
Human-Centered Reverse Engineering Environments
should support Human Reasoning

Jens H. Jahnke, Jörg P. Wadsack

AG-Softwaretechnik, Fachbereich 17, Universität Paderborn,
Warburger Str. 100, D-33098 Paderborn, Germany;

e-mail: [jahnke|maroc]@uni-paderborn.de

1. Background and motivation

Today's information technology (IT) undergoes dramaticmass changes [McC98] due to urgent
requirements like the coming of the next millennium (Year-2000-problem) [Mar97], the European currency
union [Gro98], and emerging technologies like theWorld Wide Web. Electronic Commerce is about to
become one of the key business technologies for the next decade. While new company start-ups are able to
purchase modern information systems (IS) that meet these new requirements, longer established enterprises
have to deal with pre-existing systems. In many cases, suchlegacyIS comprise complex architectures that
have evolved over several generations of programmers and lack a sufficient technical documentation. Still,
they maintain a great amount of valuable business data and their functionality is often critical for the
mission of the enterprise. Consequently, a complete replacement of these systems is virtually impossible or
at least implies a significant risk.

1.1 Computer aided reverse engineering - current limitations

In order to solve this problem, during the recent decade there has been increasing effort to develop
methods and techniques toreverse engineer and modernize software legacies. In general, this is a complex
task which requires a high amount of expert knowledge and coordination.Computer-aided reverse
engineering (CARE) tools have a high potential to reduce this complexity and cope with the emerging mass
change in IT. While fully-automatic approaches to CARE have proven useful to unburden the reengineer
from a number of simple but laborious reverse engineering (RE) activities, it has been recognized that they
are not sufficient to solve more complex RE problems [ALV93, Big90]. The reason for this insufficiency is
the fact that one of the most valuable information sources in RE are humans. In many cases, developers,
operators, and domain experts are able to contribute important knowledge about legacy systems.

As a consequence, many interactive CARE environments have been developed in industry and academy,
e.g., [HEH+98, KWDE98, AG96, ONT96, MNS95, MWT94]. Such environments are often referred
to behuman-centered. Still, they are rarely applied by practitioners in real-world RE projects. This is mainly
because of two significant limitations of current approaches, namely (1) they are not aware of themental
model of the tool user (reengineer) [JH98b] and (2) they prescribe a batch-oriented rather than an
evolutionary RE process. The first problem reflects on the fact that many RE activities inherently deal with
various heuristics which often lead to uncertain and inconsistent analysis results. The second problem
considers that reengineers usually work in an explorative and iterative way to validate or refute intermediate
analysis results and assumptions about the legacy system. We argue that human-centered CARE
environments have to overcome these two limitations to increase their industrial acceptance. In this paper,
we give a overview on an approach in the domain of database reverse engineering (DBRE) that aims to meet

this requirement. In the next section, we use a small RE sample scenario that deals with alegacy database
(LDB) to motivate the importance of uncertain knowledge in RE processes. In Section3, we introduce our
approach to modeling this knowledge with a dedicated formalism calledGeneric Fuzzy Reasoning Nets
(GFRN). Section4 gives a short description of the mechanisms which are employed to execute GFRN
models in an evolutionary and explorative RE process. Finally, Section5 closes with some concluding
remarks.

2. A reverse engineering sample scenario

In the following, we assume that the reader is familiar with the basic concepts of relational
databases[EN94]. Figure1 shows an example legacy database including small details of its procedural
code, its database schema and the stored data. The recovered conceptual schema in EER-notation is
depicted in Figure2, while the semantic information which has to be deduced in order to reobtain this
abstraction is shown in Figure3.

Often, the schema definition of an LDB does not contain explicit definitions for foreign keys or candidate
keys [EN94]. This is because of the limited functionality of antiquated database management systems.
Possible keys can be found by searching the procedural code of the LDB for special patterns (sometimes
calledclichés). Examples for instances of clichés are the two SQL queries in the upper left part of Figure1.
The first cliché is called acyclic join [And94]. It selects two entries in tabletenant with the same value
in columnhouse but with different values in columnname. This cliché serves as an indicator that tenants
might be distinguishable by their name. On the other hand, the second query (select distinct) is an indicator
against the assumption thatname might be a key of tabletenant: the columnhouse of a tenant with a
givenname is selected, but the query contains the keyworddistinct, which is used to avoid multiple
elements with the same value in the result of a query. However, experience shows that the first cliché

select * from Tenant x,y
where (x.house=y.house)
and not (x.name=y.name)
...
select distinct house from Tenant
where name=#N
...

create table Tenant(
name varchar(50),
house varchar(50),
ap integer,
rent numeric,
mtenant varchar(50))

create table ApHouse(
house_id varchar(20),
flats smallint,
street varchar(80),
city varchar(40))

LDB

Data

Code

DB Schema

Figure 1. Details of a legacy database application

name houseap rent mtenant
Smith FA 22 550 NULL
Good PAD 13 NULL King
Moon LOP 12 NULL Miller
Bolt BS 6 820 NULL
King PAD 13 760 NULL
...

