Recovering UML Diagrams from Java Code using Rtterns

Jorg Niere Jorg P Wadsack Albert Ziundorf
Department of Mathematics Department of Mathematics Department of Mathematics
and Computer Science and Computer Science and Computer Science
University of Raderborn University of Raderborn University of Riderborn
Warhurgerstral3e 100 WarlurgerstrafRe 100 WarkurgerstraRe 100
33098 Rderborn, German 33098 Rderborn, German 33098 Rderborn, German
nierej@uni-paderborn.de maroc@uni-paderborn.de zuendorf@uni-paderborn.de
ABSTRACT and collaboration diagrams. Outegution semantics alls

Recwering the static structure ofgacy source code e.g. as to use these UML bekeur diagrams as a visual
an UML class diagram is quite well understood. In contrastprogramming language for object-oriented applications. The
recovering high-leel behaiour diagrams from source code code generators of the Fujabavieonment translate such

is still an open issue. This paper proposes to use fuzaxecutable specifications into fully functionalvdaclasses
pattern detection techniques for the remy of UML including method bodies.

collaboration diagrams from source code. The approach
based on a knadedge base of basic datatypes and of generi
collection classes and of code clichés faraJaeans and of
fuzzy patterns for object structure look-up and modificatio
clichés. W handle the dgersity of isting code clichés by
organizing them in an object-oriented hiergrdlactorizing
important common properties and by relaxingaaness : A .
requirements for cliché detection with the help of fuzzym'.d%le’vare layer or a distribtion layer lile CORBA
theory We handle the runtime fefts for cliché detection [Ving7].

using a sophisticated inference mechanism based on geneTie deal with such code modifications, the Fujaba
fuzzy reasoning nets (GFR®). The vork is part of the environment preides reerse engineering support that
FUJABA case tool aiming to support round-trip engineeringanalyses Ja source code and tries to create the
for UML and Jaa. corresponding UML class and befaur diagrams, cf.
[NNWZO00]. So fr, the reerse engineering capabilities of
Fujaba are limited to round-trip engineering support. This
means, Fujaba is merely able teerse engineer code it has
generated itself or that it has been written as ifoitilg have

1 INTRODUCTION been generated.

Reverse engineering aims to prde program descriptions . . : .
on higher leels of abstractions. Such an abstraetlieould Revers_e engineering .Of arbitrarygery code and third party
%ode is a challenging problem. Most CASE tools are

€.g. be a program description using UML. diagrams. Thesrestricted to the analysis of static program structures, i.e
program descriptionstilitate the understanding of program : . y : prog P
reverse engineering of class diagrams. Bugnefor class

structures and program befur. State-of-the-art CASE - o Fine “Correct redary of (structural) associations
tools like Rational Rose [Ros], ofetherd [dg], and 9 . oery
between classes is nowisl.

Rhapsody [Rha] prade only recoery functions for class
diagrams using maeks in the code. NotahlyRhapsody To overcome these limitations and to be able to deal with

supports the recery of state-charts. The ra@y of high- legagy code constructs, this paper proposes the use of fuzzy
level behaiour descriptions for Igagy object-oriented reasoning technologies, i.e. generic fuzzy reasoning nets, cf.
programs is still an open issue. [Jah99]. In this paper we focus on the analysis of code that
deals with object structure modificationse\tart with a

The work described in this paper is part of the Fujabak ;) .
; : : : . nowledge base about the semantics of pre-defined container
project. The Fujaba project aims tovep a round-trip classes gand their access operations. gMalyse attrilte

engineering CASE tool for UML. In our preus work,

[FNTZ98, JZ98, NNSZ99, KNNZ00], we proposed an declarations to identify (sets of) basic references hold by
executior; semaﬁtics for UML statecha;ts vityi diagrams certain classes. Methods modifying these basic references
' " are classified as access methods with certagrede of

confidence. If access methods are detected witticient
confidence, their use can be analysed. Specific sequences of
access method usages may be turned into collaboration
diagrams that describe the look-up of certain object patterns
and the modifications of such patterns and the collaboration
messages send between the participating objects. The

