1. The addition of a

class to a class diagram adds a reference to the items
attribute, too. Thus, after the addition of one class to the
class diagram, the textual dump of the class diagram object
will contain one line for the items attribute describing the
reference to the added class. Unfortunately, for both users
this line is added at exactly the same position in the text
dump, cf. lines 3 to 5 in Figure2. Thus, a textual merging
mechanism will report a merge-conflict, which actually does
not exist.

Let us now assume, that we are able to overcome this
problem by some reorganization of the text dump. Thus, user
zuendorf and usermaroc may have successfully merged
their two classesCar and Customer. They both take this
common version and concurrently add a classContract. If we
are able to work around the insertion problem to the items
attribute of the UMLDiagram object, a textual merging
mechanism would probably merge these concurrent changes
without any problems. However, this would create the
problem that the merged class diagram contains two

independently created classes with the same name. In
Figure3 the merged class diagram is shown as (XML-) text
dump, in lines 5-7 and 11-13 a classContract is declared. In
our meta model (cf. Figure1), classUMLDiagram employs a
qualified association items to hold the contained classes. The
corresponding cardinality constraint guarantees unique
qualifiers. This means, our data model does not allow to
store two classes with the same name within one class
diagram. Thus, in our example the reader would have a
problem to restore an object structure where a successful
textual merge has added two classes with the same name.
This is shown in Figure4 for classesContract.

To summarize, a text based merging mechanism has no
knowledge about the semantic constraints introduced by the
meta model of our object structure. Thus, the textual
merging mechanisms is not able to deal with a number of
merge problems related to such constraints. Consequently,
we have developed an object structure based merging
mechanism, described in the next chapter.

3 OBJECT STRUCTURE BASED MERGING
Our object structure based merging mechanism is based on a
simple meta model providing objects, labeled links, and

attributes, cf. Figure5. The elementary change operations of
this meta model are

• create / delete an object
• create / delete a link
• change an attribute value

Figure1 UML meta model (cut out)

UMLDiagram UMLClassitems
classes n

Figure2 Position conflict

1) /* text dump from user maroc */
2) ... // in class UMLDiagram
3) <attribute> <id>2.3</id> <type>Attr</type>
4) <name>items</name> <value>Customer</value>
5) </attribute>
 ...
1) /* text dump from user zuendorf */
2) ... // in class UMLDiagram
3) <attribute> <id>1.3</id> <type>Attr</type>
4) <name>items</name> <value>Car</value>
5) </attribute>

Figure3 Merged class diagram

1) ... // in class UMLDiagram
2) <attribute> <id>2.3</id> <type>Attr</type>
3) <name>items</name> <value>Customer</value>
4) </attribute>
5) <attribute> <id>2.14</id> <type>Attr</type>
6) <name>items</name> <value>Contract</value>
7) </attribute>
8) <attribute> <id>1.3</id> <type>Attr</type>
9) <name>items</name> <value>Car</value>
10) </attribute>
11) <attribute> <id>1.16</id> <type>Attr</type>
12) <name>items</name> <value>Contract</value>
13) </attribute>

Figure4 Naming conflict

Customer

Car

Contract

Contract

signs

belongs_to
naming
conflict

n

nn

Figure5 Text dumping meta model

Attributes

Link

attrs

links

Object

id: string
type: string
name: string
value: string

id: string
type: string
name: string
value: stringid: string

type: string
name: string
label: string

n

n

Computing Object Structure Deltas
We first describe an algorithm computing a delta between
two object structures in terms of these elementary change
operations, cf. algorithmdelta in Figure6. The delta
algorithm employs two sets of known objects for object
structuresA (old) andB (new) that are to be compared. Our
algorithm iterates through the sets of known objects of the
two object structures and retrieves pairs of objects with the
same persistent object ids. For each such pair of objectsOA
andOB we compare the set of basic attributes, cf. line 7. If
the attribute values differ we add an appropriate
changeAttribute (line 8) entry to the computed delta. Then
we consider all links attached to the objects (lines 10 to 13).
Two links with the same label are considered equal if they
target objects with the same persistent object id. If objectOB
has a link with labelL targeting and objectOX andOA does
not have such a link, then an appropriatecreateLink entry is
added to the delta (line 18). If a link is removed we add a
removeLink entry to the delta (line 13).

Once all pairs of objects with the same persistent object id
have been considered, our algorithm considers the remaining
objects (line 14 to 18). Each objectON existing in object
structureB but not in object structureA has been added to
object structure B. Thus we create corresponding
createObject andchangeAttribute entries to the delta (lines
15 & 16). In addition, we add all links attached toON to our
delta (lines 17 to 18).

