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Abstract 
Over the last decades, network-centric information 
management has tremendously changed the business processes 
of organizations in the private and public sector. The 
introduction of middleware technology and standards has 
played an instrumental role in this development by enabling 
integration of distributed heterogeneous information systems 
(IS). Modern (so-called third-generation) net-centric systems 
use middleware among various types of software components 
ranging from mainframe computers down to PDAs and cell 
phones. The maintenance and evolution of such middleware 
software is a key challenge because of rapidly evolving 
hardware and software platforms. In this paper, we outline a 
systematic process for engineering and maintaining middleware 
solutions for third generation systems; this process is based on 
the Model-Driven Architecture™  approach of the Object 
Management Group. 
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1. Middleware in Net-Centric 
Organizations 

Today’s requirements for distributed heterogeneous 
systems have to consider large amounts of information 
spread over multiple locations and platforms. Third 
generation network-centric systems need middleware 

within corporate organisations, 
among corporate organisations and 
between corporate IS and mobile, embedded smart 
devices. 

 

Figure 1 Third generation middleware 

Those three middleware types are depicted in Figure 1. 
We call middleware for federating IS within 
organisations corporate middleware. The middleware 
required for mediating different organisations is called 
mediation middleware. Finally, ubiquitous middleware 
denotes middleware that integrates organisational IS to 
“every-day” embedded devices. 

Today more than ever before, industrial organizations are 
constantly evolving. Since modern organizations largely 
depend on IT infrastructures, there is a strong 
requirement that these infrastructures (middleware) 
facilitate this evolution. 
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2. Model-Driven Middleware Maintenance 
Currently model-driven approaches like "Model-driven 
software development", "Model-driven engineering" or 
“OMG’s Model-Driven Architecture™ ” are discussed in 
the software engineering community. Another 
(re)emerging topic is model-driven “Information System 
Integration”. How are model-driven approaches and IS 
integration related? Integration of IS generally takes 
place by means of some sort of middleware, i.e. 
modeling an architecture to realize interoperability of the 
IS to integrate. Model-driven middleware maintenance is 
the combination of middleware architecture and model-
driven software development. 

2.1 Model-Driven Architecture™  
The OMG Model-Driven Architecture™  (MDA) is a 
general approach of the OMG for building distributed 
heterogeneous systems. MDA is build upon the Unified 
Modeling Language™  (UML), the Meta-Object 
Facility™  (MOF) and the Common Warehouse Meta-
model™  (CWM), which are accepted modeling 
standards [MDA01].  

The core idea of MDA is a process model to unify the 
analysis and the design of distributed heterogeneous 
systems. To facilitate this, MDA separates structure and 
function of a system from its technical realization. The 
process is anchored on two models, namely the 
“Platform Independent Model” (PIM) and the “Platform 
Specific Model” (PSM). Figure 2 shows an overview of 
the MDA process. The PIM is separated in two sub-
models, one for the business logic (computational 
independent) and one for the component view 
(computational dependent) of the system. 

The mappings in a model or between the two models are 
described in [MDA01]: 

PIM to PIM mappings are model refinements during 
the development lifecycle that do not need any 
platform dependent information. Those 
transformations also relate the business models and 
the component views. They build the bridge between 
requirements, analysis and design. 
PIM to PSM mappings are performed once the PIM is 
elaborated enough to be associated to the 
characteristics of the chosen platform. It is a 
projection to the execution infrastructure of the 
platform. The projection from a conceptual 
component view model to existing specific 
commercial middleware platforms like CCM for 
CORBA [COR01] or EJB for J2EE [GOS+01]. 
PSM to PSM mappings are model refinements during 
the realization and deployment of components. An 
example for PSM to PSM transformation is the 
selection of services and preparation of their 
configuration.  
PSM to PIM mappings are model reverse engineering 
operations. Those transformations are needed to build 
abstract models from existing implementation of 
specific middleware technologies. Those model 
transformations are part of a "mining" process, which 
can hardly be fully automated. 

The code generation can be done by commercially 
available UML tools depending on the chosen platform 
and specific technology. Unfortunately, the reverse 
engineering aspect is almost left open by the MDA. 
Here, the OMG recommends the use of adequate reverse 
engineering tools, but these are hardly available to date 
[MJS+00]. 

The forward engineering aspects of MDA are well 
described in literature and supported by existing CASE 
tools. The reverse engineering issue and the "mining" 
process of the PSM to PIM mapping are only described 
vaguely in the MDA related documents. However, these 
aspects are of crucial importance for middleware and 
mediation technologies, which have to deal with pre-
existing IS legacies. The following sections approach 
this problem in the general framework of the OMG 
Model-Driven Architecture™ . 