Tenant
house_idflatsstreet city
BS 99 5thAveNY
PAD 130 FAlley WC
FA 25 GStreetKV
LOP 6 MBlvd AT
...

ApHouse

deserves a higher credibility than the second one. The assumption that name is a key might be disproved or
supported by examining the data in tabletenant. If there are two rows with the same value in column
name the assumption must be refuted. On the other hand, if all rows have distinct values in columnname,
the assumed key could gain a greater credibility depending on the extent of the provided data in table
tenant, e.g. if there are six hundred tenants with unique names there should be greater confidence that
the assumption is true than if there are only six tenants.

In order to detect foreign keys between tables, the reengineer can search the application code forjoin
clichés, similar to the first query in Figure1. Further indications for a possible foreign key might be
retrieved by checking the similarity of column names with other column names (e.g., columnshouse and
house_id) or table names (e.g., columnmtenant and tabletenant). Obviously, columns which are
supposed to have identical meaning should have the same type. For example columnshouse and
house_id both are of typevarchar but with a different length. However, as this occurs frequently even
for columns with identical meaning, their types should be considered as compatible to a certain degree. Like
before, possible foreign keys should be checked against the available data.

A further examination of the contents of tabletenant shows that there seem to be two different variants
of tenants: Each row in tabletenant has either a NULL-value in columnrent or in columnmtenant.
This reveals a hidden inheritance hierarchy. Again, the credibility of this indicator depends on the extent of
the available data in tabletenant.

Tenant

name
Apartment

MainTenant

rent

SubTenant
has

ApHouse

house_id flats

street city

lives

Figure 2. : Conceptual schema in EER-notation

is a is a
in

Figure 3. Deduced Semantic Information

Keys:
Tenant(name)
ApHouse(house_id)

Equivalence Classes:
{Tenant.mtenant,Tenant.name}
{Tenant.house, ApHouse.house_id}

Foreign Keys:
Tenant.mtenantreferences Tenant.name
Tenant.housereferences ApHouse.house_id

Variants:
Tenant:MainTenant(name,house,ap,rent)

SubTenant(name,house,ap,mtenant)

3. Modeling uncertain RE knowledge

The above scenario exemplifies the importance of uncertain knowledge (heuristics) in the RE domain. In
our approach, RE heuristics are modeled in a dedicated graphical formalism calledGeneric Fuzzy
Reasoning Nets (GFRN). In the following, we give an informal introduction to this approach. For a formal
definition of this formalism we refer to [JSZ97].

A GFRN is a graphical network of fuzzy predicates (with oval shape) andimplications (represented as
boxes) which are connected by arcs. Each implications has an associatedconfidence value (CV). Based on
the theory of possibilistic logic [DLP94:PossibilisticLogic], the semantics of a CV is a lower bound of the
necessity that the corresponding implication is valid. Arcs are labeled with formal parameters that can be
used to specify constraints for implications. Figure4 shows a detail of a GFRN which represents a part of
the knowledge we used in our RE sample scenario, i.e., it aims to detect foreign keys in LDBs.

Implicationi1 specifies the aforementioned heuristic that acyclic joincliché is a rather credible indicator
for a possible key candidate. On the other hand, implicationi2 models our experience that aselect-distinct
cliché over a set of columnsv1 serves as a negative indicator that subsets ofv1 might be keys. Implication
i3 specifies that an assumed key candidate may only be valid if there exists no counterexample in the data
of the LDB.

A frequently used heuristic to detect relationships between tables, i.e., to detect equivalent columns in
different tables, is to check column names for similarities. Obviously, it is necessary that columns which
have identical meaning are type compatible. This heuristic is modeled with Implicationsi8 and i9.
Implication i7 is an example that even complex rules can be expressed in GFRN specifications. It specifies

cycl_join

i1: 0.7
v2⊆v1

i2: 0.3

v2

v1

i10: 1.0

i7: 0.6
v2∈v1

sel_dist

key

IND

validIND

validKey

i3: 1.0

FK

i5: 1.0
v2=π2(v1)

i9: 1.0

equiv

i8: 0.5

tcompnsimilar

v2

sameTable(π1(v1))
sameTable(π2(v1))

i6: 0.8

Figure 4. : Sample Generic Fuzzy Reasoning Net

v2

v1 v1

v1

that pairs of equivalent columns in two different tables are an indicator for an inclusion dependency (IND)
over these columns. At this, Parameterv1 is constrained to be a set of pairsv2. sameTable is defined to
be a boolean function that evaluates totrue iff all columns in its argument are in the same table. Finally,
Functionsπ1 andπ2 represent the relational projection on the first and the second element of each pair in
v1, respectively.

