
ABSTRACT
Recovering the static structure of legacy source code e.g. as
an UML class diagram is quite well understood. In contrast,
recovering high-level behaviour diagrams from source code
is still an open issue. This paper proposes to use fuzzy
pattern detection techniques for the recovery of UML
collaboration diagrams from source code. The approach is
based on a knowledge base of basic datatypes and of generic
collection classes and of code clichés for Java beans and of
fuzzy patterns for object structure look-up and modification
clichés. We handle the diversity of existing code clichés by
organizing them in an object-oriented hierarchy factorizing
important common properties and by relaxing exactness
requirements for cliché detection with the help of fuzzy
theory. We handle the runtime efforts for cliché detection
using a sophisticated inference mechanism based on generic
fuzzy reasoning nets (GFRN’s). The work is part of the
FUJABA case tool aiming to support round-trip engineering
for UML and Java.

Keywords
UML, Java, fuzzy logic, reverse-engineering, pattern
recognition, round-trip engineering

1 INTRODUCTION
Reverse engineering aims to provide program descriptions
on higher levels of abstractions. Such an abstract level could
e.g. be a program description using UML diagrams. These
program descriptions facilitate the understanding of program
structures and program behaviour. State-of-the-art CASE
tools like Rational Rose [Ros], TogetherJ [Tog], and
Rhapsody [Rha] provide only recovery functions for class
diagrams using markers in the code. Notably, Rhapsody
supports the recovery of state-charts. The recovery of high-
level behaviour descriptions for legacy object-oriented
programs is still an open issue.

The work described in this paper is part of the Fujaba
project. The Fujaba project aims to develop a round-trip
engineering CASE tool for UML. In our previous work,
[FNTZ98, JZ98, NNSZ99, KNNZ00], we proposed an
execution semantics for UML statecharts, activity diagrams,

and collaboration diagrams. Our execution semantics allows
to use these UML behaviour diagrams as a visual
programming language for object-oriented applications. The
code generators of the Fujaba environment translate such
executable specifications into fully functional Java classes
including method bodies.

Theoretically, with Fujaba no manual coding is necessary
any more. Practically, the generated code is frequently
modified during debugging. The code may be merged with
the contributions of other developers e.g. via a configuration
management system. Some system parts may be added by
other code generators, e.g. a GUI builder or a database
middleware layer, or a distribution layer like CORBA
[Vin97].

To deal with such code modifications, the Fujaba
environment provides reverse engineering support that
analyses Java source code and tries to create the
corresponding UML class and behaviour diagrams, cf.
[NNWZ00]. So far, the reverse engineering capabilities of
Fujaba are limited to round-trip engineering support. This
means, Fujaba is merely able to reverse engineer code it has
generated itself or that it has been written as if it would have
been generated.

Reverse engineering of arbitrary legacy code and third party
code is a challenging problem. Most CASE tools are
restricted to the analysis of static program structures, i.e.
reverse engineering of class diagrams. But even for class
diagrams the correct recovery of (structural) associations
between classes is not trivial.

To overcome these limitations and to be able to deal with
legacy code constructs, this paper proposes the use of fuzzy
reasoning technologies, i.e. generic fuzzy reasoning nets, cf.
[Jah99]. In this paper we focus on the analysis of code that
deals with object structure modifications. We start with a
knowledge base about the semantics of pre-defined container
classes and their access operations. We analyse attribute
declarations to identify (sets of) basic references hold by
certain classes. Methods modifying these basic references
are classified as access methods with certain degrees of
confidence. If access methods are detected with sufficient
confidence, their use can be analysed. Specific sequences of
access method usages may be turned into collaboration
diagrams that describe the look-up of certain object patterns
and the modifications of such patterns and the collaboration
messages send between the participating objects. The

Recovering UML Diagrams fr om Java Code using Patterns

Jörg Niere
Department of Mathematics

and Computer Science
University of Paderborn

Warburgerstraße 100
33098 Paderborn, Germany
nierej@uni-paderborn.de

Jörg P. Wadsack
Department of Mathematics

and Computer Science
University of Paderborn

Warburgerstraße 100
33098 Paderborn, Germany
maroc@uni-paderborn.de

Albert Zündorf
Department of Mathematics

and Computer Science
University of Paderborn

Warburgerstraße 100
33098 Paderborn, Germany
zuendorf@uni-paderborn.de

combination of activity diagrams specifying the control flow
and embedded collaboration diagrams in a certain activity is
called story-diagrams. Those story-diagrams serve as the
behavioural specification for a software system and are
linked to method declarations in class diagrams.