?ﬁeoretically with Fujaba no manual coding is necessary

ary more. Practically the generated code is frequently
odified during deligging. The code may be nged with

he contrilutions of other deelopers e.g. via a configuration

management system. Some system parts may be added by

other code generators, e.g. a GUlilder or a database

Keywords
UML, Java, fuzzy logic, reerse-engineering, pattern
recognition, round-trip engineering

combination of actity diagrams specifying the controlflo shuttle should be send. If the switch has to change its
and embedded collaboration diagrams in a certainigcis direction, it actvates the stopper in order to let shuttlestw
called story-diagrams. Those story-diagrams eseas the One has to assure, that no shuttle is in the switching area,
behaioural specification for a sofmve system and are when the switch dvie is actated, because otherwise the
linked to method declarations in class diagrams. switch drive could be damagedoFthat reason, the switch

The following Section 2 introduces a track based materiar as a pass obsewat eachdt, which reports eery shuttle

. . . eaving the area. Note, that we ygaa one-wy driving
transportation system as runningample. In Section 3 the direction, so that we ha one entry and twexits, which

reconstruction of class diagrams and story-diagrams I$eans that oun@mple shws a *branching switch °
described using annotations. The specification of code '

clichés is introduced in Section 4 and the felloy Section 5 We hare developed the control sofave for such switches
introduces the correspondingeeution formalism, namely using our Fujaba eironment. Then, we defkred our
generic fuzzy reasoning nets. Section 6 and Section 7 discussftware to the mechanical engineers setting up tlysipél
related vork and present futureosk. transportation system. Some weeks later weed the

2 RUNNING EXAMPLE: situation, that the mechanical engineers modified the

SWITCH CONTR OL SOFTWARE software significantly for dalgging and optimization

In this section, we introduce the switch control safvofa cooone: Thus, weanted to be able to reconstruct UML
' . : . class and bek#ur diagrams from the changedvdacode
track based material transportation system as runni

: - NINGat reflect the current control sofive.
example. This gample stems from the joint research project

ISILEIT funded by the german research foundation (DFG)3 CLASS- AND STORY-DIAGRAM
Within ISILEIT we collaborate with our mechanical and RECONSTRUCTION

electrical engineering department to set-up an agent bas&#cwering class and behaur diagrams from Jda code is
production control system. Thaiilding blocks of such a divided into two tasks. First, the static information, the class
production control system are fdifent, self-acting and diagrams, will be reconstructed and in a second task, the
computer controlled resourcesdile.g. switches, shuttles, behaiour diagrams (here story-diagrams) will be
machines, or robots. Shuttles veoon rails and transport recognized.

goods betweenarious production places. Each production 1. puplic class Switch extends Track {

place can be reached using switches in thevagilsystem. 2

Shuttles announce themsedvat the switches if tiiavant to 3: int shuttleld:

visit the corresponding production place. The switch contrgl 4.

software leeps track_ of the tgets of the dferent shuttles 5. Stopper stopper = new Stopper ():

and operates the switch accordingly 6

Figure 1. shas the structure of a switch as part of a) 7: OrderedSetannounced = new OrderedSet ();
production control system, which we specified by eyiplp 8 . o

Fujaba. The switch has an agtoe. the switch dvie, which 9: void welcome (intid) {...}

changes its direction. Further it has some sensors, which 10- - _
obsere the emironment and a Local Operating Neirk- 11: } /I class Switch ZAN

node, which is connected to a communication petwin

. . . L announced -
our xample, the identification unit detects an \ang OrderedSet Switch

shuttle and reports the shuttléd to the switch control node.)
. shuttleld : Integer
Now, the control softare decides in which direction the stobper
Stopper welcome (id : Integer) :
O Control Node Void

icat huttl . . .
Communication Bus Rhyie Figure 2. Rudimentary class diagram recovery

-A—>vl>

H Figure 2. shars a cut-out of the static elements of theaJa
D] W code of classSwitch. From this code fragments a
rudimentary class diagram reewy approach could

l> Driving Direction
= Signal Direction

| U Identification Unit

ST Stopper
SD switch Drive
P O Pass Observer

Process-
Interface

Application Software

reconstruct the class diagram wsimobelav the Jaa code.
Classes become classes. Atités of basic types i nt or
bool ean become class attuibes. Method declarations
become methods of the corresponding UML classes.
Inheritance in Ja is directly mapped to inheritance
relations in the diagram.

station

»Switch*
We assume, that the class diagram vegp mechanism has
already knwledge about all basic & types. Thus, it may
identify typesStopper andOrderedSet as user defined types.

Accordingly, the corresponding Va attritutes are

Figure 1. Switch structure interpreted as references in the class diagram.

