
Keywords
System evolution, reengineering process, distributed
information systems, middleware, schema integration,
application integration, internet access

1 INTRODUCTION
The growing e-commerce market engender the need to open
the existing, in local area networks utilized, information
systems (IS) to the web. This requires the well understanding
of the existing IS and makesreengineering a central aspect.
However, most of todays reengineering activities and results
address monolythic systems such as the centralized systems
developed in the seventies. The required methods to reach
the current state of reengineering for such systems were
developed over several years. For the more recently
developed distributed IS (DIS), the integration into the
internet requires new adjusted reengineering techniques. The
high complexity and the rapid evolution of DIS nowadays
requires continous DIS reengineering (DISRE).

In this paper, we conceive evolution as any change in or of
the DIS and emphasize the following three actions:

• union of multiple running (D)IS to a single DIS,
• extention of a DIS by a new part or
• reduction of a DIS by discard a part

Union and extension induces the idea of integration, whereas
reduction entails “reverse integration” which can be seen as a
variant of decomposition. In this context, we interprete
integration and reverse integration in evolution of DIS with
focus on a suitable middleware concepts.

In this paper, a systematic DISRE process based on an
analysis of available integration concepts and technologies is
developed. The application of existing and required new
reengineering techniques in such a process is skeched.

The rest of the paper is structured as follows, in Section 2 we
discuss the advantages and restrictions of the use of
middleware of DIS. In the next section (Section 3), we
propose a DISRE process, considering the trade of between
existing and new (adjusted) reengineering techniques.
Finally, in Section 4 we draw some conclusions.

2 MIDDLEW ARE FOR DISTRIB UTED
INFORMA TION SYSTEMS

To clarify the architectural scenario we assume a three-tier
model. On the left side of Figure1, we have theschema
layer of the model. We choose the termschema to describe
the information (data) structure of our DIS. Furthermore, we
select distributed databases (DDB) as more concrete case
study, there the term schema fits better. Theapplication layer
contains all the functionality to manipulate the informations
stored in the schemas. Finally, we have the WWW layer,
which represents the interface to the real world, i.e. users.

Integration and support for evolution of distributed
information systems by means of an additional middleware
can be done in various ways. To structure and analyze the
advantages and restrictions of different approaches we
consider the two following extreme views: (1) schema
integration (SI) which provides a consistent virtual schema
located between the schema and application layer containing
the integrated schemas; (2)application integration (AI)
which results in an addition virtual application layer in-
between the application and WWW layer.

In Figure2 the SI approach for integration and evolution is
presented. The different application specific schemas are
integrated into an overall virtual schema (grey) which is
served by a single homogenous distributed database
management system. System evolution in form of an
additional application therefore would result in an updated
virtual schema and a new application (dashed box) . Batini et
al [BLN86] present several methodologies for (database) SI.
An approach to preserve semantic updates in SI is sketched
in [VW94].

schema application WWW

Figure1 Three-tier model

schema
application

WWW

Figure2 schema integration (SI)

schema

schema

WWW
application

application

application

vi
rt

ua
l s

ch
em

a

Reengineering for Evolution of Distrib uted Information Systems

Holger Giese, Jörg P. Wadsack
Software Engineering Group, Department of Mathematics and Computer Science

University of Paderborn
Warburger Str. 100, D-33098 Paderborn

Germany
[hg|maroc]@upb.de



The AI scenario in contrast would integrate an additional
application without modifying the different schemas, cf.
Figure3. Instead, the virtual application layer (grey) is used
to coordinate the applications as required. This additional
application layer does further permit to use different
heterogeneous and physically distributed database
management systems when support for distributed
transaction processing standards [XA94] is present. For
example extending the DIS by a new application with own
new schema, cf. dashed parts in Figure3.

The required coordination however has to be realized by
code in the virtual application layer. The identified AI
strategy is strongly related to enterprise application
integration (EAI) [Lin99] approaches, but we assume that
the applications composition does not involve event
processing as realized either by polling on a shared database
or using specific application APIs.