The following Section 2 introduces a track based material
transportation system as running example. In Section 3 the
reconstruction of class diagrams and story-diagrams is
described using annotations. The specification of code
clichés is introduced in Section 4 and the following Section 5
introduces the corresponding execution formalism, namely
generic fuzzy reasoning nets. Section 6 and Section 7 discuss
related work and present future work.

2 RUNNING EXAMPLE:
SWITCH CONTR OL SOFTWARE

In this section, we introduce the switch control software of a
track based material transportation system as running
example. This example stems from the joint research project
ISILEIT funded by the german research foundation (DFG).
Within ISILEIT we collaborate with our mechanical and
electrical engineering department to set-up an agent based
production control system. The building blocks of such a
production control system are different, self-acting and
computer controlled resources like e.g. switches, shuttles,
machines, or robots. Shuttles move on rails and transport
goods between various production places. Each production
place can be reached using switches in the railway system.
Shuttles announce themselves at the switches if they want to
visit the corresponding production place. The switch control
software keeps track of the targets of the different shuttles
and operates the switch accordingly.

Figure 1. shows the structure of a switch as part of a
production control system, which we specified by employing
Fujaba. The switch has an actor, i.e. the switch drive, which
changes its direction. Further it has some sensors, which
observe the environment and a Local Operating Network-
node, which is connected to a communication network. In
our example, the identification unit detects an arriving
shuttle and reports the shuttle’s id to the switch control node.
Now, the control software decides in which direction the

shuttle should be send. If the switch has to change its
direction, it activates the stopper in order to let shuttles wait.
One has to assure, that no shuttle is in the switching area,
when the switch drive is activated, because otherwise the
switch drive could be damaged. For that reason, the switch
has a pass observer at each exit, which reports every shuttle
leaving the area. Note, that we have a one-way driving
direction, so that we have one entry and two exits, which
means that our example shows a ’branching switch ’.

We have developed the control software for such switches
using our Fujaba environment. Then, we delivered our
software to the mechanical engineers setting up the physical
transportation system. Some weeks later we faced the
situation, that the mechanical engineers modified the
software significantly for debugging and optimization
reasons. Thus, we wanted to be able to reconstruct UML
class and behaviour diagrams from the changed Java code
that reflect the current control software.

3 CLASS- AND STORY-DIAGRAM
RECONSTRUCTION

Recovering class and behaviour diagrams from Java code is
divided into two tasks. First, the static information, the class
diagrams, will be reconstructed and in a second task, the
behaviour diagrams (here story-diagrams) will be
recognized.

Figure 2. shows a cut-out of the static elements of the Java
code of classSwitch. From this code fragments a
rudimentary class diagram recovery approach could
reconstruct the class diagram shown below the Java code.
Classes become classes. Attributes of basic types likeint or
boolean become class attributes. Method declarations
become methods of the corresponding UML classes.
Inheritance in Java is directly mapped to inheritance
relations in the diagram.

We assume, that the class diagram recovery mechanism has
already knowledge about all basic Java types. Thus, it may
identify typesStopper andOrderedSet as user defined types.
Accordingly, the corresponding Java attributes are
interpreted as references in the class diagram.

Control Node

Communication Bus

Driving Direction

Signal Direction

IU
ST
SD
PO

Identification Unit

Stopper

Switch Drive

Pass Observer

Process-
interface

Application Software
„Switch“

Bus Interface

ID SDST

Shuttle

PS

station

PS

Figure 1. Switch structure

1: public class Switch extends Track {
2: ...
3: int shuttleId;
4: ...
5: Stopper stopper = new Stopper ();
6: ...
7: OrderedSet announced = new OrderedSet ();
8: ...
9: void welcome (int id) {...}

10: ...
11: } // class Switch

Figure 2. Rudimentary class diagram recovery

Switch

shuttleId : Integer

welcome (id : Integer) :
 Void

Track

OrderedSet

Stopper

announced

stopper

However, class OrderedSet is a pre-defined generic
container class from the Java Foundation Class (JFC) library.
Equipping our reconstruction mechanism with this
additional knowledge, it could turn the announced reference
from Switch to OrderedSet into a to-many reference to class
Object (the basic class of all classes in Java). In Java, we face
the problem that generic container classes do not provide
information about the types of the contained entities. To
derive such information, our recovery mechanism needs to
know the semantics of the access methods of container
classes, e.g. methodadd inserts elements into the container.
This allows us to derive the entry type for containers from
the usages of the correspondingadd method.