15:
16:
17:

12: public class Shuttle private attr
130 Attribute
14: private int shuttleld;

read

18: public int getShuttleld () { : Access
19: return this.shuttleld: attribute
20: '} Return read

bean
Property

21:
22:
23: public void setShuttleld (int id) {

24: this.shuttleld = id; param

25: } ~ Type

26: attribute
Assignmen

27 ..
28: } // class Shuttle
/I naive recovery of bean properties /I smart recovery of bean properties
Switch Switch
- shuttleld : int + shuttleld : Integer
+ getShuttleld () : int

+ setShuttleld (id : int) : void
Figure 3. Dealing with bean properties

However, class OrderedSet is a pre-defined generic implemented using pairs of pointers. These pointers are
container class from thexvdaFoundation Class (JFC) library encapsulated with appropriate read and write access
Equipping our reconstruction mechanism with thismethods. The write access methods guarantee the
additional knavledge, it could turn the announced referenceconsisteng of the pointer pairs by calling each other
from Switch to OrderedSet into a to-mawp reference to class mutually For to-one associations simple attriés and set-
Object (the basic class of all classes ina)aln Jaa, we ice and get-methods are usedorRo-maly associations we
the problem that generic container classes do notiggo employ generic container classes and methods for iterating
information about the types of the contained entities. Tthrough the set of neighbours, adding neighbours, and
derive such information, our regery mechanism needs to removing neighbours.

know the semantics of the access methods of contain
classes, e.g. methedd inserts elements into the container
This allavs us to devie the entry type for containers from
the usages of the correspondingidd method.

%rujaba emplgs a flxible cliché detection mechanism the
so-called annotation engines. The annotation engines enrich
the abstract syntax tree of a parsed program with so-called
annotations [HN90]. Annotations are mark for detected
Recognizing classes and class membersaiidy fsimple. occurrences of code clichés. In Figure 3 such annotations are
Analysing method bodies is a more challenging task. Onshowvn as w®als. Annotations enrich the semantics
approach to res@r the semantics of method bodies is theinformation of abstract syntax trees and wll@.g. to
detection of so-called code clichés, cf.ifd]. In Java, very simplify class diagrams. Morger, such annotations assign a
common code clichés are bean properties. A bean propertydsrtain semantics to certain methods or code fragments. This
an attritute with appropriate read and write access methodsemantics may be used for further analysis of other method
cf. Figure 3. The read (write) method of a bean propertpodies.

must hae the same name as the corresponding atriplus

a 'get’ ('set’) prefix. In addition, the write method mustvéa
exactly one parameter with the same type as th
corresponding attrilde. Finally within the body of the write
method the parameterale must be assigned to the
corresponding attrite. Once an attritie and its access
methods hee been classified as a bean propdtig class
diagram receery mechanism may simplify the
corresponding class, accordingly

Consider for gample Figure 4. Line 35 empl® method

et 1 dUni t. Let us assume that methgdt | dUni t has

een annotated as the read access method for an association
between class Swi tch and class
I dentificationUnit. This allavs us to interpret line
35 as a link look-up operation. In a collaboration diagram
such a link look-up operation is sho as a line labelled with
the corresponding association name. Such a line connects
two boes representing the source andgéeanariable. In our
In our approach, we use similar code clichés to implemerexample these are th@nablesthis andidU, respectiely, cf.
bi-directional associations. Bi-directional associations aré&igure 4. Similarlythe knevledge about access methods

29: class Switch extends Track {
30: ..
31: public void welcome (int id) {

32: IdentificationUnit idU; Shuttle s; Exit t1; rgadToOn
33: Iterator iter; Link

34:

35: idU = this.getldUnit (); consoleOutput
36: /

37: System.out.printin("debdg point 1"); readQualified
38: _ _ _ Link

39: t1 = this.getExit ("Station");

40: if (t1 == null) return; // < exit

41:

42: iter = this.iteratorOfAnnounced (); terateT
43: while (iter.nasNext () { lterate 1o
44: s = (Shuttle) iter.getNext (); ManyLink
45:

46: if (s.getShuttleld () == id) { test
47: attribute

48:; \

49: s.setAt (idU); collaboration
50: Diagram

51: s.setWantsTo (t1);

52:

53: return;

54:

}
55: } Switch::welcome (id : int)
56: } I \

57:} _]
this exit ["Station"] t1 ‘Exit
an,
. . ,700/70
idUnit S
idU : IdentificationUnit s: Shuttle
shuttleld == id

Figure 4. Recognizing object structure changes as collaboration diagrams

may allav to interpret line 39 and 40 as look-up of asituations, we embed detected collaboration diagrams into
qualified association with cardinaliy..1. Lines 42 to 44 actvity diagrams. The actity diagram part shes the top-
shov a typical cliché for the look-up of a to-man level control flav and tet actvities for unrecognized code.
association. In a collaboration diagram such look-ups arBecognized code is turned into collaboration diagram
shawn as lines between appropriate objects, cf. the bottom @lctivities.

