
Selective Tracing for Dynamic Analyses
∗

Matthias Meyer, Lothar Wendehals
Software Engineering Group

Department of Computer Science
University of Paderborn
Warburger Straße 100

33098 Paderborn, Germany
[mm|lowende]@uni-paderborn.de

Abstract
Reverse engineering based on dynamic analyses often uses
method traces of the program under analysis. Recording
all method traces during a program’s execution produces too
much data, though for most analyses, a “slice” of all method
traces is sufficient.

In this paper, we present an approach to collect runtime
information by selectively recording method calls during a
program’s execution. Only relevant classes and methods are
monitored to reduce the amount of information. We de-
veloped the JavaTracer which we use for the recording of
method calls in Java programs.

1. Introduction
In the last years, we developed a tool-supported semiau-

tomatic approach to design recovery [5]. Our approach fa-
cilitates the recognition of design pattern [3] instances in the
source code of a system. We recently extended this approach
by combining the existing static analysis with a dynamic
analysis [7]. The static analysis identifies pattern instance
candidates based on their structural properties. The sub-
sequent dynamic analysis confirms or rejects the candidates
by checking their behavior.

The behavior of a design pattern is specified by UML 2.0
sequence diagrams [8]. In our approach, these specifications
are called behavioral patterns. Behavioral patterns describe
typical sequences of method calls between objects of classes
that participate in a design pattern instance. To check the
conformance of a given design pattern instance to the be-
havioral pattern, method traces have to be gathered during
the execution of the program under analysis.

Recording all method traces during a program’s execution
not only produces too much information, but also reduces
the runtime performance of the program significantly. Con-
sequently, the tracing should be restricted to those method
calls that are really needed in the dynamic analysis. In our
approach, only specific methods of pattern instance candi-
dates have to be monitored, which means only to record a
“slice” of method calls of the whole program.

For this purpose, we developed a selective tracer which
takes a list of classes and methods to be monitored as input.
The tracer executes the program to be analyzed and records
only calls to the given methods. The gathered information is
saved to a file which can be used by post-mortem analyses.

∗This work is part of the Finite project funded by the German
Research Foundation (DFG), project-no. SCHA 745/2-2.

In the next section we present the application scenario for
our selective tracer in more detail by means of a concrete
example. We will refer to this example throughout the rest
of the paper. In Section 3 we report about related work.
Our approach to selective tracing is described in detail in
Section 4 whereas its good performance is shown in Section
5. The paper is concluded with future work in Section 6.

2. Application Scenario
In a case study of our design recovery approach, we an-

alyzed the Eclipse platform [2]. Among others, our static
analysis identified several candidates of the Strategy design
pattern in the source code.

AbstractStrategy
algorithm()

ConcreteStrategyA
algorithm()

ConcreteStrategyB
algorithm()

strategy

1Context
setStrategy(AbstractStrategy)
request()

strategy.algorithm()

Figure 1: The Strategy Design Pattern

A Strategy design pattern (Figure 1) lets an algorithm
vary independently from the client that uses it. An abstract
class defines the algorithm interface, which is implemented
by different concrete classes (the strategies). A context class
references a strategy and delegates requests received from
its clients to the strategy. Usually, the clients configure a
context object with the appropriate concrete strategy.

Classes Methods

org.eclipse.swt.widgets.Composite setLayout
WM SIZE

org.eclipse.swt.widgets.Layout layout
org.eclipse.jface.viewers.StructuredViewer addFilter

filter
getSortedChildren
setSorter

org.eclipse.jface.viewers.ViewerSorter sort
org.eclipse.jface.viewers.ViewerFilter select

Table 1: Classes and Methods Identified as Parts of
Pattern Candidates.

Table 1 shows the classes and methods1 that have been
identified as parts of three Strategy pattern candidates. The
first candidate consists of the classes Composite and Layout
(cf. Table 1) which were recognized as context and abstract

1Abstract classes and methods are written in italic.



strategy, respectively. The method setLayout was identi-
fied as the method to configure the context with a strategy
and WM SIZE is called by clients to place a request. The
method layout of class Layout was recognized as the method
implementing the actual algorithm. The other classes and
methods listed in the table belong to other candidates.

layout()

client a:Layout b:Layout

bp Strategy

WM_SIZE()loop (1,m)

opt

WM_SIZE()
layout()

loop (1,n)

setLayout(a)

setLayout(b)

c:Composite

Figure 2: Behavioral Pattern for a Concrete Strategy
Candidate.