Again, the available data has to be checked whether or not the supposed INDs can be disproved
(Implication i10). Implication i6 specifies that the validation of an assumed IND over a huge amount of
available data may further support this assumption. Finally, the presence of a foreign key can be deduced
from the existence of an IND over pairs of columns, where the second element of each pair must constitute
a key candidate (Implicationi5).

3.1 The role of automatic analysis operations

Some fuzzy propositions can be determined by automatic analysis operations, e.g., checking for similar
column names, comparing column types, validating assumptions against the available data, searching
procedural code for clichés, etc. In the GFRN formalism, such analysis operations can be bound to fuzzy
predicates. Depending on the point of time, when these operations are performed, the corresponding
predicates are called eitherdata-driven or goal-driven. In Figure4, data-driven predicates are represented
by bold ovals while goal-driven predicates have a dashed shape.

Analysis operations which have been bound to data-driven predicates are performed at thebeginning of
the analysis process, to deliver initial information about the LDB under investigation. As an example, the
data-driven predicatensimilar is bound to an operation that compares the names of different columns
according to a possibility function as a measure of similarity. Such a possibility function could for example
be based on string similarity metrics like the Levenshtein-distance [AWY90].

In contrast to data-driven predicates, analysis operations of goal-driven predicates are invoked
on-demandduring the analysis process to refute or support intermediate results. The validation of an IND
via the available data (validIND) is an example for an expensive operation that should only be performed
for INDs which have already been indicated.

4. Achieving an evolutionary RE process

We have chosen afuzzy petri net (FPN) [JH98a] as an inference engine to execute GFRN models as it
allows for non-monotonic reasoning and, thus, facilitates the desired evolutionary RE process. This means
that each (fuzzy) fact in an RE project is represented by oneplace in the FPN, while implications are
mapped totransitions. The particular FPN model used in our approach is an extension of the FPN model
described in [KM96]. The major difference compared to the original FPN model is that our approach deals
with inconsistent knowledge. We refer to [JH98a] for a detailed definition of the employed FPN model.

The actual analysis process is illustrated in Figure5. It starts by executing all automatic operations which
have been assigned to data-driven predicates in the GFRN model. This first investigation delivers the initial
amount of facts about the subject LDB. At this early stage, the semantic information inferred by the
inference engine is likely to be incomplete and inconsistent. These inconsistencies have to be resolved by
the reengineer, who can initiate further investigations, discuss intermediate analysis results with domain
experts and developers, and enter additional assumptions.

The inference process is resumed as soon as new information about the LDB becomes available. During
each iteration, automatic (goal-driven) analysis operations are performed on-demand to refute or support
assumptions. This evolutionary RE process is continued until the produced semantic information is
consistent and complete.

5. Concluding remarks

It has been commonly recognized that RE is a complex and human-intensive process [ALV93, Big90].
CARE environments have a great potential to decrease this complexity and shorten RE project durations.
However, we argue that in order to be accepted in industry, user-centered CARE environments have to be
aware of the explorative and evolutionary nature of RE processes. They have to cope with uncertain and
inconsistent information about legacy systems. In this paper, we give an overview on our approach to tackle
these problems in the domain of DBRE. The described concepts have been implemented in theVarlet
CARE environment [JSZ96]. Currently, we have started to apply this environment to practical examples in
industrial projects. First experiences show that our approach is feasible and promising. Our current research
focus is on employing learning algorithms of connectionist systems to adapt the credibilities of specified
RE heuristics to changing application contexts [JS99]. Furthermore, we aim to apply our results to other
areas in RE, e.g., to recover the design of object oriented software [JZ97].

References
[AG96] D. C. Atkinson and W. G. Griswold. The design of whole-program analysis tools. InProc. of

the 18th Int. Conf. on Software Engineering, Berlin, Germany, pages 16–27, 1996.

[ALV93] F. Abbattista, F. Lanubile, and G.Visaggio. Recovering conceptual data models is
human-intensive. InProc. of 5th Intl. Conf. on Software Engineering and Knowledge Engi-
neering, San Francisco, California, USA, pages 534–543, 1993.

[And94] M. Andersson. Extracting an Entity Relationship Schema from a Relational Database through
Reverse Engineering. InProc. of the 13th Int. Conference of the Entity Relationship
Approach, Manchester, pages 403–419. Springer, 1994.

[AWY90] L. Allison, C.S. Wallace, and C.N. Yee. When is a string like a string?AI & Maths., 1990.

[Big90] TedJ. Biggerstaff. Human-oriented conceptual abstractions in the reengineering of software.
In Proceedings of the 12th International Conference on Software Engineering, page 120,
March 1990.