Recognizing classes and class members is fairly simple.
Analysing method bodies is a more challenging task. One
approach to recover the semantics of method bodies is the
detection of so-called code clichés, cf. [Wil94]. In Java, very
common code clichés are bean properties. A bean property is
an attribute with appropriate read and write access methods,
cf. Figure 3. The read (write) method of a bean property
must have the same name as the corresponding attribute plus
a ’get’ (’set’) prefix. In addition, the write method must have
exactly one parameter with the same type as the
corresponding attribute. Finally, within the body of the write
method the parameter value must be assigned to the
corresponding attribute. Once an attribute and its access
methods have been classified as a bean property, the class
diagram recovery mechanism may simplify the
corresponding class, accordingly.

In our approach, we use similar code clichés to implement
bi-directional associations. Bi-directional associations are

implemented using pairs of pointers. These pointers are
encapsulated with appropriate read and write access
methods. The write access methods guarantee the
consistency of the pointer pairs by calling each other,
mutually. For to-one associations simple attributes and set-
and get-methods are used. For to-many associations we
employ generic container classes and methods for iterating
through the set of neighbours, adding neighbours, and
removing neighbours.

Fujaba employs a flexible cliché detection mechanism the
so-called annotation engines. The annotation engines enrich
the abstract syntax tree of a parsed program with so-called
annotations [HN90]. Annotations are markers for detected
occurrences of code clichés. In Figure 3 such annotations are
shown as ovals. Annotations enrich the semantics
information of abstract syntax trees and allow e.g. to
simplify class diagrams. Moreover, such annotations assign a
certain semantics to certain methods or code fragments. This
semantics may be used for further analysis of other method
bodies.

Consider for example Figure 4. Line 35 employs method
getIdUnit. Let us assume that methodgetIdUnit has
been annotated as the read access method for an association
between class Switch and class
IdentificationUnit. This allows us to interpret line
35 as a link look-up operation. In a collaboration diagram
such a link look-up operation is shown as a line labelled with
the corresponding association name. Such a line connects
two boxes representing the source and target variable. In our
example these are the variablesthis andidU, respectively, cf.
Figure 4. Similarly, the knowledge about access methods

Figure 3. Dealing with bean properties

12: public class Shuttle
13: ...
14: private int shuttleId;
15:
16:
17:
18: public int getShuttleId () {
19: return this.shuttleId;
20: }
21:
22:
23: public void setShuttleId (int id) {
24: this.shuttleId = id;
25: }
26:
27: ...
28: } // class Shuttle

Switch

- shuttleId : int

+ getShuttleId () : int
+ setShuttleId (id : int) : void

Switch

+ shuttleId : Integer

// naive recovery of bean properties // smart recovery of bean properties

private
Attribute

write
Access

bean
Property

read
Name

result
Type

attribute
Return

read
Access

write
Name

param
Type

attribute
Assignment

read

write

attr

may allow to interpret line 39 and 40 as look-up of a
qualified association with cardinality0..1. Lines 42 to 44
show a typical cliché for the look-up of a to-many
association. In a collaboration diagram such look-ups are
shown as lines between appropriate objects, cf. the bottom of
Figure 4. Finally, our annotation knowledge allows us to
infer, that line 49 creates anat link between objects andidU
and line 51 creates awantsTo link from s to t1. In the
collaboration diagram we show link creation using grey
colour and the«create» stereotype.

Thus, the detection of Java bean property clichés allows us to
assign a dedicated semantics to read- and write-access
methods. This knowledge allows us to analyse the usage of
such access methods and to recover collaboration diagrams
from such code. Note, in more complex situations, a method
body may contain several code fragments that correspond to
collaboration diagrams. Such code fragments may be mixed
with other code (Figure 4 line 37) and control structures that
are not covered by such an analysis. To deal with such

situations, we embed detected collaboration diagrams into
activity diagrams. The activity diagram part shows the top-
level control flow and text activities for unrecognized code.
Recognized code is turned into collaboration diagram
activities.

So far, our annotation engines are able to deal with code that
strictly conforms to the Fujaba code generation concepts.
Due to our experience, legacy and third party code
frequently contains similar code fragments. However, the
classification of access methods and especially the detection
of collaboration diagram operations is very challenging. For
example, there are numerous ways to implement a to-many
association. Accordingly, there are very different ways to
enumerate all neighbours of a given object. Similarly, there
are various coding clichés for test operations and for dealing
with test results. The next section describes how clichés can
be specified using the Fujaba environment.

