
Modeling Reconfigurable Mechatronic Systems with
Mechatronic UML ?

Sven Burmester??, Matthias Tichy, and Holger Giese

Software Engineering Group, University of Paderborn,
Warburger Str. 100, D-33098 Paderborn, Germany

[burmi|mtt|hg]@upb.de

Abstract. Due to the safety-critical character of mechatronic systems the engi-
neers have to face the following serious problems: The models which are used
in design must enable to specify real-time behavior on basis of a semantics that
allows an automatic synthesis of code which respects the specified real-time re-
quirements. Further, mechatronic systems usually embed continuous behavior in
form of feedback-controllers which leads to hybrid systems. A new field of re-
search deals with the support of dynamic exchange of feedback controllers (re-
configuration) during design. Models have to support a complex, distributed sys-
tem structure. The system’s real-time behavior must be verifiable in spite of the
complex structure and the embedded continuous control elements. In this paper
we will present our approach which fulfills all these requirements considering an
example taken from the RailCab research project.

1 Introduction

A new field of research concerns the software development for reconfigurable mecha-
tronic systems. Mechatronic systems combine technologies from mechanical and elec-
trical engineering as well as from computer science. They arereal-time systemsbecause
reactions to the environment usually have to be completed within a specific, predictable
time and they arehybrid systemsbecause they usually consist of discrete control modes
as well as implementations of continuous feedback controllers. Due to their application
domain the behavior, which is largely controlled by software, has to meet safety-critical
requirements.

In recent times, mechatronic systems, which had been single, autonomous systems
prior to that, have been used in distributed settings, which require extensive coordina-
tion. Due to the new requirements stemming from distribution and coordination sce-
narios, a new generation ofreconfigurablemechatronic systems has emerged. Those
reconfigurable mechatronic systems change their behavior in order to conform with
certain roles in a coordination with other mechatronic systems. This reconfiguration

? This work was developed in the course of the Special Research Initiative 614 - Self-optimizing
Concepts and Structures in Mechanical Engineering - University of Paderborn, and was pub-
lished on its behalf and funded by the Deutsche Forschungsgemeinschaft.

?? Supported by the International Graduate School of Dynamic Intelligent Systems. University
of Paderborn

leads to an increased complexity and thus, makes it more difficult to guarantee safety-
critical requirements. To guarantee safety for reconfigurable mechatronic systems, we
extend in this paper the Model Driven Architecture (MDA) approach [1] for the design
of hybrid mechatronic real-time systems.

Two different views need to be distinguished: the structural view and the behavioral
view. The structural view describes the overall system that consists of multiple compo-
nent instances, which are possibly distributed, interconnected with each other, and are
exchanging messages via communication. In the behavioral view, the behavior of single
components is specified. As proposed in the MDA approach, structure and behavior are
specified with platform independent models which are transformed to platform specific
code, later. We apply extended UML diagrams (component diagrams, statecharts) [2]
as platform independent models which are extended with diagrams from other domains
(block diagrams [3]).

Many existing specification languages provide solutions for some specific subprob-
lems, but they do not provide seamless support for modeling, verification and code
generation, which is necessary for the design of such safety-critical systems. Specifi-
cation languages like ROOM [4] or UML/RT [5] allow a specification of the system
structure, but not to specify real-time or hybrid behavior. Other specification languages
provide code synthesis (although usually without an adequate support for real-time be-
havior) [6], but even simple models become so complex, that model checking is not
applicable any more. On the other hand model checkers for real-time systems [7] often
use a model as basis whose semantics are not realizable on real physical systems (e.g. it
is impossible to react on an event without a delay).

Therefore, an approach is required, that is based on a model containing sufficient
information to specify real-time behavior and to provide appropriate source code syn-
thesis. Further, methods for verification are required that guarantee the correctness of
the distributed overall system. Reconfigurable mechatronic systems are typically too
complex for verification of the whole system by model checking. Instead, a general
view is required that abstracts from the components’ internals. Then, compositional
model checking can be applied that considers just this component’s external visible be-
havior. When specifying the details of the component’s behavior, it must be guaranteed
that the details do not invalidate the component’s generalization.