The dynamic analysis now has to check whether the in-
teraction of instances of the candidate’s classes conforms to
the behavioral pattern of a Strategy design pattern, i.e. the
identified methods are called in the specified sequence.

Figure 2 shows the behavioral pattern of Strategy in which
the methods and object types have been replaced by the
classes and methods of the first pattern candidate. The
behavioral pattern requires that a context object c of type
Composite is configured with a strategy object a of type Lay-
out by calling setLayout. Afterwards, a client has to place at
least one request which has to be delegated to the strategy,
i.e. WM SIZE and layout have to be called consecutively an
arbitrary number of times (indicated by the loop fragment)2.
Furthermore, after several requests have been handled, the
concrete strategy may be changed by another call to setLay-
out with a different b:Layout object. After that, requests
on the context c:Composite have to be delegated to the new
strategy object by calling layout on b:Layout. However, the
change of the strategy is not required and is thus enclosed
by an optional fragment.

In order to check if the pattern candidate behaves as spec-
ified by the concrete behavioral pattern shown in Figure 2,
we need to record method call traces at runtime. However,
a behavioral pattern does not define a complete trace. Only
significant method calls are specified. Other calls of meth-
ods that are not mentioned in the behavioral pattern may
interleave the given sequence. Consequently, we do not need
to record a complete program trace but only calls to those
methods explicitly mentioned by the pattern.

Furthermore, since some of the classes and methods iden-
tified in the source code are abstract, e.g. Layout and its
layout method, they cannot be monitored directly during
runtime. Instead, classes and methods that implement the
abstract classes and methods must be monitored. Due to
polymorphism and dynamic method binding, the same holds
for methods which override methods to be monitored. The
concrete classes and methods could be determined by static

2Since no methods are called on the client object, its class
needs not to be determined and can be ignored during anal-
ysis.

analysis easily. In our approach, however, this is done by
our selective tracer as well.

3. Related Work
The Java Debug Interface (JDI) [6] offers debuggers a

native technique to receive MethodEntry- and MethodEx-
itEvents. The debugger has to provide a filter which speci-
fies the classes to be monitored. This approach can not be
used to monitor specific methods. Instead, all methods of
classes given in the filter are monitored during the execu-
tion of the program under analysis. For each method call,
MethodEntry- and MethodExitEvents are sent to the debug-
ger. This technique is not practicable, since it slows down
the analyzed program significantly (cf. Section 5).

The Omniscient Debugger [4] records method calls and
variable state changes of Java programs. It instruments the
source code on the byte code level, i.e. additional code is
inserted into the original source code of the program to be
analyzed. The code is used to inform the debugger about
method calls. The instrumentation is also done in a non-
selective way. The author reports about 100MB/sec of data
produced during the execution.

The Instrumentation, Execution, and Coverage Tool In-
sECT [1] allows for collecting different kinds of dynamic in-
formation including method traces by instrumenting and ex-
ecuting the program under analysis. Instrumentation tasks
are used to specify which entities of the program are to be in-
strumented and which kind of information is to be collected.
Monitors can be implemented to process the collected infor-
mation. In [1] it is shown that InsECT is efficient.

However, a problem of instrumentation is that it strongly
depends on the programming language and the runtime en-
vironment used. This approach is difficult to transfer to
other languages, especially those that do not use interme-
diate code such as C or C++. Instrumentation may also
affect the synchronization of concurrent threads, since in-
strumented code directly influences the runtime of threads.
This may cause for example time outs in the synchroniza-
tion, thus resulting in a completely different behavior of the
analyzed program.

4. Selective Tracing
We developed the JavaTracer [9] for selective tracing of

Java programs. As input, it gets a list of classes and inter-
faces as well as methods that have to be monitored during
the execution of the program under analysis. The Java-
Tracer acts as a debugger and executes the program, called
the debuggee. JDI is used for connecting to the debuggee’s
virtual machine.