29: class Switch extends Track {
30: ...
31: public void welcome (int id) {
32: IdentificationUnit idU; Shuttle s; Exit t1;
33: Iterator iter;
34:
35: idU = this.getIdUnit ();
36:
37: System.out.println("debug point 1");
38:
39: t1 = this.getExit ("Station");
40: if (t1 == null) return; // <=============== exit
41:
42: iter = this.iteratorOfAnnounced ();
43: while (iter.hasNext ()) {
44: s = (Shuttle) iter.getNext ();
45:
46: if (s.getShuttleId () == id) {
47:
48:
49: s.setAt (idU);
50:
51: s.setWantsTo (t1);
52:
53: return;
54: }
55: }
56: }
57: }

Figure 4. Recognizing object structure changes as collaboration diagrams

readToOne
Link

iterateTo
ManyLink

idU : IdentificationUnit

Switch::welcome (id : int)

idUnit

t1 :Exit
exit ["Station"]

wantsTo

at

this

announced

s: Shuttle

shuttleId == id
«create»

«create»

readQualified
Link

test
attribute

create
Link

create
Link

collaboration
Diagram

lookup
Part

consoleOutput

4 ANNOTATION-ENGINE SPECIFICA TION
In general, one annotation engine is responsible for the
detection of one cliché. The annotation engines work on an
abstract syntax graph constructed out of the code (As parser
we use JavaCC [JCC]). Each annotation engine is embedded
in an architecture which is mainly a combination of a
strategy and a chain of responsibility pattern [GHJV95].
Changed objects of the syntax graph are passed to a
broadcaster which distributes the objects to those engines
registered for the objects’ type. The main part to specify a
code cliché relies on a method implementation for the
corresponding annotation engine. The annotation methods
are illustrated using activity diagrams and collaboration
diagrams i.e. Fujaba story diagrams. Figure 5. shows
collaboration diagrams for the detection of link annotations.
The upper part of Figure 5. shows an activity diagram for the
annotation of areadToOneLink (cf. Figure 4 line 35). If an
assignment in a method body consists of a variable and a
method call, which is annotated as read access of a ’to-one’
association, then we annotate the variable and the method
with an ReadToOneLink node. The annotation of a
readQualifiedLink (cf. Figure 4 line 39) is similar to the
readToOneLink annotation. Only nodeas:ToOneAssoc in the
collaboration diagram on the top of Figure 5. has to be
replaced by as:ToQualifiedAssoc. Also the created

annotation rl:ReadToOneLink has to be replaced by a
variable of typeReadQualifiedLink. For the annotation of the
more complex IteratedToManyLink story-diagram we have to
check the read access over an iterator construct, cf. bottom of
Figure 5.. Basically, a first assignment has to retrieve an
iterator and a second assignment must use this iterator to
assign a value to the actual target variable. Therefore, the
lower part of theannotate_IterateToManyLink collaboration
diagram refers to line 44 and the upper part matches line 42.

To get an overview of the detectable code clichés, we
developed a domain model for the annotations of code
patterns. Figure 6. shows a cut out of the domain model (as
an UML class diagram) used for the round-trip facilities
supported by the Fujaba environment. This model shows the
annotations for the class diagram on the left and the story
diagram annotation parts on the right.

Using inheritance hierarchies allow some simplification in
the specification of the annotation engines. Without the
inheritance hierarchy collecting all look-up links of a method
and aggregate them with a LookupPart annotation, may
result in three annotation methods. I.e. three annotation
engines, one collecting ReadToOneLinks, another
ReadQualifiedLinks and an engine collecting
ReadToManyLinks.

