
Thinking in Object Structures:
Teaching Modelling in Secondary Schools

Carsten Schulte

Didactics of Computer Science
Department of Mathematics and Computer Science

University of Paderborn
Fürstenallee 11

D-33102 Paderborn, Germany
email: carsten@upb.de

Jörg Niere

Software Engineering Group
Department of Mathematics and Computer Science

University of Paderborn
Warburger Straße 100

D-33098 Paderborn, Germany
email: nierej@upb.de

Abstract: We present a teaching strategy for the introduction of object-oriented concepts in secondary
schools, whereby we focus on active learning of the basic concepts. The concept uses a learning sequence
that fosters activities of the learners. Students start to explore a given object-oriented model on analysis
and design level. Guidance is continuously reduced towards a project phase in which the students model
and imple ment a small object-oriented application. Our approach uses a graphical language focusing on
object structures. We introduce methods as a means to change the object structure of an application and
use tools that support the graphical design and specification of executable object-oriented applications.
We also present and discuss first evaluation results from two local secondary schools starting their com-
puter science education using our concepts.

1. Introduction
Our experiences in teaching students object-oriented concepts and models within their first two semesters are that many
students, who went through a traditional computer science education starting with algorithms, then recursive functions
and then pointer arithmetic, use the object-oriented technology but do not spiritualize the concepts. They do not think in
object structures, which manifests in the way, e.g. they use the object-oriented technology for implementing abstract
data types . Students often use arrays or records as the internal container storing the elements of the abstract data type
instead of using associations. This makes the container access methods consist of complex control flows and they have
to manage the internal container itself. Consequently, traversing all elements of the abstract data type often means to
return the internal container, which prevents information hiding and forces inconsistencies of the internal container.
They are not aware of concepts such as Cursor and Iterator, which encapsulate the access and prevent inconsistencies.
Our hypothesis is that first teaching object-oriented concepts combined with ‘traditional’ data structures and algorithms
overcomes most of the learning problems and makes it also easier to learn the ‘traditional’ subject matter. The major
argument against such an approach is that object-oriented concepts have to be practiced on running applications and
therefore a certain object-oriented programming language has to be used. Unfortunately, a programming language
comes along with many syntactic and semantic details, which means a huge learning effort before implementing the
first object-oriented application. More abstract languages, e.g. the Unified Modeling Language (UML), on the one hand
do not have as many details as a programming language but on the other hand are not executable. Design applications
have to be implemented in a certain progra mming language.
The LIFE3 project started in 2001, funded by the education ministry of North Rhine Westphalia until the end of 2002,
investigates teaching concepts for object-oriented concepts in secondary schools. The project is a cooperation between
two research groups at the university and (at the beginning) two secondary schools in Paderborn. The outcome of the
project will be learning sequences and practical examples. To be able to produce executable applications and to abstract
from implementation details, the project uses the FUJABA environment. FUJABA combines UML with a complete auto-
matic code generation mechanism for consistent models.
In the following section we will introduce the pedagogical background and the differences between teaching in univer-
sities and secondary schools. Subsequently, we will describe the FUJABA environment and present the development of
an example application. Section 4 presents the course structure used in the LIFE3 project and section 5 summarizes some
early results of our evaluation in the schools. The paper closes with a current status of the project and conclusions.

2. Pedagogical aspects
Object orientation is a subject area difficult to teach, especially to beginners, who face a lot of abstraction and (from a
beginners perspective) isolated topics, such as : the syntax and semantics of a programming language, the functionality
of a software development environment, the basic object-oriented concepts .