Figure 4. Finally our annotation kne@ledge allevs us to
infer, that line 49 creates amnlink between object andidu
and line 51 creates wantsTo link from s to t1. In the
collaboration diagram we sholink creation using gse
colour and thecreate» stereotype.

So far, our annotation engines are able to deal with code that
strictly conforms to the Fujaba code generation concepts.
Due to our eperience, lgacy and third party code
frequently contains similar code fragments.weeer, the
classification of access methods and especially the detection
Thus, the detection of dabean property clichés alls usto of collaboration diagram operations isry challenging. &r
assign a dedicated semantics to read- and write-accessample, there are numerousys to implement a to-mgn
methods. This kneledge allevs us to analyse the usage of association. Accordinglythere are ery different ways to
such access methods and to wetcacollaboration diagrams enumerate all neighbours of avem object. Similarlythere
from such code. Note, in more compktuations, a method are \arious coding clichés for test operations and for dealing
body may contain seral code fragments that correspond towith test results. The mesection describes toclichés can
collaboration diagrams. Such code fragments may bedmix be specified using the Fujabaveanment.

with other code (Figure 4 line 37) and control structures that

are not cwered by such an analysiso Teal with such

annotate_ReadToOneLinl‘-\x
/ variable expr \

v:Variable a:Assignment mc:MethodCall
|body | method
m:Method ra:ReadAccess %
| assoc

K as:ToOneAssoc /
annotate_lterateToManyLink'—N

variable - expr
v:lteratorVariable a:Assignment m2:MethodCall

| method

ra:ReadAccess

|assoc
as:ToManyAssoc N
iteratorVariable @
variable - expr
v1:Variable al:Assignment m1:MethodCall
body |method
m:Method ia:lteratorAccess ||

\ /

Figure 5. Specification of different lookup link variants

4 ANNOTATION-ENGINE SPECIFICA TION annotation rl:ReadToOneLink has to be replaced by a
In general, one annotation engine is responsible for theariable of typeReadQualifiedLink. For the annotation of the
detection of one cliché. The annotation engineskvon an more complg IteratedToManyLink story-diagram we he to
abstract syntax graph constructed out of the code (As parsehneck the read accesgo an iterator construct, cf. bottom of
we use JaCC [JCC]). Each annotation engine is embeddedFigure 5.. Basicallya first assignment has to reteean

in an architecture which is mainly a combination of aiterator and a second assignment must use this iterator to
stratggy and a chain of responsibility pattern [GHJV95]. assign a alue to the actual tget \ariable. Therefore, the
Changed objects of the syntax graph are passed tol@ver part of theannotate IterateToManyLink collaboration
broadcaster which distuibes the objects to those enginesdiagram refers to line 44 and the upper part matches line 42.
registered for the objects’ type. The main part to speci . C

c?)gde cliché relies (J)n a %zthod implemgntation F:‘or f%/hzro get an werview of the detectable code _cllches, we
corresponding annotation engine. The annotation methodiévéloped a domain model for the annotations of code
are illustrated using aetty diagrams and collaboration patterns. Figure 6. st a cut out of the domam_m_odgl (as
diagrams i.e. Fujaba story diagrams. Figure 5.wsho 20 UML class diagram) used for the round-tréeifities
collaboration diagrams for the detection of link annotationstc‘Upport.ed b% thehFUJellba\,eLpnment. Th'shm?dfel slv;s :]he

The upper part of Figure 5. she an actiity diagram for the gnnotatmns or the class 'aﬁram r?n the leit and the story
annotation of aeadToOneLink (cf. Figure 4 line 35). If an lagram annotation parts on the right.

assignment in a method body consists ofadable and a Using inheritance hierarchies allosome simplification in
method call, which is annotated as read accesstof@eé’ the specification of the annotation enginesithdit the
association, then we annotate traiable and the method inheritance hierarghcollecting all look-up links of a method
with an ReadToOneLink node. The annotation of a and aggrgate them with a Lookuglt annotation, may
readQualifiedLink (cf. Figure 4 line 39) is similar to the result in three annotation methods. l.e. three annotation
readToOneLink annotation. Only nodas:ToOneAssoc inthe engines, one collecting ReadToOneLinks, another
collaboration diagram on the top of Figure 5. has to b@&eadQualifiedLinks and an engine collecting
replaced by as:ToQualifiedAssoc. Also the created ReadToManyLinks.