Figure 5. Specification of different lookup link variants

mc:MethodCallv:Variable
exprvariable

rl:ReadToOneLink

annotate_ReadToOneLink()

a:Assignment

variable

«c
re

at
e»

«create» ra:ReadAccess

method

as:ToOneAssoc

assoc

m1:MethodCallv1:Variable
exprvariable

ml:IterateToManyLink

annotate_IterateToManyLink()

a1:Assignment

variable

«c
re

at
e»

«create» ia:IteratorAccess

method

m2:MethodCallv:IteratorVariable
exprvariable

a:Assignment

ra:ReadAccess

as:ToManyAssoc

assoc

method

iteratorVariable

m:Method

body

method
«create»

m:Method

body

method
«create»

Instead we can use one method (engine) using the superclass
LookupLink of the three read link classes. This reduces the
number of required methods. Figure 7. shows the annotation
for LookupPart containing a set ofLookupLink nodes
(depicted by two stacked boxes), e.g. ReadToOneLink,
ReadQualifiedLink and IterateToManyLink (cf. Figure 4). In
general in a collaboration diagram must not contain
additional lines like debug outputs (cf. Figure 4 line 37).
Such negative application conditions may be specified by
negative (crossed-out) nodes. Therefore, the crossed-out
node co:ConsoleOutput in Figure 7. assures that a lookup
part is only annotated if there is no output printed on the
console. For patterns on a high level of abstraction the

specification using pure collaboration diagrams is sufficient
enough. In general, every time a boolean answer is expected
and easily given, collaboration diagrams are sufficient.
Looking for clichés (code pattern) is a little bit more
difficult, because there are many more variants (e.g. syntax)
to express the same semantics. For example, some

developers prefer while-loops and other for-loops to solve
the same problem.

Such variants highly depend on the education and social
background or on affectations of a specific developer. Using
collaboration diagrams to specify clichés lead more or less to
one rule for one cliché. To deal with this problem, we relax
the exactness of cliché detection using fuzzy logic. This
allows us to downsize the cliché detection of certain
indicators that signal the existence or absence of certain
clichés with a certain confidence. For example in Figure4
the three variants (line 35, line 39 and line 44) of binding an
object to a variable annotated with a subclass ofLookupLink
results in three completely different specifications if we are
using collaboration diagrams, only (cf. Figure5).

ll:LookupLink lp:LookupPart

Figure 7. Detecting lookup parts in
collaboration diagrams

annotate_lookup_parts()

lookup
«create»

«create»

m:Method

method

co:ConsoleOutput
method

mc:MethodCallv:VariableNode

exprvariable

ll:LookupLink

Figure 8. Fuzzy pattern detecting lookups

annotate_LookupLink()

80

a:Assignment

variable

«c
re

at
e»

«create» a:ReadAccess

method

m:Method

body

m
et

ho
d

«c
re

at
e»

Figure 6. Domain model (cut-out)

Annotation SyntaxTreeNode

ClassDiagItems StoryDiagItems

PrivateAttribute AccessMethod

annotations
n

0..1

ReadAccess

Bean Property

WriteAccess

LookupLink

LookupPart

Collaboration
Diagram

Node

S
tr

in
g

ReadQualifiedLink

ReadToOneLink

IterateToManyLinkIteratorAccess

Assoc

ToOneAssoc

ToManyAssoc

QualifiedAssoc

This results from the fact, that the abstract syntax trees for
the three assignments is different. However, all three rules
employ the same indicator, the usage of an association look-
up method and an assignment. Thus, we may use only a
single rule detecting the usage of a read access method
within an assignment, cf. Figure 8.

Also the three rules have many structural similarities, which
makes them gluing candidates.ReadToOneLink and
ReadQualifiedLink only differ in the type of the variableas.
ReadToManyLink seems not to be so close to the other two,
e.g. there are more variables used. But, taking the inheritance
hierarchy into account and put the common parts into one
collaboration diagram forces uncertainty in the detection. To
handle the uncertainty coming up with the abstraction of the
three collaboration diagrams, we indicate the annotation
with a confidence (fuzzy-value) of 80. Collaboration
diagrams added with fuzzy-values, are calledfuzzy patterns.
Figure 8. shows the resulting fuzzy pattern for general
lookup-links, which is a combination of the three variants
ReadToOneLink, ReadQualifiedLink and ReadToManyLink
before. The fuzzy value of the pattern is put in a circle at the
top right corner of the variable, here the new annotation. A
fuzzy pattern fires if its premise is fulfilled which means in
this case, that all variables specified in the pattern must be
bound to an object of the abstract syntax graph with a fuzzy
value that is higher than the required value. The result value
for created annotations is the fuzzy-and of the fuzzy beliefs
of the found objects and the fuzzy value of the created
object.

If the pattern could be matched, the resulting annotation
which is created, gets as fuzzy value positive 80. This
reflects that due to our experience such a match is in 80
percent of all cases a correct match and the underlying
source code refers to a binding object situation. Having a
deeper look in the source code, we find that the fuzzy pattern
matches for line 35, line 39, and line 42 instead of line 44.
Line 42 is not exactly the line where the object is bound, this
is done in line 44, but such uncertainty could be expressed
through fuzzy-values and enables us to reduce the number of
patterns in the reengineering process.

