Calculation and Visualization of Software Product Metrics

Matthias Meyer-
Software Engineering Group
Department of Computer Science
University of Paderborn
Warburger Stra3e 100
33098 Paderborn, Germany

mm@uni-paderborn.de

ABSTRACT

The paper presents a further step of the Fujaba Tool Sui-
te RE to support coarse-grained analyses based on metrics
and especially polymetric views. Polymetric views are gra-
phical representations of certain metric combinations. Fol-
lowing an interactive reverse engineering approach, polyme-
tric views can be created on demand. The reverse engineer is
able to define new polymetric view descriptions and create
new views afterwards.

1. INTRODUCTION

Software product metrics are one opportunity to perform
coarse-grained analyses. Metrics such as lines of code, num-
ber of attributes or methods of a class, lack of cohesion or
depth of inheritance hierarchies ([3, 4, 5, 7]) allow for pro-
ducing quantitative analysis results of a software system.
A combination of different metrics allows to draw conclu-
sions such as problematic or high influencing system parts.
To overcome the flood of numbers produced by the metrics,
Lanza proposes in [6] a graphical representation of the me-
tric combinations. So-called polymetric views are an ideal
means to get a first impression of a system.

The Fujaba Tool Suite RE is a collection of reverse engi-
neering tools based on the Fujaba Tool Suite [10] and several
Fujaba plug-ins. The Fujaba Tool Suite RE allows for par-
sing Java source code into an Abstract Syntax Graph (ASG)
representation, which serves as central repository to all fur-
ther analyses. Currently the Tool Suite RE consists of static
and dynamic analysis techniques to recognize implementa-
tions of patterns [8], such as design patterns or antipatterns
[1]. The techniques allow for performing a fine-grained ana-
lysis of a system. Coarse-grained analyses are also possible,
but produce too many uncertain results.

In order to support also fast and reliable coarse-grained
analyses, we extended the Fujaba Tool Suite RE with two
plug-ins. The first plug-in, called MetricsCalculation and de-
scribed in Section 2, offers the calculation of several object-
oriented software product metrics. The second plug-in Po-
lymetricViews, described in Section 3, allows for viewing the
metric results calculated by the first plug-in in polymetric
views as introduced by Lanza. The paper closes with some
future work issues.

*This work is part of the FINITE project funded by the Ger-
man Research Foundation (DFG), prj-no. SCHA 745/2-2.

Jorg Niere
Software Engineering Group
Department of Computer Science
University of Siegen
Hélderlinstr. 3
57068 Siegen, Germany

joerg.niere@uni-siegen.de

2. METRICS CALCULATION

Before the MetricsCalculation plug-in is able to calculate
software product metrics for certain model elements, the sy-
stem to be analyzed has to be parsed into the Abstract Syn-
tax Graph (ASG) representation. Therefore the MetricsCal-
culation plug-in uses the JavaAST plug-in and the JavaParser
plug-in. The ASG comprises UML elements such as classes,
attributes and methods as well as elements corresponding to
classical syntax trees such as literals or assignments. Where-
as the UML elements are used to represent declaration parts,
the other elements are used to represent method bodies. In
the following we call the whole representation the model of
the source code.

Each metric has a unique acronym, e.g. LOC which stands
for Lines Of Code or NOC, Number Of Children, which is
the number of direct sub classes of a class. The user may
select the metrics to be calculated from the list of all sup-
ported metrics (cf. Table 1). Each metric value together with
its acronym is stored in a separate result object that is linked
to the corresponding model element via Meta-Model Inte-
gration (MMI) pattern [2]. The plug-in offers to present all
results in a table.

2.1 Contributing a new metric

Far more metrics exist than currently are supported by
the plug-in. Therefore, the plug-in was designed to be easily
extended by new metrics. Each metric can be calculated for
a particular type of model element. LOC, for example, is
calculated for a method, the metric WLOC computes the
lines of code for a whole class, and the number of children
(NOQC) is calculated on classes as well. For each metric, a
calculator class exists which takes a model element of the
appropriate type as input and calculates its metric value.
All calculator classes implement a common interface. The
data about available metrics is stored in an XML file. The
file contains an XML element for each metric, which besides
the unique acronym contains a name, a description, and the
fully qualified name of the calculator class. Thus, in order to
contribute a new metric, a calculator class that implements
the common interface must be developed and an element
describing the metric has to be added to the XML file.