The proposed middleware layer for application and
information system integration has to be build on top of
available middleware technology. The common solution for
database integration is distributed transaction processing
(DTP) [XA94] as provided by transaction monitors [Hud94,
Hal96] and middleware transaction services [JTS99,
OTS98]. Another more scalable solution isreliable
messaging [Lew99, Hou98] which results in a reliable
asynchronous processing scenario.

The AI approach requires the realization of coordination
activities. A suitable solution is to employ available
middleware technology. For the SI approach the same
technology can be applied when the virtual schema layer is
realized by code, however, also database technology like

views can be used. Depending on whether a code or strict
database solution has been chosen, the flexibility of the
virtual layer permits variations to a great extent.

To compare both extreme concepts we further consider their
impacts on evolution, consistency and redundancy in Table
1. The observations reveal that both strategies are rather
contrary. While SI focuses on consistency and therefore try
to exclude redundancy, AI avoids the integration of schemas
and instead demand the proper coordination of the
applications.

The specific aspects of distributed systems such as
autonomy, heterogeneity and scalability are addressed in
Table 2. The AI approach additionally permits integration of
arbitrary legacy systems. When the virtual application layer
provides the same interfaces as the applications the degree of
transparency ensured by the SI strategy is also possible for a
AI solution. In practice, the provided interface may include
synthesized functionality and therefore a clear separation
between the virtual application layer and added functionality
is often difficult.

The differences of both approaches can be further clarified
by considering whether state or transitions of the resulting
system are composed. While the SI approach provides a
unique state (virtual schema) and relates all application
specific schemas accordingly (mapping), the AI approach
permits partial states (the application specific schemas) but
ensures, that all via the application code initiated state,
transitions are coordinated in an appropriate manner.

The goal of information system integration is the linking and
interconnection of beforehand independent systems. The
resulting coupling, however, also result in a less reliable
system. When the organizational coexistence is acceptable or
even required, the AI approach and even temporary
inconsistency may be seen in favor. If in contrast data
consistency has highest priority, SI has to be employed. The
AI solution may include redundancy but ensures losslessness
while the SI approach can result in a possible loss of data but
ensures no-redundancy. Therefore depending on whether the
reengineering activity is not considered as a closed job, both
approach will be rated quite differently.

In practice, which approach fits best, varies for each
fragment of the system and therefore a compromise which
merges both strategies is often most valuable. Such a hybrid
solution should exploit the advantages of both strategies for
a system specific solution.

evolution
schema

SI requires update for virtual schema

evolution
application

AI requires update for virtual application

consistency SI failures result in loss of data while
inconsistencies are possible for AI failures

redundancy
schema

SI has to exclude redundancy in the
schema while AI control it at application

level

redundancy
application

SI does not address redundancy at the
application level while AI can help to

identify redundant functions which may
be united in next evolution steps

Table 1: Evolution, consistency and redundancy

application

application

application

application

schema

WWW

Figure3 Application integration (AI)

schema

schema
WWW

vi
rt

ua
l a

pp
lic

at
io

nschema

autonomy AI results in still autonomous applications
(services) while the virtual schema of SI

results in a higher degree of coupling

heterogeneity A code based layer can cope with datatype
conversion problems in more flexible

manner than a database layer

scalability AI can exploit semantically independent
application functionality to increase

system scalability while SI is restricted to
a single virtual schema and therefore has
to employ more general approaches for

scalability

Table 2: Distributed systems characteristics



3 A PROCESS TO REENGINEER DISTRIB UTED
INFORMA TION SYSTEMS
The drawn conclusion in the previous section obliges us to
consider SI as well as AI in parallel. Investigating all such
possible hybrid integration scenarios would however be an
impracticable task. For this reasons our process (depicted in
Figure4) starts with facile investigations.

In a first step, a (light) reverse engineering activity is applied
to the application tier, i.e. we analyse the interfaces from the
user view (step 1.1). The result is a simple directed call-
graph from the basic user operations to the main parts of the
schemas. In parallel, in step 1.2, a data structure reverse
engineering step is done on the different schemas. This step
is limited in a premier time in extracting entities and obvious
relationships.