2.2 Model-Driven Middleware 
Maintenance Process 

The Model-driven Middleware Maintenance (MMM) 
process outlined in this section deals with existing legacy 
distributed heterogeneous systems, which have to be 
integrated, renovated, redesigned, extended, etc. The 
MMM process is depicted in Figure 3.  

 

Figure 2 MDA process 
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The start of the process is a recovery of the different 
components of the distributed heterogeneous system. 
Second, we investigate the relationships and 
dependencies between these component information 
models. We call these intersections “join points”. Third, 
a classification of components or component groups is 
made into the three middleware types introduced earlier, 
namely, corporate middleware, mediation middleware, 
and ubiquitous middleware. Finally, the generation of the 
middleware is performed. 

The first activity in the MMM process is to reverse 
engineer the existing component information models and 
to define new ones if requested. Due to our experience, 
this task generally takes several iterations because the 
information that has to be collected is often obsolete and 
spread over the whole system. Moreover the reverse 
engineering task has to deal with uncertain assumptions. 
Therefore, only an interactive process makes sense 
because expert’s knowledge is required. 

Comparing this task to MDA, defining component 
information models and iterate them correspond to the 
PIM to PIM transformations. The reverse engineering 
steps correspond to PSM to PIM followed by PIM to 
PIM mappings, cf. Figure 2. For simplicity, we will write 
only PSM to PIM mappings instead of reverse 
engineering and PSM to PIM mappings, but a 
preliminary reverse engineering task is always needed to 
get a PSM.  

Once all component information models are identified 
and completed, the definition of how they interoperate is 
needed. This task is similar to the first one and involves 
the reverse engineering of relationships and 
dependencies between component information models to 
be integrated. Again (only) a semi-automatic, iterative 
approach is feasible.  

Those steps of the task are PIM to PIM transformations, 
which are triggered by PSM to PIM transformations. 
Defining join points are PIM to PIM mappings. Reverse 
engineering join points are PIM to PIM transformations, 
which are triggered by PSM to PIM mappings, i.e. the 
iterative revealing of dependencies between existing 
component information models.  

The two first activities are part of a semi-automatic, 
iterative process. Such a process should be supported by 
tools that execute the tasks that can be automated, reflect 
intermediate results to the users and provide consistency 
control during process iterations. 

The next activity is to classify the relationships among 
the component information models along with their join 
points into one of the three middleware types. 

The join-points between two components should be 
classified as “organizational” if they require federation 
within the same organization. From a users perspective 
such components look like a single system. Corporate 
middleware is used for integrating such components.  

 

Figure 3 MMM process 
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logic (PIM to PIM) and (2) on the existing infrastructure 
of (some or all) components (PIM to PSM). 

From each activity, backward iterations to the precedent 
process activities are needed because of misinterpreted, 
incomplete or even erroneous intermediate results. 
Summarizing, the three first tasks of the MMM process 
are done in an iteration loop. 

After classifying all component information models with 
the adequate join points, tools generate the software for 
the middleware and the join points of the distributed 
heterogeneous system. We distinguish between two 
different kinds of join point generation: 

middleware for join points in the same category 
portals for join points in different categories 

Each middleware type (corporate, mediation, ubiquitous) 
generation includes both join point generation kinds. 

In case of corporate middleware, our process 
encompasses the generation of a federated access layer 
that supports open nested transactions on the integrated 
component IS. In addition, interfaces (portals) for the 
two other middleware types are generated. 

The deployment of mediation middleware involves the 
generation of information import/export portals based on 
wrappers to access the organisational IS components. 

Finally, ubiquitous middleware is generated for 
implementing join point among organizational and 
ubiquitous (mobile) information models. 

3. Tool support 
The process described in the previous section requires 
tools for several aspects. The tool representing the 
different component information models and defining 
join points is called Fujaba Middleware Toolkit (FMT).  
FMT is based on the UML tool Fujaba [Fujaba] and 
supports PIM to PIM transformations, such that 
component information models can be defined. Figure 4 
shows an overview of the tool support.  

Varlet/Babel [JB01a, JB01b] enables the analysis and 
reverse engineering of the structure of data repositories 
and their PSM representation in (E)ER. The interactive 
reverse engineering process is based on semantic pattern 
detection of SQL code as described in [JSZ97]. The 
microSynergy tool [Jah01, DJ01] provides information 
models for ubiquitous components. Reddmom 
[Reddmom] imports the component information models 
and supports PSM to PIM mapping for the component 
information models. Furthermore the import of PSM 
representations in XML of other component information 
models, e.g. of semi-structured data models, from other 
tools is incorporated in Reddmom.  