Today teaching object-oriented concepts means to use a bottom-up advance. In a bottom-up approach, the taught con-
cepts seem precisely defined to the beginner, but in exercises beginners are forced to use isolated facts without the abil-
ity to grasp a full picture. This may lead to frustration, because understanding is delayed. It often leads to ad-hoc gener-

alizations which turn out incorrect and therefore disadvantageous in later learning steps and in building abstract over-
view knowledge. It turns out that learners are not able to use concepts outside the context originally learned. In peda-
gogy this effect is known as inert knowledge: students gain knowledge that can be recalled in a test but is not transfer-
able to a real life situation, e.g. in a software development process.
The effect of a top-down approach is that the abstract overview remains separated from the hands-on knowledge and
skills needed to produce a running application. For example, in an exercise the learners design small class structures but
then are confronted with the problem how to specify the methods. In this case the designed class structure does not
seem to support the specification of methods. It is likely that after a roughly outlined design students focus their efforts
on algorithmic aspects such as the question how to traverse arrays, instead of questioning their general design. Before
beginners can relate class designs to specification details of methods they need to learn quite a lot of basic concepts and
have to see suitable examples.
In school related learning processes it seems even more important to take care of the motivation of the learners, who are
not able to handle learning difficulties as learners in higher education. The first introduction to computer science should
stimulate and mo tivate the learners. We teach of overview knowledge to foster early global, somehow ‘fuzzy’ under-
standing of object-oriented technology. But we add tasks that show how these global concepts are used to construct
running applications. The tasks have a severity level that enables the learners to solve them successfully. It seems cru-
cial to provide the learners with those moments of successfully solving tasks on their own to increase their motivation.
The goals and elements of our teaching idea are very similarly described in a well-known general learning framework
called cognitive apprenticeship [Co89]. Cognitive apprenticeship was first introduced to learn reading, writing and
mathematics. We adopted this approach to teach object orientation in secondary schools. As mentioned we want to
support beginners in order to enable them to be active, to model and implement their models (active learning), and
teach a quite realistic general overview (in authentic situations); cognitive apprenticeship focuses on these two main
aspects. Learning is seen as a kind of enculturation to a community of experts; learners pick up the appropriate vocabu-
lary and problem-solving strategies from experts. In order to understand the abstract principles actions have to be ar-
ticulated and reflected by the learners. The teachers should model those expert strategies by solving a problem (in our
context, by performing an object-oriented modelling task) in front of the class, explaining the advance. Following,
learners attempt a problem with the guidance of their teacher, who is coaching them rather than instructing. Further on
the teacher withdraws guidance (fading) and gives the learners more complex tasks (scaffolding). Therefore an impor-
tant factor is a suitable sequencing of learning activities.
A starting point for such a pedagogical modelling can be the use of CRC-cards in a role play [see Berg]. In his article,
Bergin gives some advice on choosing appropriate examples for such a role play. Thereby, only the design of an object-

Figure 1 Class diagram of the Flaschendrehen example

oriented application can be made explicitly. For example, to implement access to array structures a pointer-object can
use an attribute to store the number of the actual field in the array; shifting one field further would then be implemented
by an increment on the integer attribute. We try to show such imple mentation aspects through an object-oriented-
perspective. We choose examples in which functionality is implemented by methods which manipulate links between
objects. In the mentioned example this functionality could be achieved by linked data-objects instead of array-fields.
The information which object is actually chosen, is then stored in an association between a data-object and the pointer-
object. The shift-operation now can be implemented as a method that manipulates this association. The pointer-object
asks the data-object for its successor, deletes the original association and then builds up an association to the next data-
object. Methods are introduced as a means to change the object structure of an application. We call these kinds of meth-
ods collaborative methods.
In addition to this proceeding we use an abstract graphical language to reduce the learning effort. Today, the Unified
Modelling Language (UML) provides a high abstraction graphical language to model several aspects of software sys-
tems. Unfortunately, the UML is not formally defined, which makes tools only support the generation of code frag-
ments, which have to be refined in the programming language itself.

3. UML Modeling Tool
Our approach uses the FUJABA environment [FNTZ98, KNNZ00] as development and learning tool. FUJABA supports
UML class diagrams to specify static aspect of a software system. Figure 1 shows the class diagram of our introductory
example Flaschendrehen. Flaschendrehen is a simple game where a bottle (Flasche) lies in the middle of a circle di-
vided in fields (Feld). Each player (Spieler) can place some coins (vermoegen) on a field. Flasche , Feld and Spieler are
classes in the diagram and vermoegen is an attribute of class Spieler. The relations between the classes are shown as
references or in UML terms directed associations with cardinality ‘0..1’, which means that no or only one object is
reachable traversing the relation. A special relation is the naechstesFeld relation from class Feld to class Feld. This
relation is used to specify the cycle of the fields. The class diagram does not specify the arrangement of fields as a cycle
explicitly, but it is contained in the initial method createSpiel.

