
Towards Model-Driven Middleware Maintenance

Jörg P. Wadsack1

Department of Computer Science
University of Paderborn

Warburger Str. 100
33098 Paderborn

Germany
maroc@upb.de

Jens H. Jahnke
Department of Computer Science

University of Victoria
PO Box 3055
Victoria B.C.

Canada V8W3P6
jens@cs.uvic.ca

1 Jörg P. Wadsack was a visiting researcher with the NET-lab group at the University of Victoria from January to April 2002.

Abstract
Over the last decades, network-centric information
management has tremendously changed the business processes
of organizations in the private and public sector. The
introduction of middleware technology and standards has
played an instrumental role in this development by enabling
integration of distributed heterogeneous information systems
(IS). Modern (so-called third-generation) net-centric systems
use middleware among various types of software components
ranging from mainframe computers down to PDAs and cell
phones. The maintenance and evolution of such middleware
software is a key challenge because of rapidly evolving
hardware and software platforms. In this paper, we outline a
systematic process for engineering and maintaining middleware
solutions for third generation systems; this process is based on
the Model-Driven Architecture™ approach of the Object
Management Group.

Keywords:
Software integration and maintenance, reengineering,
model-driven engineering, middleware, network-centric
systems, software generation

1. Middleware in Net-Centric
Organizations

Today’s requirements for distributed heterogeneous
systems have to consider large amounts of information
spread over multiple locations and platforms. Third
generation network-centric systems need middleware

within corporate organisations,
among corporate organisations and
between corporate IS and mobile, embedded smart
devices.

Figure 1 Third generation middleware

Those three middleware types are depicted in Figure 1.
We call middleware for federating IS within
organisations corporate middleware. The middleware
required for mediating different organisations is called
mediation middleware. Finally, ubiquitous middleware
denotes middleware that integrates organisational IS to
“every-day” embedded devices.

Today more than ever before, industrial organizations are
constantly evolving. Since modern organizations largely
depend on IT infrastructures, there is a strong
requirement that these infrastructures (middleware)
facilitate this evolution.

IS federation

Organisation

Corporate
middleware

Cell
phone

Tablet

Ubiquitous
middleware

PDA

Mediation
middleware

Organisation

http

Web
browsers

Organisation

2. Model-Driven Middleware Maintenance
Currently model-driven approaches like "Model-driven
software development", "Model-driven engineering" or
“OMG’s Model-Driven Architecture™ ” are discussed in
the software engineering community. Another
(re)emerging topic is model-driven “Information System
Integration”. How are model-driven approaches and IS
integration related? Integration of IS generally takes
place by means of some sort of middleware, i.e.
modeling an architecture to realize interoperability of the
IS to integrate. Model-driven middleware maintenance is
the combination of middleware architecture and model-
driven software development.

2.1 Model-Driven Architecture™
The OMG Model-Driven Architecture™ (MDA) is a
general approach of the OMG for building distributed
heterogeneous systems. MDA is build upon the Unified
Modeling Language™ (UML), the Meta-Object
Facility™ (MOF) and the Common Warehouse Meta-
model™ (CWM), which are accepted modeling
standards [MDA01].

The core idea of MDA is a process model to unify the
analysis and the design of distributed heterogeneous
systems. To facilitate this, MDA separates structure and
function of a system from its technical realization. The
process is anchored on two models, namely the
“Platform Independent Model” (PIM) and the “Platform
Specific Model” (PSM). Figure 2 shows an overview of
the MDA process. The PIM is separated in two sub-
models, one for the business logic (computational
independent) and one for the component view
(computational dependent) of the system.

The mappings in a model or between the two models are
described in [MDA01]:

PIM to PIM mappings are model refinements during
the development lifecycle that do not need any
platform dependent information. Those
transformations also relate the business models and
the component views. They build the bridge between
requirements, analysis and design.
PIM to PSM mappings are performed once the PIM is
elaborated enough to be associated to the
characteristics of the chosen platform. It is a
projection to the execution infrastructure of the
platform. The projection from a conceptual
component view model to existing specific
commercial middleware platforms like CCM for
CORBA [COR01] or EJB for J2EE [GOS+01].
PSM to PSM mappings are model refinements during
the realization and deployment of components. An
example for PSM to PSM transformation is the
selection of services and preparation of their
configuration.
PSM to PIM mappings are model reverse engineering
operations. Those transformations are needed to build
abstract models from existing implementation of
specific middleware technologies. Those model
transformations are part of a "mining" process, which
can hardly be fully automated.