2.2 Metric thresholds

For each metric, the user may additionally configure a
threshold. If the metric value of a model element exceeds
this threshold, an annotation is created which connects the
model element and the result object (again via MMI pat-
tern). Currently, the annotations are only visible in class

Basiclncrement -
High Influence Class
collapsed [Fljm - ——— - WNOC =58
collapsed ; NOM =70 -

w
-
-
P

Metrics
DIT =1
NOM =70 =
CC callWriteToStringBuffer(Object,Field,FTreeSet) = 24
CC setValue(Field,Object,Hashtable,FDuplicatedTreeMap,FHashMap) = 61 =

Figure 1: A class diagram with metric annotations.

diagrams. The shape of an annotation is a rectangle labeled
with “Metrics”. The rectangle is connected to the shape of
the class containing the annotated model element (cf. Figu-
re 1). In addition, if a class contains several model elements
with metric annotations, only one annotation which is a uni-
on of all metric annotations is shown.

The results shown in Figure 1 were produced by first par-
sing the source code of the basic, asg, and uml packages
of Fujaba (including sub packages). Afterwards, the metrics
DIT, NOM and CC were selected to be calculated and anno-
tated with thresholds 0, 20, and 20, respectively. The results
show that the class Basiclncrement is at the first level in its
inheritance hierarchy (DIT = 1) and defines 70 methods
(NOM = 70). It has two methods with cyclomatic comple-
xity (CC) 24 and 61, respectively. All other methods have
CC values lower than 20. According to [9], CC values from
11 to 20 are still acceptable whereas higher values should be
avoided.

2.3 Metric combinations

Single metric values are sometimes not very expressive.
The fact, for example, that Basiclncrement has 70 methods,
is not too edifying but not too interesting either. However,
Basiclncrement has also a rather high number of all descen-
dant classes (WNOC), i.e. 58. The 58 subclasses of Basi-
clncrement inherit its 70 methods which means that Basi-
clncrement has a high influence in its inheritance hierarchy.
Note that the WNOC value was calculated when only the
source files in the basic, asg, and uml packages of Fujaba
(including sub packages) were parsed. The WNOC value of
Basiclncrement would be much higher if Fujaba had been
parsed completely.

To detect combinations of certain metric values, we of-
fer the specification of boolean expressions over the values
calculated by (possibly different) metrics for the same mo-
del element. A metric combination for high influence classes
could be specified as e.g. (WNOC > 10) & (NOM > 20). In
metric combination expressions the logical operators AND
(&), OR (]), and NOT (!) may be used to join an arbi-
trary number of terms, possibly nested with parentheses.
Each term may compare a metric value, represented by its
acronym, with a number. As comparison operators ==, <,
<, >, and > are supported.

If a metric expression evaluates to true, an annotation is
created and linked to the respective model element. The an-
notations created by metric combinations are displayed on
class diagrams as well. They are also rendered as rectangles
labeled with a name for the combination, e.g. High Influ-
encing Class (cf. Figure 1), and linked to the class containing
the annotated model element. In addition, the annotation
shows the values of all metrics involved in the combination.

Position Metric (x,y)

f Width Metric (w)

Color Metric

$Height Metric (h)

Color Metric

Color Metric

D Entity

— Relationship

Figure 2: Up to 5 metrics can be visualized for one
entity. In addition, entities may have relationships
that do not carry metric values.