Annotation

| SyntaxTreeNode |

I |
ClassDiagltems StoryDiagltems

VAN Lll

Collaboration | | LookupLink
Diagram

| ReadToOneLIink |

| Assoc ||PrivateAttribute ||AccessMeth041
/\

| ToOneAssoc| | WriteAccess |

QualifiedAssoc ReadAccess

Bean Property

Figure 6. Domain model (cut-out)

| ReadQualifiedLink |

| ToManyAssoc |

|Iterat0rAccess| |IterateToManyLink |

Instead we can use one method (engine) using the superclaeselopers prefer while-loops and other-foops to sole
LookupLink of the three read link classes. This reduces théhe same problem.

number of required methods. Figure 7.v8hdhe annotation
for LookupPart containing a set ofLookupLink nodes
(depicted by tw stacled boxs), e.g.ReadToOnelLink,
ReadQualifiedLink and IterateToManyLink (cf. Figure 4). In
general in a collaboration diagram must not contai
additional lines like delug outputs (cf. Figure 4 line 37).
Such negative application conditions may be specified by
negative (crossed-out) nodes. Therefore, the crossed-o
node co:ConsoleOutput in Figure 7. assures that a lookup
part is only annotated if there is no output printed on th
console. Br patterns on a high Vel of abstraction the

Such \ariants highly depend on the education and social
background or on #dctations of a specific deloper Using
collaboration diagrams to specify clichés lead more or less to
ne rule for one cliché.olfdeal with this problem, we relax
he actness of cliché detection using fuzzy logic. This
allows us to dwnsize the cliché detection of certain
indicators that signal thexistence or absence of certain
Clichés with a certain confidenceorFexample in Figuret
éhe three griants (line 35, line 39 and line 44) of binding an
Object to a ariable annotated with a subclasd.obkupLink
results in three completely t&fent specifications if we are

"\annotate_lookup_partso using collaboration diagrams, only (cf. Figie
' N annotate_LookupLink()
ll:LookupLink / \
Assi
method a:Assignment
m:Method method o Co m variable body expr
NS @ v:VariableNode | |m:Method mc:MethodCall
Figure 7. Detecting lookup parts in method
collaboration diagrams - ReadAcCoss
specification using pure collaboration diagrams isicgant K /
enough. In generalyery time a boolean answer ispected
and easily gien, collaboration diagrams are fziént. g@)

Looking for clichés (code pattern) is a little bit more
difficult, because there are nyamore \ariants (e.g. syntax)
to epress the same semanticsor Fexample, some

Figure 8. Fuzzy pattern detecting lookups

mc i1:80 a .
MethodCall jJ————= <+———(Assignment
m(a) = v
v TH(a) = mc
i = ra
Variable ———l>n3((a))m /" ReadAccess
m(me) =ra
m
Method / Il = {v,m}

coy ConsoleOutput

LookupPart

Figure 9. Generic Fuzzy Reasoning Net

i2:30
T5(Il) = T,(co)

i2:100
m1 = () = m1

This results from theakt, that the abstract syntax trees forin those cases, where it is necessary to decide whether or not
the three assignments isfdiient. Havever, all three rules the automatic decision is correct, the reengineer has to be
employ the same indicatpthe usage of an association look- asled. Typically, the reengineer has to look for nodes with a
up method and an assignment. Thus, we may use onlyfazzy value minor than a defined limit and couldeonrite
single rule detecting the usage of a read access methttk \alue to zero or 100. The changes trigger avedyation
within an assignment, cf. Figure 8. of the fuzzy walues of the depending nodes. Experiences
have shevn that such a semi-automatic approach causes
better results than fully automatic approaches, because a user
or reengineer may interact with the tool and contgther/

his knavledge.