Objects contained in object structureA but not in object
structureB have been removed in object structureB. For
such objectsOD we adddeleteObject entries to the delta. In
our approach we addchangeAttribute entries for deleted
objects to the delta, too (lines 20 & 21). Although, this
information may not be necessary for the merge process, it
allows to use the delta as a reverse delta, if required. This
means, the delta can be used to reconstruct object structureA
from its successor object structureB. Accordingly, we add
deleted links attached to deleted objects to the delta (line 22
& 23).

3-Way Merging / Applying an Object Structure Delta
Let us assume, we have a base version bv of an object
structure and userszuendorf and maroc create two
successor versionszv andmv, concurrently. We would now
like to merge these changes into a common versioncv, cf.
Figure7.

Basically, the common version cv may be computed by
applying deltabm to version zv. A delta is applied to an
object structure by „just“ executing the corresponding
create/delete object, create/delete link, and change attribute
entries of the delta. Again we need a lookup table to turn
persistent object ids from the delta into references to actual
objects. We use session or user id prefixes to the persistent
object ids in order to avoid concurrently created objects with
equal persistent ids as described for textual merging
mechanisms. If no conflicts occur, this algorithm works
straight forward and creates an object structurecv that
contains the changes of both users. Most of the problems
discussed for textual merge mechanisms do not occur. For
example adding a class created by usermaroc to the class
diagram does not create a merge conflict, since the items set
has no dedicated insertion position where a conflict could
occur. However, there are still conflicts possible.

Conflicts on object structure based merging
The simplest conflict occurs if both users have modified the
same basic attribute, e.g. both users change the name of an
existing class in different ways. Similarly, createLink
operations may conflict if the corresponding association has
cardinality to-one. It may even be considered as a conflict if
one user deletes a to-one link and another user replaces that
link by a link to another target. In addition, one user may
have deleted an object while the other user changes an
attribute of that object or adds a link to that object.

An object structure based merging mechanism must detect
such situations and deal with them, somehow. A simple
approach is to always prioritize the changes of one of the
users. Another idea is to compute a kind of merged result.
For string based attributes one could just concatenate the
conflicting names. In our CASE tool example this would
result in a class with a concatenated name. The user could
identify this problem within the CASE tool and resolve the
conflict manually. Generally, this is a very dangerous
approach. Probably, a special table of attributes that shall be
handled this way should be used. However, conflicts related
to to-one links and conflicts related to deleted and
concurrently modified objects can not be solved this way. In
general, such merge conflicts require a user decision.

Unfortunately, our object structure based merging
mechanism may report merge conflicts on an object structure

Figure6 The delta algorithm

algorithm delta(A, B)
1) input A,B : set of object structures
2) output D : delta of the object structures
3) local variables OA, OB, ON, OD: object
4) local variables LA, LB, LN, LD: link
5) begin
6) for all (OA,OB) = pairWithSameID (A,B)
7) if OA.attrs ≠ OB.attrs
8) then D.addChangeAttributeEntries (OA,OB)
9) fi
10) for all LB = (OB.link - OA.link)
11) D.addCreateLinkEntry(LB)
12) for all LA = (OA.link - OB.link)
13) D.addRemoveLinkEntry (LA)
14) for all ON = (B - A)
15) D.addCreateObjectEntry (ON)
16) D.addChangeAttributeEntry (ON.attrs)
17) for all LN = (ON.link)
18) D.addCreateLinkEntry (LN)
19) for all OD = (A - B)
20) D.addDeleteObjectEntry (OD)
21) D.addChangeAttributeEntry (OD.attrs)
22) for all LD = (OD.link)
23) D.addRemoveLinkEntry (LD)
24) end

Figure7 Computing common version by applying
deltabm to zv

bv

zv
mv

cv

deltabz deltabm

apply deltabm

level, only. The user of a CASE tool may have some
difficulties to resolve a conflict saying „conflicting
assignments to attribute age of object 2.33 of type XYZ“.
The user would probably like to deal with such conflicts via
the GUI of his or her CASE tool.