3. METRICS VISUALISATION

Metrics are numbers representing facts. We use class me-
trics such as number of methods (NOM) or number of attri-
butes (NOA) or method metrics such as number of parame-
ters (NOP). At the end of the previous section we argue that
combinations of metric values are more expressive than a sin-
gle value. We used a certain combination to give some hints
to interesting parts in a software system, i.e. high influence
classes. This approach has some drawbacks. We firstly have
used absolute values and secondly the values are based on
experience. Whereas normalization is a solution for the first
problem, the second still remains, namely the definition of
what are runaways in the context of the actual software sy-
stem to be analyzed. In [6] Lanza presents Polymetric Views,
which provide a visual representation of metric combinati-
ons. Detecting runaways is done manually by a developer
looking at the produced pictures. Starting from the work
presented in [6], we developed a Fujaba plug-in to visualize
metric values as polymetric views.

3.1 Polymetic Views

Polymetric views are two-dimensional graphs containing
nodes and sometimes edges, which are arranged in a certain
layout. Nodes represent entities of the analyzed software sy-
stem and edges represent relationships between the entities.
Each node is a rectangle and can carry up to 5 metric values
depending on the certain layout, whereas edges do not carry
any metric information. Figure 2 illustrates the 5 potential
metrics of an entity:

e Size: Either the width and height of a node (w,h) can
represent a metric value. Both values have to be grea-
ter than 0.

e Color: The color of a node may also represent a me-
tric. Valid values are one of 256 gray-scale values from
black to white.

e Position: The position of a node (x,y) are the forth
and fifth possible metric values of an entity. This assu-
mes that the used layout allows for positioning nodes
freely.

e Layout: Lanza proposes five major layout algorithms:
Tree, Scatterplot, Histogram, Checker, and Stapled. Our
prototype currently provides Tree and Checker layout.

EFuicba =lo)]

Ele Edt Dagrams ImportfExport ook Options Help Window

OCEEEEE]
'@ iew Descriptions
Data Storage Class Detect
Direct Attribute Access Vie
Implementation Weight Dis
® Inhertance Carer View
Inhertance Classiication V| || 8
® Intemediat Abstract View
Method Efficiency Corelaii
- Method Length Distibution| ||
- Root Class Detection View
» Systam Complesity View
=+ System Hotspots Viey
= Fuizt:a UML-Package]
Lot Create new description

O

ujaba UML-Package

Fuizba

<

[
O views| & L T Fuiba UMLP.

[Swetoome o Fujaba Toot Suitl [72 MEyie of 105 MByie allocaied

Figure 3: System-Hot-Spot view of the de.uni-
paderborn.fujaba.uml package.

The first considers relationships as hierarchical order
to arrange nodes and the second places nodes with the
same metric value in the same row or column.

Absolute metric values may be problematic in polymetric
views. High metric values used for the size or the position of
a node may result in views where only a limited part is visi-
ble on the screen. For example a white colored node with a
width and height larger than 3-5 times of the screen size may
result in a white screen showing the inner part of the node
only. Thus, a developer is not able to get an overview of all
nodes in the view. To solve this problem, we use a mapping
function that maps metric values to values better suited for
the screen-size. Mainly the mapping function scales absolute
metric values. To let the developer see all entities even the
ones with metric values of 0, we add a constant value (mi-
nimal node size) to the scaled metric values. Both values,
the zoom factor as well as the minimal node size value are
interactively changeable for a certain view.

3.2 Prototype

Entities of a polymetric view correspond to parts of the
software system currently under investigation. A certain po-
lymetric view is an instance of a polymetric view description
on a certain part of the software, called polymetric view con-
text. Hence we currently focus on coarse-grained analysis to
get a first impression of the software, the context is a set of
classes. Our prototype consists of a dialog to select the con-
text based on the current package structure of the software.

Figure 3 shows the prototype of the PolymetricViews plug-
in. The project tree on the left hand side shows all currently
available polymetric view descriptions. The current view is
the System-Hot-Spot view of the core meta-model classes of
Fujaba located in the uml and all sub packages.

Each of the 203 entities in the polymetric view corre-
sponds to one class. The width and height of a node carry
the number of methods of the class (NOM) and the color
carries the class’ depth in the inheritance tree (DIT). The
checker layout arranges the nodes according to their size in
ascending order. Due to the 2-column layout of this paper,
each line has a fixed number of 10 nodes, except the last line.