The principle idea of selective tracing is rather simple.
The JavaTracer is informed by the virtual machine each
time a class is loaded. If this class belongs to the classes in
the input, it adds a breakpoint at the beginning and the end
of the body3 of each method given in the input, indicating
when a method is called and when it returns.

Abstract methods declared by interfaces or abstract clas-
ses can also be monitored, even though they don’t have a
method body. The JavaTracer determines each time a

3The Java VM creates a virtual code line at the end of each
method body that will be passed regardless of the actual
executed return statement.



class is loaded if it is a sub class of the classes given as in-
put. If the loaded class is a sub class, it adds breakpoints
to methods which implement or override one of the given
methods, thus supporting analyses that include polymor-
phism and dynamic method binding.

The advantage of this simple idea is that the approach is
not bound to Java even though the JavaTracer is imple-
mented for Java programs only. Breakpoints are a common
feature of debuggers for nearly all languages. The Java-
Tracer just needs another implementation for the interface
that is used to set breakpoints and receive breakpoint events
to adapt to another debugger.

The JavaTracer will be informed when a breakpoint is
reached during the program’s execution. It then halts the
debuggee. This guarantees that all threads of the program
are halted, not only the thread that is currently running.
Thus, concurrent threads depending on the current thread
are not affected by halting just the current thread, since
they are halted, too.

In the case of a breakpoint event at the beginning of a
method call, the JavaTracer asks the debuggee’s virtual
machine for additional information about the method call.
This includes information about the method name, the time
stamp for the method call, the names and unique identifiers
of the caller and callee objects, the identifiers and values of
objects passed as arguments as well as the current thread.
Then the debuggee’s execution is continued. This informa-
tion is recorded as a method entry event. Breakpoint events
at the end of a method call are recorded as method exit
events. Events about loaded classes are recorded as well.

The debuggee is controlled either manually by the reengi-
neer or by automated tests. The output consists of a list
of class loading events as well as method entry and method
exit events in the order of their occurrence. The output can
then be further analyzed, e.g. by our dynamic analysis of
design pattern behavior.

Input for Tracing
The JavaTracer is started with a trace definition docu-
ment describing the classes and methods that have to be
monitored during the program’s execution. Figure 3 shows
an excerpt of this document using the example of Table 1.

<TraceDefinition>
<ConsiderTrace>

<Class name="org.eclipse.swt.widgets.Composite">
<Method name="setLayout"/>
<Method name="WM SIZE">

<Parameter type="int"/>
<Parameter type="int"/>

</Method>
</Class>
<Class name="org.eclipse.swt.widgets.Layout">

<Method name="layout">
<Parameter

type="org.eclipse.swt.widgets.Composite"/>
<Parameter type="boolean"/>

</Method>
</Class>
...

</ConsiderTrace>
<CriticalTrace>
...
</CriticalTrace>

</TraceDefinition>

Figure 3: Example of the JavaTracer’s Input

The trace definition has two sections. Within the Con-
siderTrace section, classes are listed for which only selected
methods are monitored. That means, only the given meth-
ods and overriding methods are considered in the tracing,
calls of other methods are ignored.

The JavaTracer also provides a tracing on the class level,
the so-called critical monitoring of classes. Using critical
tracing, all methods of a class are monitored. This facilitates
analyses where all method calls on objects of specific classes
have to be recorded. These classes are specified within the
CriticalTrace section of the input.

Output of Tracing
Figure 4 shows an excerpt of the JavaTracer’s output.
The output consists of a list of class loading events as well
as method entry and exit events in the order of their occur-
rence.

<TraceResult>
<ProcessStart name="main" time="1127705886787"/>

<ClassLoaded name="org.eclipse.swt.widgets.Composite">
</ClassLoaded>

<ClassLoaded name="org.eclipse.swt.widgets.Shell">
<SuperType name="org.eclipse.swt.widgets.