Verification of
Real−Time Properties

2)

Pattern
Library

Specification Real−Time
Coordination Pattern

1)

Synthesizing
Source Code

5)

Composing Components
with Refined Pattern Roles

Refinement By
Compositional Embedding

3) 4)

Fig. 1.Seamless support for the design of mechatronic systems

In this paper, we present an approach which allows the development of hybrid
mechatronic components. Basically, the approach is divided into two parts (see Figure
1). In the first part (steps 1+2), individual coordination patterns are developed. These
coordination patterns have different roles, which contain the real-time logic for the co-
ordination, and a real-time constraint, which is proven w.r.t. certain communication
network properties. If such a coordination pattern has been successfully verified, it is
added to a pattern library. In the second part (steps 3-5), the mechatronic components
are built using the pre-fabricated coordination patterns stored in the library of patterns.
The real-time behavior of the component is a refinement of the combination of pattern
roles and additional specified behavior. The employed refinement notion ensures the
verified real-time properties. In the next step further components (e.g. hybrid ones) are
embedded into the superordinated component. Simple consistency checks ensure again
that the verified real-time properties of the coordination patterns are still valid in spite
of the embedding. As the last step, source code is synthesized for the specified structure
and behavior.

In the next section, we discuss related work. Afterwards, we present the application
scenario, which we use in this paper to exemplify the application of our approach.
In Section 4, we present our approach w.r.t. system structure, real-time behavior, and
hybrid behavior. In Section 5 we relate our approach to the UML 2.0 specification [2].
We conclude in Section 6 and present future work.

2 Related Work

The UML [2] can be considered as the currently evolving standard to model complex
software systems even in the real-time domain [8–11]. Consequently, in this paper we
propose an approach to realize the above outlined vision with UML, even though UML
has not been originally designed to support mechatronic systems.

From the large number of object-oriented modeling approaches [4, 12–14] ROOM
[4] has finally found its way into the UML 2.0 specification [2]. However, the required
support for real-time behavior modeling is still not available, as the ROOM concepts
focus on architectural design and do not address the real-time or hybrid behavior of the
operational model at all.

The OMG published a RFP (Request for Proposal) forUML for System Engineer-
ing (UML for SE)[15]. The idea of UML for SE is to provide a language that supports
the system engineer in modeling and analyzing software, hardware, logical and physi-
cal subsystems, data, personnel, procedures, and facilities. One distinguishing proposal
is calledSystems Modelling Language (SysML)1, that takes a subset of the UML 2.0
specification and extends it. Main extensions, related to the design of continuous and
hybrid systems areStructured Classes, that describe the fine structure of a class ex-
tended by continuous communication links between ports. InParametric Diagramsthe
parametric(arithmetic)relationsbetween numerical attributes of instances are speci-
fied and the nodes of Activity Diagrams are extended with continuous functions and in-
and outputs. The RFP shows that there is need for a UML extension supporting sys-
tem engineering and including continuous behavior. The SysML proposal provides this

1 www.sysml.org

support, but for the specification of parametric relations a static structure is assumed.
There is no support for modeling structural changes or replacements of the parametric
relations. Further the required support for modeling of realizable real-time behavior or
for abstraction that is required for compositional model checking is not available.

Hierarchical timed automata[16], a hierarchial extension of timed automata [17],
are often used to model real-time systems. They provide most of the powerful model-
ing concepts of statecharts. A mapping to multiple parallel running flat timed automata
permits to verify the model by using the model checker UPPAAL [7]. In [18] locations
of a flat UPPAAL automaton are associated with tasks inclusive worst case execution
times (WCETs) and deadlines. This extension enriches the model with the informa-
tion required for code generation and a prototype synthesizing C-Code has been imple-
mented. As the code generation approach is restricted to flat automata, it does not take
the additional syntactical constructs of hierarchical timed automata into account. The
code generation scheme is not really sufficient for hard real-time systems, as it does
not take into account the delays that occur when transitions are fired, arguing that these
delays are small compared with the WCETs. Further there is no support for deployed
systems or for systems with a hybrid character.

Time Weaver [19] is a tool for the design of embedded real-time systems. It deals
with the deployment of components, their communication and with replica for redun-
dant computation which increases fault tolerance, but the real-time behavior of the sin-
gle components is just described by periods and deadlines for the computation of the
component as a whole. A model-based specification of its internal (real-time) behavior
does not exist. Analyses are restricted to scheduling analyses, that prove if deadlines
are met. Verification or validation of the correct behavior is not addressed.

3 Application Example

Our approach has been developed within the collaborative research center 614 of the
German National Science Foundation (DFG), titled ”Self-optimizing Concepts and
Structures in mechanical Engineering” which includes 12 research groups from me-
chanical engineering, electrical engineering, information and computer science and
mathematics.2

The general vision of this collaborative research center is to develop concepts and
methods to build mechatronics products with inherent intelligence, which react au-
tonomously and flexibly to changing environment and operation conditions.