The code generation can be done by commercially
available UML tools depending on the chosen platform
and specific technology. Unfortunately, the reverse
engineering aspect is almost left open by the MDA.
Here, the OMG recommends the use of adequate reverse
engineering tools, but these are hardly available to date
[MJS+00].

The forward engineering aspects of MDA are well
described in literature and supported by existing CASE
tools. The reverse engineering issue and the "mining"
process of the PSM to PIM mapping are only described
vaguely in the MDA related documents. However, these
aspects are of crucial importance for middleware and
mediation technologies, which have to deal with pre-
existing IS legacies. The following sections approach
this problem in the general framework of the OMG
Model-Driven Architecture™ .

2.2 Model-Driven Middleware
Maintenance Process

The Model-driven Middleware Maintenance (MMM)
process outlined in this section deals with existing legacy
distributed heterogeneous systems, which have to be
integrated, renovated, redesigned, extended, etc. The
MMM process is depicted in Figure 3.

Figure 2 MDA process

PIM to PSM

CODE GENERATION Reverse Engineering

PSM
to

PSM

PIM
to

PIM

PSM
to

PIM

Platform Specific Model
[CORBA, EJB, .NET,…]

Platform Independent
Component View

Computation Independent
Business Model

Platform Independent Model

The start of the process is a recovery of the different
components of the distributed heterogeneous system.
Second, we investigate the relationships and
dependencies between these component information
models. We call these intersections “join points”. Third,
a classification of components or component groups is
made into the three middleware types introduced earlier,
namely, corporate middleware, mediation middleware,
and ubiquitous middleware. Finally, the generation of the
middleware is performed.

The first activity in the MMM process is to reverse
engineer the existing component information models and
to define new ones if requested. Due to our experience,
this task generally takes several iterations because the
information that has to be collected is often obsolete and
spread over the whole system. Moreover the reverse
engineering task has to deal with uncertain assumptions.
Therefore, only an interactive process makes sense
because expert’s knowledge is required.

Comparing this task to MDA, defining component
information models and iterate them correspond to the
PIM to PIM transformations. The reverse engineering
steps correspond to PSM to PIM followed by PIM to
PIM mappings, cf. Figure 2. For simplicity, we will write
only PSM to PIM mappings instead of reverse
engineering and PSM to PIM mappings, but a
preliminary reverse engineering task is always needed to
get a PSM.

Once all component information models are identified
and completed, the definition of how they interoperate is
needed. This task is similar to the first one and involves
the reverse engineering of relationships and
dependencies between component information models to
be integrated. Again (only) a semi-automatic, iterative
approach is feasible.

Those steps of the task are PIM to PIM transformations,
which are triggered by PSM to PIM transformations.
Defining join points are PIM to PIM mappings. Reverse
engineering join points are PIM to PIM transformations,
which are triggered by PSM to PIM mappings, i.e. the
iterative revealing of dependencies between existing
component information models.

The two first activities are part of a semi-automatic,
iterative process. Such a process should be supported by
tools that execute the tasks that can be automated, reflect
intermediate results to the users and provide consistency
control during process iterations.

The next activity is to classify the relationships among
the component information models along with their join
points into one of the three middleware types.

The join-points between two components should be
classified as “organizational” if they require federation
within the same organization. From a users perspective
such components look like a single system. Corporate
middleware is used for integrating such components.

Figure 3 MMM process

Second, join-points between components can be
classified “inter-enterprise”. In this case, the components
retain a large amount of their autonomy, i.e. information
is typically replicated, duplicated and synchronized
according to certain interoperability policies.

Third, some component information models might reside
on mobile and embedded devices. Join-points of such
embedded components with organizational IS
components are classified as “ubiquitous”.

Looking at the model mappings of MDA, the
classification into the three middleware types are PIM to
PIM and PIM to PSM transformations. The decision
which type of middleware the component information
model will be attributed is anchored (1) on the business

Define / reverse engineer
component information

models

Define / reverse
engineer join points

Classify component
information models &

join points

Generate
middleware

Iteration

Iteration

Component information models

Component information
models & join points

Iteration

Iteration

Organizational
(data federation)

Inter-
enterprise

Ubiquitous
(mobile and

smart devices)

Mediation
middleware

Corporate
middleware

Ubiquitous
middleware

logic (PIM to PIM) and (2) on the existing infrastructure
of (some or all) components (PIM to PSM).