Also the three rules ke mary structural similarities, which
makes them gluing candidatesReadToOneLink and
ReadQualifiedLink only differ in the type of theariableas.
ReadToManyLink seems not to be so close to the other, tw
e.g. there are morakiables used. But, taking the inheritance5 DETECTION MECHANISM

hierarcly into account and put the common parts into ond-or detecting clichés in source code we use the formalism of
collaboration diagram forces uncertainty in the detection. TGeneric Fuzzy Reasoning Né&FRN) [JSZ97, Jah99]. The
handle the uncertainty coming up with the abstraction of th&FRN formalism has initially been applied in the domain of
three collaboration diagrams, we indicate the annotatiodata reerse engineering. l&atilitates the specification and
with a confidence (fuzzyalue) of 80. Collaboration execution of analysis rules and processes and incorporates a
diagrams added with fuzzyalues, are calleflizzy patterns notion of uncertainty In principle, a GFRN is a net of
Figure 8. shars the resulting fuzzy pattern for general predicates (oval shape) andmplications (represented as
lookup-links, which is a combination of the threarignts boxes) which are connected by arcs (cf. FigireArcs are
ReadToOneLink, ReadQualifiedLink and ReadToManyLink labelled with formal parameters that can be used to specify
before. The fuzzyalue of the pattern is put in a circle at the constraints for implications. Mation in implications are

top right corner of theariable, here the meannotation. A represented by arcs with black awoheads. Each
fuzzy pattern fires if its premise is fulfilled which means inimplication has an associatednfidence valuéCV). Based

this case, that allariables specified in the pattern must beon the theory of possibilistic logic [DLP94], the semantics of
bound to an object of the abstract syntax graph with a fuzzg CV is a lever bound of the necessity that the
value that is higher than the requireddue. The resultalue corresponding implication isalid. Note, the CV associated
for created annotations is the fuzzy-and of the fuzzy beliefo the implications specify a measure for theyrde of

of the found objects and the fuzzwlwe of the created certainty According to typical fuzzy inference operators, an
object. overall wvaluation for each cliché is based on thdedénce
between the maximum pos# CV and the maximum

If the pattern could be matched, the resulting annmatioﬂegative cV

which is created, gets as fuzzalwe positie 80. This
reflects that due to ourxpgerience such a match is in 80 Each specified fuzzy pattern, is canonically mapped to a
percent of all cases a correct match and the underlyingart) GFRN. Aftervards, the (part) GFRN'are maged, i.e.
source code refers to a binding object situatiorvitpa predicates with equal names are glued, resulting in one or
deeper look in the source code, we find that the fuzzy pattemore lager nets. Figur® shavs the GFRN after mging
matches for line 35, line 39, and line 42 instead of line 44the canonically mapped fuzzy patternwhan Figure8 and
Line 42 is not ractly the line where the object is bound, thisa fuzzy pattern constructed out of Figure 7ariables that
is done in line 44, it such uncertainty could bepressed occur in the fuzzy pattern are mapped to predicates and are
through fuzzy-alues and enables us to reduce the number oEndered in gre colour while the annotation which
patterns in the reengineering process. represents the goal (created annotations) of the analysis is
mapped to a so-calledependentpredicate LookupLink,

respectiely LookupPart, rendered in black. The relations aggr@ations of seeral more simple plans. A specific library
between ariables, i.e. links betweemnables are mapped to stores program-plans for thfent domains, e.g., W
constraints within the corresponding implication(&) = v). presents a library for sorting algorithms.ill¢/ follows a

Therefore, the data represented by thdable in a fuzzy bottom-up stragy to detect plans which limits the practical
pattern is mapped to formal parameters in the GFRI. F usage of the approach to source code about 1000 lines.
example, ariablea:Assignment is mapped to aAssignment ~ Quilici [Qui94] proposes an indeng technique and
predicate and the data, i.e. tharigble, the method, the combines top-don and bottom-up detection to/&rcome
expression and also the assignment itself, is mapped to tfiis problem.

formal set parametea at the transition from predicate |, [KSRpgg], Keller et al. present a semi-automatic
Assignment to implicationil. approach to find design patterns [GHJV95] in source code.

For eficient fuzzy pattern analysis, we propose a-step Patterns are represented in UML notation [BRJ99], namely
process. First, the fragment graph is searched for a match fiér CDIF format. Matching algorithms are not automatically
all positive \ariables. Subsequentlpur detection stragy ~ generated tit implemented by hand. [Rad99] emysagraph
aims to a&tend each such match by a match fogatge transformations (graph weite rules) to gtract design
(cancelled) nodes in a fuzzy pattern. The GFRN formalisnpatterns automatically and to aeture parts of the source
facilitates the specification of such a siggte by code. Graph rerite rules are similar to our collaboration
distinguishing between so-calledata-driven and goal- ~ diagrams without fuzzyness, so the approach is restricted to
driven predicates. Matches for datasdn predicates the restrictions discussed in section 4.