As a concrete example, a self-optimizing version of the software for the RailCab
research project3 has to be developed which aims at using a passive track system with
intelligent shuttles that operate individually and make independent and decentralized
operational decisions.

The vision of the railcab project is to provide the comfort of individual traffic con-
cerning scheduling and on-demand availability of transportation as well as individually
equipped cars on the one hand and the cost and resource effectiveness of public transport

2 http://www.sfb614.de
3 http://www-nbp.upb.de/en

on the other hand. The modular railway system combines sophisticated undercarriages
with the advantages of new actuation techniques as employed in the Transrapid4 to in-
crease passenger comfort while still enabling high speed transportation and (re-)using
the existing railway tracks.

One particular problem is to reduce the energy consumption due to air resistance
by coordinating the autonomously operating shuttles in such a way that they build con-
voys whenever possible. Such convoys are built on-demand and require a small dis-
tance between the different shuttles such that a high reduction of energy consumption
is achieved. Coordination between speed control units of the shuttles becomes a safety-
critical aspect and results in a number of hard real-time constraints, which have to be
addressed when building the control software of the shuttles.

When shuttles approach each other they use wireless communication to coordinate
the building of the convoy. Dependent on the position within the convoy they have to
change their behavior. For example the rear shuttles will no longer hold their velocity on
a constant level, but the distance to their front shuttle. Therefore, they dynamically have
to exchange the feedback controller which controls its acceleration. Further, a shuttle
will reduce the intensity of braking when another one drives in a short distance behind
to avoid a rear-end collision. Consequently, the shuttle design must ensure on the one
hand that the communication fulfills all safety requirements (e.g. no deadlocks) and that
the exchange of the dynamic controller (reconfiguration) guarantees safety and stability.

As a running example within this paper we consider a simplified version of the
convoy building problem, namely we assume that only convoys of two shuttles are
formed.

4 Mechatronic UML Modeling

Component-based Software Engineering [20] is a well known approach for building
software systems. For the development of mechatronic systems using UML, we extend
the UML by notions for the specification of continuous and real-time behavior. The
real-time extensions for the UML are specially geared towards verification of safety-
critical properties. In the following, we will describe our approach in detail using the
above mentioned example.

4.1 System Structure

UML component diagrams are used for the specification of the structure of our systems.
Component diagrams specify components and their interaction in form of connectors.
We distinct component types and their instances during runtime. Connectors model
the communication between different components via the ports and interfaces and the
communication properties w.r.t. message loss, latency, etc. Ports are distinct interaction
points between components and are typed by provided and required interfaces.

For our example scenario, Figure 2 shows the component type for the shuttle. The
Shuttle component contains a hybridAccelerationControl (AC) component. This com-
ponent computes the acceleration needed to achieve a specific goal (keeping a specified

4 http://www.transrapid.de/en

FrontRoleRearRole

Shuttle

AC �
�������
�
	 ������

� �����
�
��� �

� ��� �

Fig. 2.Type specification of componentShuttle

distance or keeping a specified speed level). TheAccelerationControl component has
five incoming continuous ports for the values current velocityvcur, the current distance
∆cur, and the velocity of the front shuttlevFront provided by sensors, and the required
velocityvreq and the required distance∆req which are parameterized reference inputs,
and one outgoing continuous port. This outgoing port sends acceleration values to the
appropriate hardware actuator devices. In addition (the details are presented in Section
4.3), theAC component contains discrete behavior to switch between keeping distance
or keeping velocity on a constant level, and, thus, is a hybrid component. For clearer
presentation, the sensors and actuators connected to the input ports and the output port
of theAC component have been hidden.

4.2 Real-Time Behavior

Interaction between component instances during runtime is a major part of mechatronic
system design. In our scenario a shuttle forms a convoy with another shuttle via the
RearRole andFrontRole interfaces. In the domain of mechatronic systems, a layered
system architecture is feasible which guarantees that an autonomous unit like a shuttle
reacts in a local environment and the interfaces to its environment are strictly defined
(as e.g. a shuttle trying to form a convoy has to interact only with one other shuttle
and not maybe with a third one which is a few kilometers away). This domain-specific
restriction is the reason why usually only relative simple coordination patterns have to
be constructed, i.e. patterns with simple coordination protocols between roles, limited
numbers of input signals and a fixed number of roles.