[DLP94] D. Dubois, J.Lang, and H.Prade.Possibilistic Logic, pages 439–503. Clarendon Press,
Oxford, 1994.

cycl_join

i1: 0.7 v2⊆v1
i2: 0.3

v2

v1

i10: 1.0

i7: 0.6
v2

sel_dist

key
IND

validIND

validKey

i3: 1.0

FK

i5: 1.0
v2=π2(v1)

i9: 1.0

equiv

i8: 0.5

tcompnsimilar

v3

i6: 0.8

v2
v1 v1

GFRN

pl1

plq+1 pln

plq

+ -

-+

--

+
+

-
-

-

-

-

-

+

+

φ

φ

φ φ

φ

FPN

Tenant

name

Apartment

MainTenant

rent

SubTenant

has

ApHouse

house_id flats

street city

hires

is a is a

semantic
information

RE knowledge

data- and goal-

LDB

analysis
results

fuzzy
inference

engine

intermediate

Figure 5. The supported evolutionary RE process

results

driven analysis

assumptions

[EN94] Ramez Elmasri and ShamkantB. Navathe.Fundamentals of Database Systems. Benjamin/
Cummings, Redwood City, 2 edition, 1994.

[Gro98] Kurt Grotenhuis. Crossing the euro rubicon.IEEE Spectrum, 35(10):30–33, October 1998.

[HEH+98] J.Henrard, V. Englebert, J.-M. Hick, D.Roland, and J.-L. Hainaut. Program understanding in
database reverse engineering. Technical Report RP-98-004, Institute d’Informatique, Univer-
sity of Namur, Belgium, 1998.

[JH98a] J.H. Jahnke and M.Heitbreder. Design recovery of legacy database applications based on
possibilistic reasoning. InProceedings of 7th IEEE Int. Conf. of Fuzzy Systems (FUZZ’98).
Anchorage, USA.. IEEE Computer Society, May 1998.

[JH98b] Stan Jarzabek and Riri Huang. The case for user-centered case tools.Communications of the
ACM, 41(8):93–99, August 1998.

[JS99] JensH. Jahnke and Christoph Strebin. Adaptive tool support for database reverse engineer-
ing. InProc. of 1999 Conference of the North American Fuzzy Information Processing Soci-
ety, New York, USA, June 1999. submitted.

[JSZ96] J.H. Jahnke, W. Schäfer, and A.Zündorf. A design environment for migrating relational to
object oriented database systems. InProc. of the 1996 Int. Conference on Software Mainte-
nance (ICSM’96). IEEE Computer Society, 1996.

[JSZ97] J.H. Jahnke, W. Schäfer, and A.Zündorf. Generic fuzzy reasoning nets as a basis for reverse
engineering relational database applications. InProc. of European Software Engineering
Conference (ESEC/FSE), number 1302 in LNCS. Springer, September 1997.

[JZ97] Jens Jahnke and Albert Zundorf. Rewriting poor design patterns by good design patterns. In
Serge Demeyer and Harald Gall, editors,Proceedings of the ESEC/FSE Workshop on
Object-Oriented Re-engineering. Technical University of Vienna, Information Systems Insti-
tute, Distributed Systems Group, September 1997. Technical Report TUV-1841-97-10.

[KM96] A. Konar and A.K. Mandal. Uncertainty management in expert systems using fuzzy petri
nets.IEEE Transactions on Knowledge and Data Engineering, 8(1):96–105, February 1996.

[KWDE98] B. Kullbach, A.Winter, P. Dahm, and J.Ebert. Program comprehension in multi-language
systems. InWorking Conference on Reverse Engineering, pages 135–143, Hawai, USA,
October 1998. IEEE Computer Society, IEEE Computer Society Press.

[Mar97] RobertA. Martin. Dealing with dates: Solutions for the year 2000.Computer, 30(3):44–51,
March 1997.

[McC98] ThomasJ. McCabe. Does reverse engineering have a future? Keynote of the 5th Working
Conference on Reverse Engineering, Honolulu, Hawaii, USA, October 1998.

[MNS95] Gail C. Murphy, David Notkin, and Kevin Sullivan. Software Reflexion Models: Bridging the
Gap between Source and High-Level Models. InProceedings of SIGSOFT’95 Third ACM
SIGSOFT Symposium on the Foundations of Software Engineering, pages 18–28, October
1995.

[MWT94] HausiA. Müller, Kenny Wong, and ScottR. Tilley. Understanding software systems using
reverse engineering technology. In Proceedings of the 62nd Congress of L’Association Cana-
dienne Francaise pour l’Avancement des Sciences (ACFAS ’94), pages 41–48, Montreal, PQ,
"16–17 "# may 1994.

[ONT96] ONTOS Inc., hree Burlington Woods, Burlington, MA, USA.ONTOS Object Integration
Server for Relational Databases 2.0 - Schema Mapper User’s Guide, 2.0 edition, 1996.