ﬂFujaha M= b5

File Edit Diagrams Import/Export Tools Options Help ‘window

|o|e|a] s el =iw|

@_ “Wiew Descriptions ~= Fujaba Basic&:UML-Package == x|
@ Data Storage Class Detection _—E—mﬂﬁ

Dirgct Attribute Access Yiew
IIIIIIII|‘ e ==]

Inheritance Carrier Yiew
Inheritance Classification View
Intermediate Abstract View
Method Efficiency Comelation
Method Length Distibution ey
Fioot Class Detection Yiew
System Complexity Views
System Hotspots Wiew

Create new description

sessssress .

DDI.DDDDIDIEDI-D
I

&
BasicIncrement

width: WHOC 58
a Height: NOM 70
1 | A-Posi - 21z
WW =] | = | % de.uni_pader...|y pos. - cag
= = Colort DIT 1
| Welcome to Fujaba Tool Suite! |28 My D=y AT

Figure 4: High-Influence-Class view example.

The zoom value can be modified with the slider on the right
hand side. Going over a node, the appearing tool tip note
shows the absolute metric values of the entity. For example,
the UMLAttr class has 78 methods and 4 super classes in the
inheritance tree.

What is the interpretation of this polymetric view? The
meta-model classes of Fujaba have usually small interfaces,
i.e. number of methods. The UMLAttr entity is at a depth
of 5 in the inheritance tree. The black color of the UMLAt-
tr entity indicates that this is also the maximum depth of
the tree. Furthermore, there is no really dominating color,
which would indicate an inheritance level with many clas-
ses. More problematic is the rightmost node in the last line.
The node that corresponds to the UMLClass class is near-
ly double sized compared to the next smaller one, which
means the entity has nearly twice the number of methods.
Such classes in general need further analysis. In this case
we observed that UMLClass is the central part of the meta-
model of Fujaba and has many associations to other classes
in the meta-model. Hence we originally generated the class
and map associations to access methods, it has a huge num-
ber of association access methods. Thus it would be better to
count only non-access methods. Unfortunately software pro-
duct metrics are inappropriate to classify methods in that
way. For this purpose, the already existing pattern instance
detection is better suited.

3.3 Defining Polymetric Views

Lanza proposes 12 polymetric views organized in 3 cate-
gories for a coarse-grained analysis of a system. The first
category is titled First Contact Views such as the System
Hot Spot view shown in Figure 3. The second category In-
heritance Assessment Views contains views to analyze the

inheritance structure. Views in the third category Candidate
Detection Views detect entities that need further analysis.

In Section 2 we have proposed a metric combination of
the number of methods (NOM) metric and the number of
all descendant classes (WNOC) metric. Classes with metric
values (WNOC > 10) & (NOM > 20) got a High Influencing
Class annotation. Non of Lanza’s polymetric views offers
this metric combination, thus we have to define a new one.

The PolymetricViews plug-in allows the developer to dy-
namically define new view descriptions. A new polymetric
view description consists of the following parts:

e the assignment of metrics to the size, position and color
of an entity.

e a layout that arranges the entities and relationships.

e a factory that provides entities and relationships.

After the developer has defined the new polymetric view
description, new views can be created. For example, Figure
4 shows the above described combination of the NOM and
WNOC metrics of classes. The largest sized node is the Ba-
siclncrement class. To our surprise the second largest sized
node corresponds to class UMLIncrement that is located 2
inheritance levels below the Basiclncrement class. The UM-
LIncrement entity has a WNOC value of 56 that is 2 less than
the Basiclncrement entity but much more methods, i.e. 195.
We can not make the statement that this is ugly design, be-
cause the methods in UMLIncrement may override the ones
in Basiclncrement. To strengthen an ugly design statement
we have to make further investigation, perhaps enhance the
new polymetric view description with the number of over-
ridden methods (NMO) metric.