From each activity, backward iterations to the precedent
process activities are needed because of misinterpreted,
incomplete or even erroneous intermediate results.
Summarizing, the three first tasks of the MMM process
are done in an iteration loop.

After classifying all component information models with
the adequate join points, tools generate the software for
the middleware and the join points of the distributed
heterogeneous system. We distinguish between two
different kinds of join point generation:

middleware for join points in the same category
portals for join points in different categories

Each middleware type (corporate, mediation, ubiquitous)
generation includes both join point generation kinds.

In case of corporate middleware, our process
encompasses the generation of a federated access layer
that supports open nested transactions on the integrated
component IS. In addition, interfaces (portals) for the
two other middleware types are generated.

The deployment of mediation middleware involves the
generation of information import/export portals based on
wrappers to access the organisational IS components.

Finally, ubiquitous middleware is generated for
implementing join point among organizational and
ubiquitous (mobile) information models.

3. Tool support
The process described in the previous section requires
tools for several aspects. The tool representing the
different component information models and defining
join points is called Fujaba Middleware Toolkit (FMT).
FMT is based on the UML tool Fujaba [Fujaba] and
supports PIM to PIM transformations, such that
component information models can be defined. Figure 4
shows an overview of the tool support.

Varlet/Babel [JB01a, JB01b] enables the analysis and
reverse engineering of the structure of data repositories
and their PSM representation in (E)ER. The interactive
reverse engineering process is based on semantic pattern
detection of SQL code as described in [JSZ97]. The
microSynergy tool [Jah01, DJ01] provides information
models for ubiquitous components. Reddmom
[Reddmom] imports the component information models
and supports PSM to PIM mapping for the component
information models. Furthermore the import of PSM
representations in XML of other component information
models, e.g. of semi-structured data models, from other
tools is incorporated in Reddmom.

The definition and design of join points are part of the
PIM to PIM transformation supported by FMT. The
revealing of join points is part of Reddmom, which is
also based on Fujaba. This join point reverse engineering
functionality is based on a join point detection pattern
catalogue and the pattern recognition mechanism
[NSW+02] provided by Fujaba. This pattern recognition
mechanism is based on the analysis mechanism
described by Jahnke et al. [JSZ97] and infers the
detection from an abstract syntax graph. Details of this
part of the MMM process tool support are described in
[WNGJ02].

Figure 4 Tool support

The classification of the component information models
in the three different middleware types has to be done by
the engineer using FMT. The middleware generation of
the different types is split to the three other tools.

The corporate middleware generation is integrated in
Reddmom. Reddmom supports the generation of an
object-oriented transactional component middleware in
Java. The basis of corporate middleware generation in
Reddmom is the mapping between each data repository
structure and the conceptual architectural view of the
data federation. Based upon the mapping, interfaces to
the different data repositories are generated. A
transaction can span several data repositories and
transaction may be nested. The transaction nesting is
supported by the object-oriented transaction management
mechanism. The provided transaction management
mechanism is based on four patterns proposed by Grand
[Gra99].

To support ACID property for transactions, no operation
affecting a data repository can be performed without a
transaction object and transaction mechanisms from the
data repositories are used if present. In addition, the data
repository interfaces store all information valid before
submitting the transaction and all information subject to
be changed by the transaction. Some data repositories,

Fujaba
Middleware

Toolkit

Reddmom micro
Synergy

Varlet/
Babel

PIM
to

PIM

Reverse engineering and code generation

PSM
to

PSM

PSM
to

PSM

PIM to PSM &
PSM to PIM

PIM to PSM PIM to PSM

mainly databases, support a success check for transaction
before committing. This support is used when it is
available.

For the generation of e.g. .NET, CORBA or EJB
middleware the corresponding UML representation of
the component information models can de exported to
XML and then imported to other tools, which support the
desired middleware generation, e.g., Websphere Studio
[WebSphere].

For the mediation middleware generation the
Varlet/Babel tool is used. Valet/Babel can generate XML
portals for (ODBC) data sources based on IBM’s XML
Lightweight Extractor [XLE]. Furthermore, Varlet/Babel
can generate data mediation agents between two different
XML structures based on their DTDs. If another kind of
middleware is requested, the export of the component
information models in XML is supported (for the import
in third party tools).

The generation of the ubiquitous middleware is done by
the microSynergy tool. It has been developed in
cooperation with Intec Automation Inc., a local company
in the area of network-centric embedded systems. The
microSynergy tool enables the generation of embedded
interoperability portals based on finite state machine
models and SOAP. Using microSynergy, the user can
select the kind of information (sensoric data, event
signals etc.) should be imported and exported to,
respectively from the embedded device. MicroSynergy
then generates a limited-scale HTTP server on the
embedded device that serves as the XML portal. UVic
have begun to integrate microSynergy with wireless
protocols as well, e.g., Bluetooth.