The definition and design of join points are part of the 
PIM to PIM transformation supported by FMT. The 
revealing of join points is part of Reddmom, which is 
also based on Fujaba. This join point reverse engineering 
functionality is based on a join point detection pattern 
catalogue and the pattern recognition mechanism 
[NSW+02] provided by Fujaba. This pattern recognition 
mechanism is based on the analysis mechanism 
described by Jahnke et al. [JSZ97] and infers the 
detection from an abstract syntax graph. Details of this 
part of the MMM process tool support are described in 
[WNGJ02]. 

 

Figure 4 Tool support 
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mainly databases, support a success check for transaction 
before committing. This support is used when it is 
available.  

For the generation of e.g. .NET, CORBA or EJB 
middleware the corresponding UML representation of 
the component information models can de exported to 
XML and then imported to other tools, which support the 
desired middleware generation, e.g., Websphere Studio 
[WebSphere]. 

For the mediation middleware generation the 
Varlet/Babel tool is used. Valet/Babel can generate XML 
portals for (ODBC) data sources based on IBM’s XML 
Lightweight Extractor [XLE]. Furthermore, Varlet/Babel 
can generate data mediation agents between two different 
XML structures based on their DTDs. If another kind of 
middleware is requested, the export of the component 
information models in XML is supported (for the import 
in third party tools).  

The generation of the ubiquitous middleware is done by 
the microSynergy tool. It has been developed in 
cooperation with Intec Automation Inc., a local company 
in the area of network-centric embedded systems. The 
microSynergy tool enables the generation of embedded 
interoperability portals based on finite state machine 
models and SOAP. Using microSynergy, the user can 
select the kind of information (sensoric data, event 
signals etc.) should be imported and exported to, 
respectively from the embedded device. MicroSynergy 
then generates a limited-scale HTTP server on the 
embedded device that serves as the XML portal. UVic 
have begun to integrate microSynergy with wireless 
protocols as well, e.g., Bluetooth. 

4. Related Work 
Our presented approach is a specific instantiation of the 
OMG Model-Driven Architecture™  (MDA) process 
[MDA01]. As presented the MDA is a general approach 
for the analysis and design of heterogeneous distributed 
system development. The MMM process focuses on 
middleware for heterogeneous distributed systems and 
refines the MDA process, especially the reverse 
engineering direction. 

Approaches and tools for component information model 
reengineering activities are e.g. DB-Main [EH99] and 
Varlet [Jah99]. Both tools cover all phases of database 
reverse engineering from schema recovery up to building 
a conceptual schema. In Varlet an interactive process to 
handle uncertainty and inconsistency during recovery of 
information models (comprising relationships) is based 
on Generic Fuzzy Reasoning Nets [JSZ97, Jah99] which 
revert to code and data analysis. DB-Main provides 
generation of conceptual wrappers, i.e., software layers 
that interface a database based on the conceptual schema 

[TCHH99]. Both approaches are restricted to one 
component information model at a time and lacks 
flexibility for recovering join points. 

An overview of reverse engineering methods and tools 
that can be further used and adapted for the process 
presented in this paper is given in [MJS+00]. To our best 
knowledge the field of recovering join points is poorly 
explored.  

Common solution for IS integration middleware within 
organisations is distributed transaction processing 
[XA94] as provided by transaction monitors [Hud94, 
Hal96] and middleware transaction services [JTS99, 
OTS98]. A more scalable solution is reliable messaging 
[Lew99, Hou98] which results in a reliable asynchronous 
processing scenario. Liebig and Tai propose an 
integration of message-oriented transactions and 
distributed object transaction to middleware mediated 
transactions [LT01].  

Mascolo et al. present a data-sharing middleware for 
mobile computing, namely xmiddle [MCZE02]. The 
sharing of XML documents across heterogeneous mobile 
hosts is provided by xmiddle, allowing on-line and off-
line access to data. Replication transparency is 
abandoned by xmiddle to achieve an acceptable 
performance and scalability.  

5. Conclusions 
Middleware is an important part of third-generation net-
centric software systems. It is important to facilitate its 
maintenance and evolution in order to enable 
organisations to evolve and exploit the newest hard and 
software platforms. A model-driven middleware 
maintenance process can support this goal.  

We choose a model-driven engineering rather than a 
round-trip engineering approach because model-driven 
development guarantees permanent consistency between 
model and code. Compared to round-trip engineering, 
productivity increases by more than 30% with a model-
driven engineering approach [Softeam]. 
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