The interaction between two shuttles w.r.t. forming a convoy is one such simple co-
ordination pattern. Figure 3 shows theConvoyCoordination pattern between two shut-
tles. The protocol for forming and breaking convoys is specified in the roles of this
pattern (see Figures 4 and 5). Components in the domain of mechatronic systems must
meet real-time requirements. Therefore, for the specification of role behavior we use
our real-time variant of statecharts calledReal-Time Statecharts[21, 22]. They allow
to apply constructs from timed automata [7, 17] like clocks, time guards and time invari-
ants and further annotations like worst case execution times and deadlines (see Section

Fig. 3.Component Diagram and Patterns

4.3). As shown in [21], these annotations enable an automatic implementation on a real
physical machine with limited resources.

If an event has the forminterface.message it means that the transition is triggered
when message is received via the interfaceinterface. Side-effects of the forminter-
face.message describe the sending ofmessage to a receiver which is connected via
interface. Later, we will use events where no interface is specified. Thenmessage is
local and sent or received within the same statechart.

default

wait

noConvoy

convoy

frontRole.convoyProposalRejected /

/ frontRole.convoyProposal

wait
frontRole.breakConvoyProposalRejected /

/ frontRole.breakConvoyProposal

default

frontRole.breakConvoy / frontRole.startConvoy /

Fig. 4.Statechart of theRearRole role

noConvoy

answerdefault

default

/ rearRole.breakConvoyRejected
rearRole.breakConvoyProposal

/ rearRole.convoyProposalRejected

rearRole.convoyProposal /

convoy
/ rearRole.breakConvoy
rearRole.breakConvoyProposal

/ rearRole.startConvoy

wait $\{t_0\}$

$[1 \leq t_0 \leq 1000]$

Fig. 5.Statechart of theFrontRole role

Initially, both roles are in statenoConvoy::default, which means that they are not
in a convoy. The rear role non-deterministically chooses whether to propose forming a
convoy or not. After having chosen to propose a convoy, a message is sent to the other
shuttle resp. its front role. The front role chooses non-deterministically to reject or to
accept the proposal after max. 1000 msec. In the first case, both statecharts revert to
thenoConvoy::default state. In the second case, both roles switch to theconvoy::default
state.

Eventually, the rear shuttle non-deterministically chooses to propose a break of the
convoy and sends this proposal to the front shuttle. The front shuttle chooses non-
deterministically to reject or accept that proposal. In the first case, both shuttles remain
in convoy-mode. In the second case, the front shuttle replies by an approval message,
and both roles switch into their respectivenoConvoy::default state.

For the connector which represents the wireless network we do not apply an explicit
statechart, but instead specify its QoS characteristics such as throughput, maximal delay
etc. in the form of connector attributes. In our example, we assume that the connector
forwards incoming signals with a delay of 1 up to 5 msec. The connector is unsafe in
the sense that it might fail at any time, such that we set our specific QoS characteristic
reliable to false.

To provide fail safe behavior, the following RT-OCL [23] constraint must hold. It
demands that a combination of role states where the front role is in statenoConvoy and
the rear role is in stateconvoy is not possible. This is required because such a situation
would allow the front shuttle to brake with full intensity although another shuttle drives
in short distance behind.

context DistanceCoordination inv:
not (self.oclInState(RearRole::Main::convoy) and

self.oclInState(FrontRole::Main::noConvoy))

It is shown in [24], that this property holds. As mentioned there, those patterns
are individually constructed and verified. Afterwards, they are combined in structurally
refined versions in the different components. In our example theShuttle component
is a combination of refined versions of theRearRole and theFrontRole (see Section
4.3). For a component, which combines different patterns respective the roles, the ver-
ified properties still hold due to the approach presented in [24]. Thus, components for
mechatronic systems are developed in a way similar to a construction kit using several
proven and verified building blocks and refine them to suit different requirements.

In this section, we presented how to specify and verify single real-time coordination
patterns. In the next section, we show how components are developed without compro-
mising the verification results by composing roles of different coordination patterns and
refining their behavior. In this refinement process hybrid and real-time behavior of the
single components is modeled.