4. FUTURE WORK

Primary future work is the seamless integration of the me-
tric analysis techniques into the overall reverse engineering
process supported by the Fujaba Tool Suite RE. In particu-
lar, the existing pattern instance recognition and the metrics
calculation will be integrated in such a way, that certain me-
tric values or combinations may be used as triggers for fine-
grained analyses with the pattern recognition. Furthermore,
pattern specifications will be enabled to require that the
metric values calculated for certain model elements do (not)
exceed specific threshold values. The polymetric views will
be used to determine those threshold values for the actual
system to be analyzed.

Acknowledgments

We thank Lukas Roth and Jens Falk who implemented the
MetricsCalculation and the PolymetricViews plug-ins, respec-
tively, as part of their bachelor theses.

5. REFERENCES

[1] W. Brown, R. Malveau, H. McCormick, and
T. Mombray. Anti Patterns: Refactoring Software,
Architectures, and Projects in Crisis. John Wiley and
Sons, Inc., 1998.

[2] S. Burmester, H. Giese, J. Niere, M. Tichy, J. P.
Wadsack, R. Wagner, L. Wendehals, and A. Ziindorf.
Tool integration at the meta-model level within the
fujaba tool suite. International Journal on Software
Tools for Technology Transfer (STTT), 6(3):203-218,
Aug. 2004.

Acronym [Short description Scope
ADIT Attribute Depth of Inheritance Tree|Attribute
AvgCC |Average cyclomatic complexity Class
AvgNLA | Average number of local accesses Class
CC McCabes cyclomatic complexity Method
DIT Depth of inheritance tree Class
LCOM |Lack of cohesion in methods Class
LOC Lines of code in method Method
MDIT Method depth of inheritance tree Method
NAM Number of abstract methods Class
NBLD Nested block depth Method
NCV Number of class variables Class
NI Number of invocations Method
NIA Number of inherited attributes Class
NIV Number of instance variables Class
NLA Number of local accesses Attribute
NMA Number of methods added Class
NMAA |Number of accesses on attributes Method
NME Number of methods extended Class
NMI Number of methods inherited Class
NMO Number of methods overridden Class
NOA Number of attributes Class
NOC Number of children Class
NOCL Number of classes Project
NOINT |Number of interfaces Project
NOM Number of methods Class
NOP Number of parameters Method
NOS Number of statements Method
NPA Number of public attributes Class
PLOC Lines of code in project Project
SIX Specialization index Class
WLOC |Lines of code in class Class
WMC Weighted methods per class Class
WNI Number of all method invocations |Class
WNLA |Sum over NLA Class
WNMAA [|Sum over NMAA Class
WNOC |[Number of all descendant classes Class
WNOS |Number of statements in class Class

Table 1: Currently supported metrics. Each metric
has a unique acronym, a name, and a scope, which
indicates the type of ASG element the metric can
be calculated for.

[3] S. R. Chidamber and C. F. Kemerer. A metrics suite
for object oriented design. IEEE Trans. Softw. Eng.,
20(6):476-493, 1994.

[4] N. E. Fenton and S. L. Pfleeger. Software Metrics - A
Rigorous & Practical Approach. International
Thompson Computer Press, second edition edition,
1996.

[5] B. Henderson-Sellers. Object-Oriented Metrics:
Measures of Complexity. Prentice-Hall, 1996.

[6] M. Lanza. Object-Oriented Reverse Engieering. PhD
thesis, University of Berne, Switzerland, 2003.

[7] M. Lorenz and J. Kidd. Object-Oriented Software
Metrics: A Practical Guide. Prentice-Hall, 1994.

[8] J. Niere, W. Schiifer, J. P. Wadsack, L. Wendehals,
and J. Welsh. Towards pattern-based design recovery.
In Proc. of the 24*" International Conference on
Software Engineering (ICSE), Orlando, Florida, USA,
pages 338-348. ACM Press, May 2002.

[9] Software Engineering Institute, Carnegie Mellon
University, USA. Cyclomatic Complezity: Software
Engineering Roadmap. Online at
http://www.sei.cmu. edu/str/descriptions/
cyclomatic_body.html.

[10] University of Paderborn, Germany. Fujaba Tool Suite.
Online at http://www.fujaba.de/.