In those cases, where it is necessary to decide whether or not
the automatic decision is correct, the reengineer has to be
asked. Typically, the reengineer has to look for nodes with a
fuzzy value minor than a defined limit and could overwrite
the value to zero or 100. The changes trigger a re-evaluation
of the fuzzy values of the depending nodes. Experiences
have shown that such a semi-automatic approach causes
better results than fully automatic approaches, because a user
or reengineer may interact with the tool and contribute her/
his knowledge.

5 DETECTION MECHANISM
For detecting clichés in source code we use the formalism of
Generic Fuzzy Reasoning Nets (GFRN) [JSZ97, Jah99]. The
GFRN formalism has initially been applied in the domain of
data reverse engineering. It facilitates the specification and
execution of analysis rules and processes and incorporates a
notion of uncertainty. In principle, a GFRN is a net of
predicates (oval shape) andimplications (represented as
boxes) which are connected by arcs (cf. Figure9). Arcs are
labelled with formal parameters that can be used to specify
constraints for implications. Negation in implications are
represented by arcs with black arrow heads. Each
implication has an associatedconfidence value (CV). Based
on the theory of possibilistic logic [DLP94], the semantics of
a CV is a lower bound of the necessity that the
corresponding implication is valid. Note, the CV associated
to the implications specify a measure for the degree of
certainty. According to typical fuzzy inference operators, an
overall valuation for each cliché is based on the difference
between the maximum positive CV and the maximum
negative CV.

Each specified fuzzy pattern, is canonically mapped to a
(part) GFRN. Afterwards, the (part) GFRN’s are merged, i.e.
predicates with equal names are glued, resulting in one or
more larger nets. Figure9 shows the GFRN after merging
the canonically mapped fuzzy pattern shown in Figure8 and
a fuzzy pattern constructed out of Figure 7.. Variables that
occur in the fuzzy pattern are mapped to predicates and are
rendered in grey colour while the annotation which
represents the goal (created annotations) of the analysis is
mapped to a so-calleddependent predicate LookupLink,

Figure 9. Generic Fuzzy Reasoning Net

MethodCall

LookupLink

Variable

i1:80
π1(a) = v

mc

v

m

i2:100

ll

ra

a

ll

co

π2(a) = mc
π3(a) = m
π1(mc) = ra
ll = {v,m}

Assignment

ReadAccess

Method

i2:30
π2(ll) = π2(co)

ConsoleOutput

LookupPart

ll

ll

ll
π2(ll) = m1m1

respectively LookupPart, rendered in black. The relations
between variables, i.e. links between variables are mapped to
constraints within the corresponding implication (π1(a) = v).
Therefore, the data represented by the variable in a fuzzy
pattern is mapped to formal parameters in the GFRN. For
example, variablea:Assignment is mapped to anAssignment
predicate and the data, i.e. the variable, the method, the
expression and also the assignment itself, is mapped to the
formal set parametera at the transition from predicate
Assignment to implicationi1.

For efficient fuzzy pattern analysis, we propose a two-step
process. First, the fragment graph is searched for a match for
all positive variables. Subsequently, our detection strategy
aims to extend each such match by a match for negative
(cancelled) nodes in a fuzzy pattern. The GFRN formalism
facilitates the specification of such a strategy by
distinguishing between so-calleddata-driven and goal-
driven predicates. Matches for data-driven predicates
(represented with solid grey outline) are searched at the
beginning of the analysis process (cf.MethodCall, or and
Variable in Figure9). Subsequently, the fragment graph is
searched for matching instances of goal-driven predicates
(with dashed grey outline). For example, theConsoleOutput
predicate is mapped to a goal-driven predicate and allows us
to specify that a console output results in a negative belief of
30 if it occurs within some lookup links of a method. This is
different to Figure 7., where a console output must not
appear between two lookup-links of a method. This can also
be expressed in a corresponding fuzzy pattern (not shown
here) and helps us to reduce the number of fuzzy patterns for
code clichés. We refer to [JH98] for details on the GFRN
inference engine.

6 RELATED WORK
The FUJABA environment and especially its code generators
are described in detail in [FNTZ98, KNNZ00]. The
underlying technique called story-driven-modelling starting
from the first phases of a software development process in
general is described in [JZ98] and specializations for
production control systems are presented in [NNSZ99].