Based on a comparison of the call-graphs and when the
analysis of their offered functionality indicates a sharing
between both applications, we check pairs of schemas on the
degree of worth for their integration. This second process
step provides us with aschema & application clustering. Here
it might be necessary to have further infomation than the
ones provided by the first steps. This leads on the one hand
in step 2 to the need for iteration and on the other hand we
have to provide techniques which allows more profound
analyses. Those have to be program understanding as well as
data structure recovering methods. The observed degree of
schema compatibility permits to estimate the required
integration effort. Thus, we can decide where SI is
appropriate and where not.

To perform step 3.1, i.e. SI, we need the complete structure
of the affected schemas. Two existing schemas reverse
enginering approaches which adresses the problem of an
entire structural schema recovery areDB-Main [EH99] and
Varlet [Jah99]. Moreover, we have to recover relationships
between the schemas. This inter-schema relationships have
to be considered and can be use directly for the integration,
i.e. the construction of a virtual schema. But for a complete
and consistent integration we need information about data
(schema) behaviour, which induces again more profound
application understanding.

Alternatively, AI is done in step 3.2 of our process. The
central problem is to identify all applications which are
concerned by concrete user interactions. Furthermore, we
have to cover all possible user interaction activities. This
implies the need of full knowledge about the interfaces,
because missing only one application for one user interaction
leads automatically to partial inconsistencies. To ensure the
completness of the reengineered information about the
interfaces, we need, beside data structure (schema) and
behaviour knowledge, information about the inter-schema
relationships.

An early overview of reverse engineering techniques for
program understanding is presented in [BMG+94].
Possibilities and requirements for tool interoprerability
where recently discussed in Dagstuhl [EKM01].

According to the three layers of Figure1, we propose an
example to illustrate our approach. Assume, we have two
insurance companies which want to fuse. The first is the
InPrivate Ltd which only offers contracts for private
insurances. Second, we have the BuInCo which only
concludes agreements with business people and enterprises.
Both companies operate DIS which should be integrated.
Figure5 depict a simplified exerpt of the two original DIS of
the companies.

In the following, we apply our process to this insurance
fusion example. This is of course a simplified view of the
example due to lack of space. In Figure6 we have two
databases,CustomerDB andContractDB, and an applications
contract management for theInPrivate Ltd. BuInCo has also

1.1) interface
analysis

1.2) schema
analysis

2) schema
& application

clustering

3.1) schema
integration

3.2) application
integration

Figure4 DISRE Process

Business
Portalagreement

survey

client administration

Figure5 Example systems (simplified)

contract
management

Employee
Portal

CustomerDB
schema

ContractDB
schema

PurchaserDB
schema

AgreementDB
schema

InPrivate Ltd

BuInCo

IndentureDB
schema

agreement
survey

contract
management

Business
Portal

client administration

Figure6 Hybrid integration (simplified)

cl
ie

nt
 s

ch
em

a

Employee
Portal

ne
t-

ba
se

d 
ap

pl
ic

at
io

n

CustomerDB
schema

ContractDB
schema

customer administration

PurchaserDB
schema

AgreementDB
schema

IndentureDB
schema



two databases, PurchaserDB and IndentureDB /
AgreementDB, and two applications theclient administration
and theagreement survey. The IndentureDB schema is for
insurances for business people and theAgreementDB is to
store information about company insurance agreements. In
addition, we have two kind of portals, one for the company
employees (EmployeePortal) and the other for business
clients (BusinessPortal).

After performing step 1.1 and step 1.2 of our process, the
comparison of the applicationscontract management and
client administration indicates overlapping between databases
CustomerDB andPurchaserDB. A more detailled analysis of
the two schemas reveals large similarities in the manner of
storing client information. This entails an integration of
those two schemas to aclient schema. Consequently,
following Figure2, the new client schema has to be adapted
to the access from applicationscontract management and
client administration.

Overlapping for private insurance contracts and agreements
for buisness people is indicated by comparing applications
contract management and agreement survey. Further
investigations in the corresponding schemas reveal that an
integration of theContractDB schema and the IndentureDB
schema could result in risks for the fusionned companies,
e.g. a private person may benefits from buisness people
advantages.