4. Related Work
Our presented approach is a specific instantiation of the
OMG Model-Driven Architecture™ (MDA) process
[MDA01]. As presented the MDA is a general approach
for the analysis and design of heterogeneous distributed
system development. The MMM process focuses on
middleware for heterogeneous distributed systems and
refines the MDA process, especially the reverse
engineering direction.

Approaches and tools for component information model
reengineering activities are e.g. DB-Main [EH99] and
Varlet [Jah99]. Both tools cover all phases of database
reverse engineering from schema recovery up to building
a conceptual schema. In Varlet an interactive process to
handle uncertainty and inconsistency during recovery of
information models (comprising relationships) is based
on Generic Fuzzy Reasoning Nets [JSZ97, Jah99] which
revert to code and data analysis. DB-Main provides
generation of conceptual wrappers, i.e., software layers
that interface a database based on the conceptual schema

[TCHH99]. Both approaches are restricted to one
component information model at a time and lacks
flexibility for recovering join points.

An overview of reverse engineering methods and tools
that can be further used and adapted for the process
presented in this paper is given in [MJS+00]. To our best
knowledge the field of recovering join points is poorly
explored.

Common solution for IS integration middleware within
organisations is distributed transaction processing
[XA94] as provided by transaction monitors [Hud94,
Hal96] and middleware transaction services [JTS99,
OTS98]. A more scalable solution is reliable messaging
[Lew99, Hou98] which results in a reliable asynchronous
processing scenario. Liebig and Tai propose an
integration of message-oriented transactions and
distributed object transaction to middleware mediated
transactions [LT01].

Mascolo et al. present a data-sharing middleware for
mobile computing, namely xmiddle [MCZE02]. The
sharing of XML documents across heterogeneous mobile
hosts is provided by xmiddle, allowing on-line and off-
line access to data. Replication transparency is
abandoned by xmiddle to achieve an acceptable
performance and scalability.

5. Conclusions
Middleware is an important part of third-generation net-
centric software systems. It is important to facilitate its
maintenance and evolution in order to enable
organisations to evolve and exploit the newest hard and
software platforms. A model-driven middleware
maintenance process can support this goal.

We choose a model-driven engineering rather than a
round-trip engineering approach because model-driven
development guarantees permanent consistency between
model and code. Compared to round-trip engineering,
productivity increases by more than 30% with a model-
driven engineering approach [Softeam].

Acknowledgments
We thank the Advanced Systems Institute of British
Columbia (ASI), the National Science and Engineering
Research Council (NSERC) and Intec Automation Inc.
for their ongoing support and funding of our research.
For their work on the tools Reddmom, Varlet/Babel and
microSynergy project we thank Yury A. Bychkov, Derek
Church, David Dahlem, Mark d’Entremont, Mike
Lavendar, Andrew McNeir, Adeniyi Onabajo and Felix
Wolf.

References
[COR01] Object Management Group. The Common Object

Request Broker: Architecture and Specification Revision
2.6. 492 Old Connecticut Path, Framingham, MA 01701,
USA. http://www.omg.org/technology/documents/corba_
spec_catalog.htm . 2001.

[DJ01] M. D'Entremont and J.H. Jahnke. microSynergy -
Generative Tool Support for Networking Embedded
Controllers. in 3rd Intl. Workshop on Net-Centric
Computing (NCC'01). Toronto: ACM Press. May 2001.

[EH99] V. Englebert and J-L. Hainaut. DB-MAIN: A Next
Generation Meta-CASE. Journal of Information Systems -
Special Issue on Meta-CASEs, Vol 24(2), pp 99-112, 1999.

[Fujaba] From UML to Java And Back Again.
http://www.upb.de/cs/fujaba.

[GOS+01] J. Griffin, D. O'Connor, D. Sarang, K. Gabhart, D.
Young, A. Tost, T. McAllister, R. Adatia, M. Juric, T.
Osborne, F. Arni, J. Lott, V. Nagarajan, A. Mulder and C.
Berry. Professional EJB. Wrox Press Ltd., UK. ISBN 1-
861005-08-3. July 2001.

[Gra99] M. Grand. Transaction Patterns A Collection of Four
Transaction Related Patterns. Proceedings of Pattern
Languages of Programs. Urbana, IL, USA. August 1999.