Composite"/>
</ClassLoaded>

<ClassLoaded name="org.eclipse.swt.widgets.Layout">
</ClassLoaded>

<ClassLoaded name="org.eclipse.swt.layout.GridLayout">
<SuperType name="org.eclipse.swt.widgets.Layout"/>

</ClassLoaded>
...
<MethodEntry id="22" name="WM_SIZE" thread="main"

time="1127705893547">
<Caller id="1515"

type="org.eclipse.swt.widgets.Shell"/>
<Callee id="1515"

type="org.eclipse.swt.widgets.Shell"/>
<Argument value="0" type="int"/>
<Argument value="3473906" type="int"/>

</MethodEntry>

<MethodEntry id="23" name="layout" thread="main"
time="1127705893557">

<Caller id="1515"
type="org.eclipse.swt.widgets.Shell"/>

<Callee id="1516"
type="org.eclipse.swt.layout.GridLayout"/>

<Argument id="1515"
type="org.eclipse.swt.widgets.Composite"/>

<Argument value="false" type="boolean"/>
</MethodEntry>
...

<MethodExit id="23" time="1127705893617"/>
<MethodExit id="22" time="1127705893627"/>
...
<ProcessEnd time="1127705926565"/>

</TraceResult>

Figure 4: Example of the JavaTracer’s Output

The class loaded events comprise not only the class that
was actually loaded, but also its super class, if the super
class was given in the input. This information is needed
in dynamic analysis to identify where polymorphism and
dynamic method binding was used.



The two pairs of method entry and exit events describe
two method calls. The first method call WM SIZE (id 22)
was called by an object of org.eclipse.swt.widgets.Shell on it-
self. The second method call with id 23 is nested in the first
one which means that the method layout is called within the
first method WM SIZE on an object of type org.eclipse.swt.
layout.GridLayout.

The output of the JavaTracer can be optimized for the
analysis it is used for. Some information can be omitted such
as the time stamps or even method exit events if information
about method stack traces are not needed. Since tracing can
produce huge amounts of information, it is vital to cut down
the recording to a minimum.

The JavaTracer
Figure 5 depicts a screen shot of the JavaTracer Eclipse
plug-in. We made this screen shot during the monitoring
of Eclipse in the application scenario. On the right hand,
the currently used trace definition document is displayed.
In the upper left corner, the Execution Monitor view shows
a tree of classes and methods that are monitored. For each
method, the number of executions is given and an icon in-
dicates if the method was executed at all. In the lower left
corner, the JavaTracer view displays events occurred dur-
ing the monitoring, whereas the Console view displays the
output of the monitored program.

5. Performance
We measured the performance of our approach by com-

paring the startup times of Eclipse with and without trac-
ing. Without tracing or instrumentation, it is very difficult
to measure the startup time due to the lack of well-defined
measuring points. Since we only want to make a qualitative
statement of the performance, we decided to measure the
time manually. The time was stopped when the CPU-load
of the Eclipse process dropped to 0%. We run the scenarios
ten times and calculated the average duration.

The performance was measured on a Pentium 4-M ma-
chine with 1.8 GHz and 1024 MB RAM. The system was
running Windows XP Professional SP2 and Java 2 Standard
Edition 5.0 Update 4. All other processes were stopped as
far as possible. The workspace of the Eclipse platform con-
sisted of one Java project, which was initially loaded during
the startup of Eclipse.

Scenario #c #m #actc #actm #mc

1 5 9 59 107 2945
2 8 13 204 336 12314

Table 2: Performance Measuring Scenarios

Table 2 shows two different scenarios. In the first scenario,
we monitored the 5 classes (#c) and 9 methods (#m) given
in the example. The actual number of monitored subjects
were 59 classes (#actc) and 107 methods (#actm) due to
implementations of abstract classes and methods as well as
polymorphism. During the startup of Eclipse, there were
2945 method calls (#mc) of the 107 methods recorded.

The second scenario comprised 8 classes/interfaces and 13
methods to be monitored. All classes of the first scenario
plus additional classes and interfaces that play a central role
in the Eclipse environment are monitored. The additional

classes are org.eclipse.core.runtime.Plugin, org.eclipse.core.run-
time.IAdaptable and org.eclipse.core.runtime.IAdapterFactory.
These classes and interfaces are extended or implemented by
multiple other classes. This resulted in a scenario where 204
classes and 336 methods were actually monitored. We used
this second scenario to show the scalability of our approach.