In contrast, theContractDB schema and the company
agreement schema parts of theAgreementDB schema are
easily integrable, since they have no overlapping at all. But
in this case integration makes little sense, because they
would coexist and generate a superfluous management
overhead. For the given example no further suitable schema
pairs for SI can be identified.

AI makes sense forcontract management and agreement
survey because this two services are planned to be operated
in a net-wide environment. A web access forclient
administration in contrast will be a considerable risks. For
these reasonsnet-based application only encapsulates
contract management andagreement survey.

Finally, for the case of an extension, we consider adding a
customer administration application. The overlapping of
functionality with the client administration indicates that SI
employing the derived client schema is an appropriate
solution. Note that theEmployeePortal is connected to the
client administration application to ensure that the employees
have the same access to the application as the business
clients.

4 CONCLUSIONS
The proposed process to reengineer DIS and the guideline of
their evolution should, beside the identified complexity for
SI or AI, consider whether a later consolidation is planned.
For the SI approach the later merging is rather
straightforward based on the given combined virtual schema.
For the AI strategy, however, such a merging requires that
schema and application code have to be combined while no
reuse for the integration efforts in form of the virtual
application layer is guaranteed.

While the phenomena of distribution is more naturally

covered by the AI approach, the SI strategy links the
modules more tightly and therefore help to avoid serious
problems with redundancy. Besides the discussed technical
aspects, organizational structures and requirements are also
relevant for an appropriate solution with respect to the
degree of coupling. Therefore, whether SI or AI is
reasonable, is not only a matter of technical feasibility.

REFERENCES
[BLN86] C. Batini, M. Lenzerini, and S.B. Navathe.A

Comparative Analysis of Methodologies for Database
Schema Integration. ACM Computing Surveys,
18(2):323–364, ACM Press, 1986.

[BMG+94] E. Buss, R.De Mori, W.M. Gentleman,
J.Henshaw, H.Johnson, K.Kontogiannis, E.Merlo,
H.A. Müller, J.Mylopoulos, S.Paul, A.Prakash,
M. Stanley, S.R. Tilley, J.Troster, and K.Wong.Inves-
tigating Reverse Engineering Technologies for the CAS
Program Understanding Project. IBM Systems Journal,
33(3):477–500, 1994.

[EH99] V. Englebert and J.-L. Hainaut.DB-MAIN: A
Next Generation Meta-CASE. Journal of Information
Systems - Special Issue on Meta-CASEs, 24(2):99–112,
Elsevier Science Publishers B.V (North-Holland), 1999.

[EKM01] J.Ebert, K.Kontogiannis, and J.Mylopoulos,
editors.Interoperability of Reengineering Tools, volume
296 ofDagstuhl-Seminar-Report. IBFI gem. GmbH, Ja-
nuary 2001.

[Hal96] C. L. Hall. Building Client/Server Applications
Using TUXEDO. John Wiley & Sons, Inc., 1996.

[Hou98] P.Houston. Building Distributed Applications
with Message Queuing Middleware. Microsoft Coopera-
tion, 1998.

[Hud94] E. S. Hudders.CICS: A Guide to Internal Strucu-
re. John Wiley & Sons, Inc., 1994.

[Jah99] J.H. Jahnke.Management of Uncertainty and In-
consistency in Database Reengineering Processes. PhD
thesis, University of Paderborn, Paderborn, Germany,
September 1999.

[JTS99] JTS.Java Transaction Service (JTS). Sun Micro-
systems Inc., December 1999. Version 1.0.

[Lew99] R. Lewis.Advanced Messaging Applications with
MSMQ and MQSeries. Que, 1999.

[Lin99] D. Linthicum. Enterprise Application Integrati-
on. Addison-Wesley, 1999.

[OTS98] OTS. Transaction Service Specification. Object
Management Group, February 1998.

[VW94] V.M.P. Vidal and M.Winslett.Preserving update
semantics in schema integration. In Proc. of the 3rd In-
ternational Conference on Information and Knowledge
Management, Gaithersburg, Maryland, pages 263–271.
ACM Press, November 1994.

[XA94] XA. Distributed Transaction processing: The
XA+ Specification, version 2. X/Open Group, 1994. X/
Open Company, ISBN 1-85912-046-6, Reading, UK.