4 CONCLUSIONS AND FUTURE WORK
There have been a number of approaches trying to improve
merge mechanisms for software documents, [Wes91b,
YHR92, LvO92, BHR95]. Most of these approaches tried to
exploit higher level semantic knowledge in order to deal with
merge conflicts more sophisticatedly. Like our approach,
many of these approaches create an object structure based
representation of the software documents in order to analyse
the changes more thoroughly. Our approach has been heavily
influenced by the work of [Wes91a]. [Wes91a] introduced
the idea of unique persistent object ids as a basis for object
structure based merging. Somehow, we follow the idea of
operation based merging of [LvO92]. However, [LvO92]
requires the recording of change operations while we employ
a delta algorithm. We assume that explicit operation
recording is hard to implement.

We think that our approach improves the object structure
merging problem by introducing a very generic concept that
will be easily adapted to new object structures and tools. We
plan to develop tool support, that allows to reverse engineer
existing object structures and to generate a merge
mechanism for such structures.

We plan to deal with the merge conflict problem using a
table driven approach. A configurable conflict resolution
table shall allow to define different conflict handling
strategies for different kinds of conflicts on different types of
objects, links, and attributes. One conflict handling method
could be to add appropriate conflict marker objects to the
object structure. Then, the CASE tool could be extended by a
dialog presenting the merge conflicts in an appropriate way
and allowing the user to enter merge decisions on a logical
level. In this way, a generic merge mechanism may be
integrated with different tools.

We have implemented the object structure based merging
mechanism in our Fujaba CASE tool. This implementation
was not as simple as described. First of all, our approach
assumes a graph-like object structure. This means, it must be
possible to delete some object and to determine all other
objects referencing to this object and to reset all these
obsolete references in order to avoid dangling references. In
our implementation, all references are implemented as pairs
of forward/backward pointers. This allows to determine all
neighbors of a deleted object, easily.

Second, we assume that each object has a unique persistent
number even across session boundaries. Especially, this does
not allow to compare independently created object
structures. Basically, this idea stems from [Wes91b]

Third, we assume that some adding or deleting of objects or
links and some attribute modifications turn a valid object
structure into another valid object structure. Theoretically,
this holds, since the resulting object structure respects all
constraints imposed by the corresponding meta model. For
example, no coordinately constraints of associations are

violated. However, usually tools impose other hidden
consistency constraints on object structures. For example an
explicit attribute, counting the number of existing classes
may be employed. Adding and removing class objects
should change this counter, too. This is not known to our
merge mechanism. Due to our experiences, tools that are
able to read a text based representation of their object
structure are usually well prepared to deal with object
structures that can be represented by such a textual
description. Thus, we plan to apply our mechanism to XML
based object structure representations.

We have minimized such constraints in our Fujaba
environment. We have been successful for class diagrams,
but there are still some problems with some behavior
diagrams. Similarly, we have a preliminary version of a
merge dialog, only. We would like to apply this approach to
other tools that have a „long transactions“ problem, in order
to validate its feasibility and its genericity.

For the Fujaba environment see
http://www.uni-paderborn.de/cs/fujaba/

REFERENCES
[BHR95] D. Binkley, S.Horwitz, and T.Reps. Program in-

tegration for languages with procedure calls.ACM
Transactions on Software Engineering and Methodolo-
gy, 4(1):3–35, January 1995.

[Ced93] P.Cederqvist.CVS Manual: Version Manage-
ment with CVS. Signum Support, 1993.

[CVS] CVS. Concurrent Versions System - The open
standard for version control. http://www.cvshome.org/.

[LvO92] E. Lippe and N.van Oosterom. Operation-based
Merging. InProc. of the 5th Symposium on Software De-
velopment Environments (SDE5), volume 17(5), pages
78–87, Tyson’s Corner, Virginia, December 1992. ACM
SIGSOFT Software Engineering Notes.

[Roc75] M.J. Rochkind. The source code control system.
IEEE Transactions on Software Engineering, 1(4):364–
370, 1975.

[Tic85] W.F. Tichy. RCS - a system for version control.
Software– Practice and Experience, 15(7):637–654,
July 1985.

[Wes91a] B. Westfechtel.Revision Control in an Integrated
Software Development Environment. PhD thesis, Aa-
chen University of Technology, Aachen, Germany,
1991.

[Wes91b] B. Westfechtel. Structure-Oriented Merging of
Revisions of Software Documents. In P.H. Feiler, editor,
Proc. of the 3rd International Workshop on Software
Configuration Management, Trondheim, Norway, June
1991. ACM Press.

[YHR92] W. Yang, S.Horwitz, and T.Reps. A program in-
tegration algorithm that accommodates semantics-pre-
serving transformations.ACM Transactions on Software
Engineering and Methodology, 1(3):310–354, July
1992.