Scenario tw/o tbreak tevents

1 16 sec. 41 sec. 36 min.
2 16 sec. 65 sec. ?

Table 3: Duration of Program Tracings

In Table 3, we present the average startup time for each
scenario. First, the program was executed without any trac-
ing (tw/o). Then, the program was monitored using our
breakpoint events (tbreak) and at last (tevents) by using the
native tracing technique offered by the Java Debug Interface
(JDI) [6]. This technique is limited to monitor all methods
of a class. To compare the native tracing of JDI to our
approach, we recorded only entry and exit events of those
methods given in the input.

The startup times without any tracing are of course equal
for both scenarios. The performance results show that our
approach to selectively trace method calls is feasible. Even
though the number of monitored methods is three times
higher than in the first scenario and the number of method
calls is four times higher, the startup time rises by less than
60%.

In comparison to our approach, the event based approach
offered by JDI is not practicable. We abandoned the perfor-
mance analysis of the event based approach for the second
scenario, since it took too much time.

Although the XML output format may seem too verbose,
it has only a very slight influence on the performance of the
JavaTracer. We analyzed the JavaTracer with a profiler
discovering that more than 90% of the time spent in tracing
is consumed by the JDI interface.

6. Future Work
We are planning to use our behavioral pattern analysis for

conformance checking. When designing components, behav-
ioral patterns can be used to describe protocols on how to
use the interface of the component. In an ideal Model Driven
Development process, the source code is completely gener-
ated from the model. In practice, a hybrid development
process is often used, where parts of a system are generated
and parts are implemented manually. During the implemen-
tation and testing of the components, our dynamic analysis
can check if the actual behavior of the components conforms
to the behavior defined by the behavioral patterns.

References
[1] A. Chawla and A. Orso. A Generic Instrumentation

Framework for Collecting Dynamic Information.
SIGSOFT Software Engineering Notes, Section:
Workshop on Empirical Research in Software Testing.
ACM Press, New York, NY, USA, 29(5):1–4,
September 2004.

[2] Eclipse Foundation. The Eclipse Platform. Online at
http://www.eclipse.org. Last visited: September 2005.



Figure 5: The JavaTracer implemented as an Eclipse Plug-In

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable Object Oriented
Software. Addison-Wesley, Reading, MA, USA, 1995.

[4] B. Lewis. Recording Events to Analyze Programs. In
Object-Oriented Technology. ECOOP 2003 Workshop
Reader. Lecture notes on computer science (LNCS
3013), Springer, July 2003.

[5] J. Niere, W. Schäfer, J. P. Wadsack, L. Wendehals, and
J. Welsh. Towards Pattern-Based Design Recovery. In
Proc. of the 24th International Conference on Software
Engineering (ICSE), Orlando, Florida, USA, pages
338–348. ACM Press, May 2002.

[6] Sun Microsystems. Java Platform Debugger
Architecture(JPDA). Online at
http://java.sun.com/products/jpda/index.jsp. Last
visited: September 2005.

[7] L. Wendehals. Improving Design Pattern Instance
Recognition by Dynamic Analysis. In J. Cook and
M. Ernst, editors, Proc. of the ICSE 2003 Workshop on
Dynamic Analysis (WODA), Portland, USA, pages
29–32, May 2003.

[8] L. Wendehals. Specifying Patterns for Dynamic
Pattern Instance Recognition with UML 2.0 Sequence
Diagrams. In E.-E. Doberkat and U. Kelter, editors,
Proc. of the 6th Workshop Software Reengineering
(WSR), Bad Honnef, Germany,
Softwaretechnik-Trends, volume 24/2, pages 63–64, May

2004.

[9] L. Wendehals. Tool Demonstration: Selective Tracer
for Java Programs. In Proc. of the 12th Working
Conference on Reverse Engineering, Pittsburgh,
Pennsylvania, USA, November 2005. to appear.