(represented with soIid.g;eoutIine) are searched at the 7 ~oNCLUSIONS AND FUTURE WORK

beginning of the analysis process (8dethodCall, or and 1ig paner introduces the round-triaciiities of the Fujaba
Variable in Figure9). Subsequentlythe fragment graph is onironment based on a materialviisystem specification.
searched for matching instances of goalefti predicates e control softare for the material filo system is
(with dashed greoutline). for example, theConsoleOutput ganerated out of a Fujaba specification, adapted for speed or
predicate is mapped to a goalvén predicate and alls us e g9ing reasons and has to beerse engineered for

to specify that a console output results in gattiee belief of 55" ephancements. Modifications in the source code

30 if it occurs within some lookup links of a method. This isgh51d efect in the (re)constructed diagrams. Especially the

different to Figure 7., where a console output must n%a ; ; ;
y ; : per presents a technique using annotations of the syntax
appear between twookup-links of a method. This can also graph to gin semantics kndedge. fr that reasons, first

be epressed in a corresponding fuzzy pattern (nowsho static _information in form of UML class-diagrams is

here) and helps us to reduce the number of fuzzy patterns fQfo i ; ;
Lo : gineered and afteawds behaoural diagrams namely
code clichés. W refer to [JH98] for details on the GFRN story-diagrams are regered. V¢ introduce a solution to

inference engine. inspect Jea source code by defining fuzzy patterns. Fuzzy
6 RELATED WORK patterns are defined using collaboration diagrams. The huge

The FUABA environment and especially its code generatoriumber of implementationaviants for code cliches results
are described in detail in [FNTZ98, KNNZ00]. The in a fuzzy pattern definition for eaclnant. D catch man
underlying technique called story-gen-modelling starting Vvariants in one fuzzy pattern definition we introduce
from the first phases of a sofive deelopment process in fuzzyness into the definition. This fuzzyness let us deal with
general is described in [JZ98] and specializations fokincertainty coming from the generalisation ofesal similar

production control systems are presented in [NNSZ99]. code clichés. As detection mechanism for fuzzy patterns, we
. introduced Generic Fuzzy Reasoning Nets and presented a
[HNOOQ] proposes a program analysis based ofweamt Base mapping of fuzzy pattern to GFR\’

and aPlan Base First, rudimentary \ents are constructed

from source code. Plans are used to consume one or mofé are currently wrking on a more handy syntax and a first
events and fire a me event which correspond to the plan’ implementation of our approach. Therefore, we enhance the
intention. Annotations visualize thevent flov and plan Fujaba system, which already supports the instantiation of
definition. In [PP94] a matching algorithm for syntactic design patterns and a rudimentary mechanismxtoac
patterns based on a non-deterministic finite automaton Resign patterns out oflasource code. &vplan to enhance
presented. The non-determinism is used taigeodummy our approach by inheritance and polymorphisie lik
variables for special pattern symbols representing syntactic@bject-oriented languages.of-example, a fuzzy pattern
information like variables or function calls. Both [HN90] detecting agggations between classes could inherit from a
and [PP94] need one definition for one implementatiorgeneral association detecting fuzzy pattern. Because
variant, which lets the approachesl ffor at least lgacy typically, the diference between them is axpécit deletion
systems with unknen code-styles. of the aggrgated objects when using aggaéons.

An automatic approach toxtact semantics information The current prototype of the Fujabavieanment is sailable
from source code is presented bylIsV[Wil94]. Similar to as free softare and comprises about 3300 lines of pure
our collaboration diagrams, i'¢ uses graph werite rules to Java code. Additional information and the current release
specify implementation patterns in terms of so-calledversion of the Fujaba system can bevdimaded via:

program plans _Program plans are structured in a http: // waw. f uj aba. de

hierarchical design librayyi.e., abstract plans consist of

REFERENCES

[BRJ99] G.Booch, JRumbaugh, and JacobsonThe Uni-

fied Modeling Language User Guid&ddison

Wesley, Reading, Massachusetts, USAgdlition,

1999.

[DLP94] D. Dubois, JLang, and HPrade. Possibilistic lo-

[KSRP99R.K. Keller, R.Schauer, SRobitaille, and

P.Page. Pattern-Based Reverse-Epgineering of
Design Components. Proc. of the 21" Int. Conf.
on Software Engineering, Los Angeles, Ugges
226-235. IEEE Computer Society Press, May
1999.

gic. In D.M. Gabbay, C.J. Hogger, and J.A. Robin-[NNSZ99]U. Nickel, J.Niere, W.Schéfer, and AZundorf.

son, editorsHandbook of Logic in Atrtificial Intel-
ligence and Logic Programmingages 439-503.