Placing coins on a field is specified by the method setzteAufFeld. After all bets the bottle starts to rotate (drehen) and
stops pointing to a certain field. All players who have bet on the field get a profit and all others loose their coins.

Method spielAuswerten calculates the
profit and sets the vermoegen attribute of
each player appropriately.
In contrast to other tools FUJABA allows
the developer of a system to specify also
method bodies. Thereby, UML activity
diagrams specify the control flow of the
method. The NOP-activity (no opera-
tion) is shown as a diamond and all oth-
ers are represented as round rectangles.
A transition connects two activities and
the attached guard, which is typically a
Boolean expression, specifies which
activity is next when leaving an activity.
The start activity represented as a bullet
specifies the entry and the stop activity
specifies the exit of the method. Note,
the activity diagram has to be well-
formed to ensure a direct mapping on
control structures in conventional pro-
gramming languages.
Inside an activity, graph transformation
rules [Roz97] specify the behaviour of
the activity. The graph transformation
rules are notated as simplified UML
collaboration diagrams . We call those
activities story-patterns and the whole
method body specification is called story
diagram. For example, the story-pattern
in the bottom left corner of Figure 2
refers to the current object with the this
object represented as a rectangle. Trav-
ersing the links, which correspond to
associations in the class diagram, the

Figure 2 Method body spielAuswerten

other two objects are reachable. If all objects and links in the rule could be mapped the modifications will be executed.
Links between this and feld are deleted and new link between this and naechstesFeld is created. For more details see
[FNTZ98, KNNZ00].

3.1. Testing environment
FUJABA allows a developer to specify the complete application with classes, attributes and methods where the methods
are specified by story diagrams. Consequently, the application can be executed and tested. FUJABA generates pure Java
source code and uses a conventional Java compiler to generate byte code. The byte code is executable by a conventional
Java virtual machine. Executing the running example will not show anything on the screen, because the application has
no user interface. Fortunately, the FUJABA environment contains the dynamic object browsing system (DOBS), which
visualizes the internal object structure of executed application inside the Java virtual machine. In addition to snapshots
of the object structure, DOBS provides an interactive creation and deletion of objects. In addition, DOBS allows the user
to invoke methods on certain objects including parameters. Figure 3 shows the DOBS screenshot of the running

Flaschendrehen example consisting of the initial object structure. The middle part on the left-hand side shows the at-
tribute values of the currently selected object and the part below shows all methods of the object. Testing an application
means invoking methods in a certain sequence. Mistakes found in the application can be eliminated in the specification
and a new test run using DOBS can start after generating and compiling the Java source code again.

In order to produce a stand-alone application after a thoroughly testing with DOBS a graphical user interface can be
added. Java provides the Swing library to create user interfaces, but the whole library consists of many details possibly
confusing learners and also the whole functionality is not needed for our small applications. Therefore, we have devel-
oped a simple library based on Swing. The library contains classes for windows, text fields for outputs only, input fields
for inputs only, buttons and a panel consisting of circles, lines, rectangles, etc. Each element can listen to mouse events,
which provides interaction with the user. Figure 4 shows an example graphical user interface for the Flaschendrehen
application. In comparison to Figure 3, the current field, the bottle is pointing to, is marked by a red field and the drehen
method will be called when the button is pressed. This is a stand-alone application which only needs the simple graphi-
cal library and little runtime library from FUJABA. Thereby, the runtime library contains only some helper functions,
which are abbreviations to simplify the generated source code.

4. Course structure
We used the outlined teaching concept and the presented example in an introductory course for 16 or 17 year old stu-
dents . This concept includes also a kind of didactical software development process. The development process exploits
the possibilities of the tool support in order to avoid an independent implementation phase. The process starts with an
exploration of the problem space. After that the insights are structured using CRC cards. The learners/developers test
the CRC-model playing an object game [Berg], a role play in which the learners act as objects. After that a FUJABA
version of the OO-model is developed. DOBS is used to test the basic functionality. In later stages of the learning se-
quence GUI and event handling is added as the last step of the didactical software development process.