[HN90] proposes a program analysis based on anEvent Base
and aPlan Base. First, rudimentary events are constructed
from source code. Plans are used to consume one or more
events and fire a new event which correspond to the plan’s
intention. Annotations visualize the event flow and plan
definition. In [PP94] a matching algorithm for syntactic
patterns based on a non-deterministic finite automaton is
presented. The non-determinism is used to provide dummy
variables for special pattern symbols representing syntactical
information like variables or function calls. Both [HN90]
and [PP94] need one definition for one implementation
variant, which lets the approaches fail for at least legacy
systems with unknown code-styles.

An automatic approach to extract semantics information
from source code is presented by Wills [Wil94]. Similar to
our collaboration diagrams, Wills uses graph rewrite rules to
specify implementation patterns in terms of so-called
program plans. Program plans are structured in a
hierarchical design library, i.e., abstract plans consist of

aggregations of several more simple plans. A specific library
stores program-plans for different domains, e.g., Wills
presents a library for sorting algorithms. Wills follows a
bottom-up strategy to detect plans which limits the practical
usage of the approach to source code about 1000 lines.
Quilici [Qui94] proposes an indexing technique and
combines top-down and bottom-up detection to overcome
this problem.

In [KSRP99], Keller et al. present a semi-automatic
approach to find design patterns [GHJV95] in source code.
Patterns are represented in UML notation [BRJ99], namely
in CDIF format. Matching algorithms are not automatically
generated but implemented by hand. [Rad99] employs graph
transformations (graph rewrite rules) to extract design
patterns automatically and to refacture parts of the source
code. Graph rewrite rules are similar to our collaboration
diagrams without fuzzyness, so the approach is restricted to
the restrictions discussed in section 4.

7 CONCLUSIONS AND FUTURE WORK
This paper introduces the round-trip facilities of the Fujaba
environment based on a material flow system specification.
The control software for the material flow system is
generated out of a Fujaba specification, adapted for speed or
debugging reasons and has to be reverse engineered for
major enhancements. Modifications in the source code
should effect in the (re)constructed diagrams. Especially the
paper presents a technique using annotations of the syntax
graph to gain semantics knowledge. For that reasons, first
static information in form of UML class-diagrams is
reengineered and afterwards behavioural diagrams namely
story-diagrams are recovered. We introduce a solution to
inspect Java source code by defining fuzzy patterns. Fuzzy
patterns are defined using collaboration diagrams. The huge
number of implementation variants for code clichés results
in a fuzzy pattern definition for each variant. To catch many
variants in one fuzzy pattern definition we introduce
fuzzyness into the definition. This fuzzyness let us deal with
uncertainty coming from the generalisation of several similar
code clichés. As detection mechanism for fuzzy patterns, we
introduced Generic Fuzzy Reasoning Nets and presented a
mapping of fuzzy pattern to GFRN’s.

We are currently working on a more handy syntax and a first
implementation of our approach. Therefore, we enhance the
Fujaba system, which already supports the instantiation of
design patterns and a rudimentary mechanism to extract
design patterns out of Java source code. We plan to enhance
our approach by inheritance and polymorphism like in
object-oriented languages. For example, a fuzzy pattern
detecting aggregations between classes could inherit from a
general association detecting fuzzy pattern. Because
typically, the difference between them is an explicit deletion
of the aggregated objects when using aggregations.

The current prototype of the Fujaba environment is available
as free software and comprises about 330000 lines of pure
Java code. Additional information and the current release
version of the Fujaba system can be downloaded via:

http://www.fujaba.de

REFERENCES
[BRJ99] G. Booch, J.Rumbaugh, and I.Jacobson.The Uni-

fied Modeling Language User Guide. Addison
Wesley, Reading, Massachusetts, USA, 1st edition,
1999.

[DLP94] D. Dubois, J.Lang, and H.Prade. Possibilistic lo-
gic. In D.M. Gabbay, C.J. Hogger, and J.A. Robin-
son, editors,Handbook of Logic in Artificial Intel-
ligence and Logic Programming, pages 439–503.
Clarendon Press, Oxford, 1994.

[FNTZ98] T. Fischer, J.Niere, L.Torunski, and A.Zündorf.
Story Diagrams: A new Graph Rewrite Language
based on the Unified Modeling Language. In
G. Engels and G.Rozenberg, editors,Proc. of the
6
th

 Int. Workshop on Theory and Application of
Graph Transformation (TAGT), Paderborn, Ger-
many. Springer Verlag, 1998.