[Hal96] C. L. Hall. Building Client/Server Applications Using
TUXEDO. John Wiley & Sons, Inc., 1996.

[Hou98] P. Houston. Building Distributed Applications with
Message Queuing Middleware. Microsoft Cooperation,
1998.

[Hud94] E. S. Hudders. CICS: A Guide to Internal Strucure.
John Wiley & Sons, Inc., 1994.

[Jah99] J.H. Jahnke. Management of Uncertainty and
Inconsistency in Database Reengineering Processes. PhD
thesis, University of Paderborn, Paderborn, Germany,
September 1999.

[Jah01] J.H., Jahnke. Engineering Component-based Net-
Centric Systems for Embedded Applications. in Joint
European Software Engineering Conference and
Foundations of Software Engineering (ESEC/FSE '01).
Vienna, Austria: ACM Press. September 2001.

[JB01a] J.H. Jahnke and Y. Bychkov. VARLET/BABEL: Toolkit
for Net-Centric Legacy Data Integration. in 3rd Intl.
Workshop on Net-Centric Computing (NCC'01). Toronto,
Canada: ACM Press. Mai 2001.

[JB01b] J.H. Jahnke and Y. Bychkov. Interactive Migration of
Legacy Databases to Net-Centric Technologies. in
Workshop on Data Reverse Engineering (DRE 2001).
Stuttgart, Germany: ACM Press. October 2001.

[JSZ97] J.H. Jahnke, W. Schäfer, and A. Zündorf, Generic
Fuzzy Reasoning Nets as a basis for reverse engineering
relational database applications. Proc. of European
Software Engineering Conference (ESEC/FSE), LNCS
1302, Springer Verlag, September 1997.

[JTS99] JTS. Java Transaction Service (JTS). Sun
Microsystems Inc., December 1999. Version 1.0.

[Lew99] R. Lewis. Advanced Messaging Applications with
MSMQ and MQSeries. Que, 1999.

[LT01] C. Liebig and S. Tai. Middleware Mediated
Transactions. Proceedings of the 3rd International
Symposium on Distributed Objects & Applications. Rome,
Italy. September 2001.

[MCZE02] C. Mascolo, L. Capra, S. Zachariadis and W.
Emmerich. XMIDDLE: A Data-Sharing Middleware for
Mobile Computing. To appear in Int. Journal on Wireless
Personal Communications. Kluwer. 2002.

[MDA01] Model Driven Architecture (MDA) Edited by
Joaquin Miller and Jishnu Mukerji.
http://www.omg.org/cgi-bin/doc?ormsc/2001-07-01

[MJS+00] H.A. Müller, J.H. Jahnke, D.B. Smith, M.A. Storey
and K. Wong. Reverse Engineering: a roadmap. Future of
Software Engineering. International Conference on
Software Engineering (ICSE), Limerick, Irland. Editor A.
Finkelstein ACM Press. June 2000.

[NSW+02] J. Niere, W. Schäfer, J.P. Wadsack, L. Wendehals,
and J. Welsh. Towards Pattern-Based Design Recovery.
Proc. of the 24th International Conference on Software
Engineering (ICSE), Orlando, Florida. May 2002.

[OTS98] OTS. Transaction Service Specification. Object
Management Group, February 1998.

[Reddmom] ReEngineering of Distributed (federated)
Databases for Multimedia Objectoreineted Middleware.
http://www.upb.de/cs/reddmom.

[Softeam] Softeam. Model driven Engineering (MDE) versus
Roundtrip engineering (RTE). White Paper.
http://www.softeam.fr/us/smot_uml_white.htm. 2000.

[TCHH99] P. Thiran, A. Chougrani, J-M. Hick, and J-L.
Hainaut. Generation of Conceptual Wrappers for Legacy
Databases, DEXA'99 conference, Florence, September
1999.

[WebSphere] http://www.ibm.com/websphere.
[WNGJ02] J.P. Wadsack, J. Niere, H. Giese and J.H. Jahnke.

Revealing Data Dependencies in Web Information Systems.
ICSM 2002 Workshop on Database Maintenance and
Reengineering (DBMR02), Montréal, Canada, October
2002.

[XA94] XA. Distributed Transaction processing: The XA+
Specification, version 2. X/Open Group, 1994. X/ Open
Company, ISBN 1-85912-046-6, Reading, UK.

[XLE] http://www.alphaworks.ibm.com/tech/xle.