The learning sequence consists of three major phases to assure strategic scaffolding and fading. In the first phase, the
learners become acquainted with basic concepts and the learning environment is introduced. The second phase increases
technical knowledge of modelling and programming, and introduces a library to build graphical user interfaces and
event handling. In the third phase, practicing autonomous modelling and progra mming is forced.

Figure 3 DOBS screenshot after creating the initial situation Figure 4 Simple graphical user interface

The first phase conceptualises an overview of object-oriented technology and introduces the expert language and tools.
It models object-oriented modelling. The learners play a given object game that introduces the basic concepts of object-
oriented models. The model then is presented and can be further explored in DOBS. Learners actively explore the execu-
tion of an object-oriented application; this helps to understand the relation between object structure and class structure.
The following concepts and tools are introduced: class, object, association, method, attribute, object interactions, object

structures, UML class- and object-
diagrams, the tools FUJABA and DOBS,
CRC cards, object game.
In the second phase, students gain practice
in modelling another example. The stu-
dents create a CRC-Model, play object
game, and model it using UML and FU-
JABA guided by their teacher. The model
should then be refined, thereby introducing
more syntactical details of UML and activ-
ity diagrams . Once the model is complete,
the teacher models how event handling and
a GUI can be added. In this phase the key
aspects of the software development proc-
ess are introduced. Lessons learned in this
phase are: The role and sequencing of
different software development steps
(Analysis, design, prototype, and test),
graphical user interfaces and event han-
dling, basic algorithmic aspects such as
loops, conditions and if-statements, the
role and use of a class-library, first impres-

sion of inheritance and interfaces. In addition, students learn how to recognize and handle errors.
In the third phase, students work in small groups to create a running application with graphical user interface. At this
point, they finally work without the guidance of their teacher, allowing them to gain a deeper understanding of the de-
velopment process and the way in which tools and modelling techniques fit together. In this phase different groups try
to solve the same task, this enables comp etition between groups, but also cooperation within the groups. The need to
agree to one model within the group and the expected changes to the original model during the specification in FUJABA
gives many opportunities to articulate and reflect on the things learned. In this phase the active learning of the students
is the main objective. They gain a deeper understanding of the interplay between the different steps and aspects of ob-
ject-oriented software development, they learn to communicate, valuate and reflect on design ideas.

5. Case study
The teaching concept is currently evaluated in an empirical study at two secondary schools in Paderborn. We record the
whole course on videotapes and use video capturing software to protocol the work at the different computers. First
preliminary results show that nearly all students distinct clearly between classes and objects. The students were able to
develop design ideas with CRC-cards. It does not seem that they were sidetracked by unnecessary details. In the speci-
fication phase with FUJABA they were able to find solutions for algorithmic problems, as they were able to reuse ideas
observed in the examples of previous phases of the course. Sometimes students need help from the teacher or other
groups.
We noticed that tool support helps; the dialogs of FUJABA showed how to create classes, and therefore minimized syn-
tactic problems and reduced the amount of memorized knowledge needed. But tool support alone is not sufficient for a
teaching method that supports articulation and reflection, which are necessary to help students to integrate the different
concepts and tasks into overview knowledge of object-oriented concepts and software development processes. We de-
rive this observation from the following: In the first course the teacher encourages discussions and abstractions from the
tool, in the second course the teacher encouraged the learners to experiment with the tool and worked more on the vis-
ual FUJABA-level then on a representational level. The initial effect was that the first group made slower progress in the
first two phases of the course, but had a better understanding of the steps of the software development process. Conse-
quently, in the third phase, the first group created a running application more quickly, because the students made a more
thorough analysis and design.

We were impressed of the abstract views students used to communicate their design ideas, especially in the first group.
In traditional approaches where a language is introduced first, students often rely on language details to express their
ideas – and hence are not able to communicate and evaluate design ideas in early phases of the development process. In
such courses one often observes one leader deciding the design without communicating it. In our approach the students
are actively involved in developing design ideas, communicating and comparing them between the groups, thereby
focussing on finding suitable object structures, so students developed what we call thinking in object structures.