Clarendon Press, Oxford, 1994,

[FNTZ98] T. Fischer, JNiere, L.Torunski, and AZindorf.
Story Diagrams: A new Graph Rewrite Language
based on the Unified Modeling Language. In
G, Engels and G.Rozenberg, editdPsoc. of the

th

6 Int. Workshop on Theory and Application of
Graph Transformation (TAGT), Paderborn, Ger-

many Springer Verlag, 1998.

[GHJIV95] E. Gamma, RHelm, R.Johnson, and ¥lissides.
Design PatternsAddison Wesley, Reading, MA,

1995.

[HN90] M. T. Hanrandi and 1. Ning. Knowledge Based
Program Analysis. Idournal IEEE Software, volu-
me 7, number,Jpages 74-81, January 1990.
[Jah99] J.H. JahnkeManagement of Uncertainty and In-
consistency in Database Reengineering Processes
PhD thesis, University of Paderborn, Paderborn, [Rad99]

Germany, September 1999.

[JCC] SUN MicrosystemsJavaCC, the SUN Java Com-
piler Compiler. Online at http://www.suntest.com/

JavaCC

[JH98] J.H. Jahnke and MHeitbreder. Design Recovery
of Legacy Database Applications based on PossibiRRha]
listic Reasoning. IfProceedings of 7th IEEE Intl.
Conf. of Fuzzy Systems (FUZZ'98). Anchorage,
USA. IEEE Computer Society Press, May 1998.

[JSZ97] J.H. Jahnke, WSchéfer, and AZindorf. Generic
Fuzzy Reasoning Nets as a basis for reverse engi-
neering relational database application®roc. of
European Software Engineering Conference
(ESEC/FSE)number 1302 in LNCS. Springer

Verlag, September 1997.

[JZ298] J.H. Jahnke and Aundorf. Specification and Im-
plementation of a Distributed Planning and Infor-
mation System for Cowses based on Story Driven
Modeling. InProc. ofE—Il International Workshop
on Software Specification and Design, Ise-Shima,
Japan pages 77-86. IEEE Computer Society

Press, 1998.

[KNNZOO]H.J. Kbéhler, UNickel, J.Niere, and AZundorf.
Integrating UML Diagrams for Production Control
Systems. IProc. of the 22" Int. Conf. on Software
Engineering (ICSE), Limerick, Irfland\CM Press,

2000.

Combining Statecharts and Collaboration Dia-
grams for the Development of Production Control
Systems. IProc. of Object-Oriented Modeling of
Embedded Realtime Systems workshop (OMER)
Technical Report 1999-01 University of the Ger-
man Armed Forces Munich, 1999.

[NNWZ00]U. Nickel, J.Niere, JWadsack, and AZindorf.

Roamdtrip Engineering with FUJABA. IAroc of

N Workshop on Software-Reengineering (WSR),
Bad Honnef, Germanyechnical Report Universi-
ty of Karlsruhe, 2000.

S.Paul and APrakash. A framework for source
code search using program pattetBEE Trans-
actions on Software Engineerin20(6):463—-475,
June 1994.

A. Quilici. A memory-based approach to recogni-
zing programming plan€ommunications of the
ACM, 37(5):84-93, May 1994.

A. Radermacher. Support for Design Patterns th-
rough Graph Transformation Tools.Rnoc. of Int.
Workshop and Symposium on Applications Of
Graph Transformations With Industrial Relevance
(AGTIVE), Kerkrade, The NetherlandsNCS.
Springer Verlag, 1999.

ILogix. Rhapsody, the Rhapsody case tool. Online
at http://www.ilogix.com

Rational Rose, the Rational Rose case tool. Online
at http://www.rational.com

Object InternationalT ogetherJ, the TogetherJ
case tool. Online at http://www.togethersoft.com

S.Vinoski. Corba: Integrating diverse applications
within distributed heterogeneous environments.
IEEE Communications Magazin®4(2), February
1997.

L.M. Wills. Using Attributed Flow Graph Parsing
to Recognize Programs. lim. Workshop on Graph
Grammars and Their Application to Computer Sci-
ence Williamsburg, Virginia, November 1994.