[GHJV95]E. Gamma, R.Helm, R.Johnson, and J.Vlissides.
Design Patterns. Addison Wesley, Reading, MA,
1995.

[HN90] M. T. Hanrandi and J.Q. Ning. Knowledge Based
Program Analysis. InJournal IEEE Software, volu-
me 7, number 1, pages 74–81, January 1990.

[Jah99] J.H. Jahnke.Management of Uncertainty and In-
consistency in Database Reengineering Processes.
PhD thesis, University of Paderborn, Paderborn,
Germany, September 1999.

[JCC] SUN Microsystems.JavaCC, the SUN Java Com-
piler Compiler. Online at http://www.suntest.com/
JavaCC.

[JH98] J.H. Jahnke and M.Heitbreder. Design Recovery
of Legacy Database Applications based on Possibi-
listic Reasoning. InProceedings of 7th IEEE Intl.
Conf. of Fuzzy Systems (FUZZ’98). Anchorage,
USA.. IEEE Computer Society Press, May 1998.

[JSZ97] J.H. Jahnke, W.Schäfer, and A.Zündorf. Generic
Fuzzy Reasoning Nets as a basis for reverse engi-
neering relational database applications. InProc. of
European Software Engineering Conference
(ESEC/FSE), number 1302 in LNCS. Springer
Verlag, September 1997.

[JZ98] J.H. Jahnke and A.Zündorf. Specification and Im-
plementation of a Distributed Planning and Infor-
mation System for Courses based on Story Driven
Modeling. InProc. of 9

th
 International Workshop

on Software Specification and Design, Ise-Shima,
Japan, pages 77–86. IEEE Computer Society
Press, 1998.

[KNNZ00]H.J. Köhler, U.Nickel, J.Niere, and A.Zündorf.
Integrating UML Diagrams for Production Control
Systems. InProc. of the 22

th
 Int. Conf. on Software

Engineering (ICSE), Limerick, Irland. ACM Press,
2000.

[KSRP99]R.K. Keller, R.Schauer, S.Robitaille, and
P.Page. Pattern-Based Reverse-Engineering of
Design Components. InProc. of the 21

th
 Int. Conf.

on Software Engineering, Los Angeles, USA, pages
226–235. IEEE Computer Society Press, May
1999.

[NNSZ99]U. Nickel, J.Niere, W.Schäfer, and A.Zündorf.
Combining Statecharts and Collaboration Dia-
grams for the Development of Production Control
Systems. InProc. of Object-Oriented Modeling of
Embedded Realtime Systems workshop (OMER).
Technical Report 1999-01 University of the Ger-
man Armed Forces Munich, 1999.

[NNWZ00]U. Nickel, J.Niere, J.Wadsack, and A.Zündorf.
Roundtrip Engineering with FUJABA. InProc of
2
nd

 Workshop on Software-Reengineering (WSR),
Bad Honnef, Germany. Technical Report Universi-
ty of Karlsruhe, 2000.

[PP94] S.Paul and A.Prakash. A framework for source
code search using program patterns.IEEE Trans-
actions on Software Engineering, 20(6):463–475,
June 1994.

[Qui94] A. Quilici. A memory-based approach to recogni-
zing programming plans.Communications of the
ACM, 37(5):84–93, May 1994.

[Rad99] A. Radermacher. Support for Design Patterns th-
rough Graph Transformation Tools. InProc. of Int.
Workshop and Symposium on Applications Of
Graph Transformations With Industrial Relevance
(AGTIVE), Kerkrade, The Netherlands, LNCS.
Springer Verlag, 1999.

[Rha] ILogix. Rhapsody, the Rhapsody case tool. Online
at http://www.ilogix.com.

[Ros] Rational.Rose, the Rational Rose case tool. Online
at http://www.rational.com.

[Tog] Object International.TogetherJ, the TogetherJ
case tool. Online at http://www.togethersoft.com.

[Vin97] S.Vinoski. Corba: Integrating diverse applications
within distributed heterogeneous environments.
IEEE Communications Magazine, 14(2), February
1997.

[Wil94] L.M. Wills. Using Attributed Flow Graph Parsing
to Recognize Programs. InInt. Workshop on Graph
Grammars and Their Application to Computer Sci-
ence, Williamsburg, Virginia, November 1994.