Figure 5 Learning sequence

6. Conclusions
In this paper we present a top-down approach for teaching object-oriented concepts in secondary schools. Our approach
is based on the concepts of cognitive apprenticeship and active learning. First evaluation results show that we have
achieved our goal to teach concepts and not details of a programming language. We use the FUJABA environment as
graphical specification tool, which produces also executable applications and therefore supports active learning .
The major advantage of the FUJABA environment is the absence of source code. The developer uses the high abstraction
language, which is UML like, to specify a complete application. The developer is not confronted with syntactical details
of a (textual) object-oriented programming language, because the diagram editors are restrictive and syntax driven.
Showing methods as collaboration diagrams also helps learners to conceptualize methods as a means to operate on
object structures. In addition, the graphical diagram language provided by FUJABA is easy to learn and our experiences
with students, developers and researchers from other sciences have shown that the language is also a good basis for
discussions: The graphical representation encourages collaboration among the learners. These discussions initiate ar-
ticulation and reflection processes that learners need.
In some groups it might be necessary to slow down first hand progress focused on handling FUJABA and give time for
building up representational knowledge. Throughout the three phases of the described introductory course the teacher
finds many occasions to stimu late this process: For example by group presentations of the current project status, by
presenting common problems that occur in different groups, by asking the students to describe what they have done, etc.
Another key point of our approach is the concentration of the model and the introduction of graphical user interfaces as
of lower importance and later stadium in the modelling process.
A Noteworthy element of the teaching strategy is the first phase of the course: Here the students gain an understanding
of the aim of the modelling process: they investigate an executable object-oriented-model. This phase is an important
element to achieve active learning . The given examples are not only a resource for finding own modeling ideas and for
comparing one’s own ideas with a given example, but give also a necessary insight for self-contained modeling. Work-
ing in small groups on a project with the ability to realize the own ideas also fosters active learning.

We are currently analyzing and correlating the recorded videotapes and recorded user interaction with the tools FUJABA
and DOBS. Preliminary results underline our observations presented in the previous section. In addition to, in our opin-
ion great success of our approach, we have to investigate how students, who have attended our course, have advantages
or disadvantages in consequent courses in comparison to students with a traditional education.

References
[Berg] P. Bergin: The Object game. Online at: http://csis.pace.edu/~bergin/patterns/objectgame.html (last visited

04.04.02)
[Co89] A. Collins, J.S. Brown and S.E. Newman: Cognitive apprenticeship: Teaching the crafts of reading, writing,

and mathematics. In: L.B. Resnick: Knowing, learning, and instruction: Essays in honor of Robert Glaser.
Hillsdale, NJ, Lawrence Erlbaum Associates, 1989

[BC89] K. Beck and W. Cunningham: A Laboratory for Teaching Object-Oriented Thinking OOPSLA'89 Confer-
ence Proceedings, 1989.

[FNTZ98] T. Fischer, J. Niere, L. Torunski, and A. Zündorf. Story Diagrams: A new Graph Rewrite Language based
on the Unified Modeling Language. In G. Engels and G. Rozenberg, editors, Proc. of the 6th International
Workshop on Theory and Application of Graph Transformation (TAGT), Paderborn, Germany, LNCS
1764. Springer Verlag, 1998.

[KNNZ00] H.J. Köhler, U. Nickel, J. Niere, and A. Zündorf. Integrating UML Diagrams for Production Control Sys-
tems. In Proc. of the 22nd International Conference on Software Engineering (ICSE), Limerick, Irland, pa-
ges 241–251. ACM Press, 2000.

[Roz97] G. Rozenberg (Editor): Handbook of Graph Grammars and Computing by Graph Transformations, World
Scientific, Singapore, 1997

[Th99] J. Tholander, F. Rutz, K. Karlgren and R. Ramberg: Design and Evaluation of an Apprenticeship Setting
for Learning Object-Oriented Modeling. In: G. Cumming, T. Oka moto and L. Gomez: Proceedings of the
International Conference on Co mputers in Education. IOS Press, 1999