4.3 Component specification

Shuttle Component Figure 6 depicts the behavior of theShuttle component from
Figure 2, taken from [24] and extended with real-time annotations. The Real-Time

Statechart consists of three orthogonal statesFrontRole, RearRole, andSynchroniza-
tion. FrontRole andRearRole are refinements of the role behaviors from Figures 4 and 5
and specify in detail the communication that is required to build and to break convoys.
Synchronization coordinates the communication and is responsible for initiating and
breaking convoys. The three sub-states ofSynchronization represent whether the shut-
tle is in the convoy at the first position (convoyFront), at second position (convoyRear),
or no convoy is built at all (noConvoy). The whole statechart is a refinement of both role
descriptions as it just resolves the non-determinism from Figures 4 and 5 and does not
add additional behavior.

/ RearRole.startConvoy
convoyOk

wait

waitdefault

Synchronization

/ FrontRole.breakConvoyRejected
FrontRole.breakConvoyProposal

default

default

 breakConvoy

FrontRole.breakConvoyProposal
/ FrontRole.breakConvoy

FrontRole.startConvoy /

buildConvoy / FrontRole.convoyProposal

FrontRole.convoyProposalRejected / breakConvoy

wait

convoy

noConvoy

convoyFront
isConvoyOK
/ convoyOK

when(convoyUseful)
/ buildConvoy

defaultH

isConvoyOk
/ noConvoy

RearRole.breakConvoyProposalRejected /

RearRole.convoyProposal / isConvoyOK

noConvoy / RearRole.convoyProposalRejected

FrontRole

noConvoy

/ breakConvoy
RearRole.breakConvoy

doBreakConvoy
/ RearRole.breakConvoyProposal

default
Convoy

RearRole

noConvoy

breakConvoy /

breakConvoy / wait

convoyRear
when(convoyNotUseful)
/ doBreakConvoy

dc

dc

dc

dc dc

d1

d1 d1

dc

dc

dc dc

dc

dc

d1

d1

d1

{t0}

d1 [15 ≤ t0]

Fig. 6.Behavior of theShuttle component

As mentioned above components in the domain of mechatronic systems must meet
real-time requirements. In the specific example it needs not only to be specified that,
e.g.RearRole has to send astartConvoy message after receivingconvoyOK, but also
that this has to be finished within a specific, predictable time. Therefore, we apply our

Real-Time Statecharts [21] for specification. Real-time statecharts respect that the firing
of transitions consumes time and that real physical, mechatronic systems can never react
in zero time, but always with a delay. To represent this in the model, we make use of the
deadline construct:

In Figure 6 so calleddeadline intervalsdc andd1 are used to specify a minimum
and a maximum duration for the time between triggering a transition and finishing its
execution. E.g. sending the messageconvoyProposalRejected to RearRole has to be
finished within the time specified bydc after receiving the messagenoConvoy in state
FrontRole::noConvoy::wait. As another example for predictable timing behavior (real-
time behavior) the change inSynchronization from noConvoy to convoyFront has to be
finished withind1.

AC Component TheAC component is a hybrid component. It consists of two discrete
control modes which represent whether the shuttle is under velocity control or under
distance control (see Figure 7). Further it has continuous in- and outputs. Dependent
on the active discrete mode either the current and the required velocity are used for the
velocity controller or the current and required distance to the front shuttle as well as
the velocity of the first shuttle are used for the distance controller. The outputa is the
acceleration in any mode.

:Velocity Controller

DistanceControl

:Distance Controller

VelocityControl

applyVC

applyDC

a a
vFirst

∆req

∆curvcur

vreq

df2

ffade2

df1
ffade1

Fig. 7.Behavior of theAC component

In order to embed the continuous controllers into the discrete states, the Real-Time
Statecharts are extended to hybrid ones. In Hybrid Statecharts each discrete state is
associated with a configuration of embedded component instances [25]. In this example,
each configuration consists of just one single feedback controller.

When a change occurs between the discrete states a discrete switch between the
controllers could lead to an unsteadiness in the output signala. This unsteadiness will
stimulate additional oscillations which could lead to instability even when both con-
trollers are stable on their own. In order to avoid these unsteadinesses output cross-
fading is applied [25]. This is specified by afading functionffade1 resp.ffade2 and a

minimal and a maximalfading duration(df1 resp.df2) which is specified as an interval
as well.

Although the hybridAC component has 5 different continuous input signals, never
all of them are required. When the component is in velocity control mode onlyvcur and
vreq are required, in distance control mode only∆cur, ∆req, andvFirst are required.
These dynamic interfaces are visualized by the so calledInterface Statechartin Figure
8.

applyDC

applyVC

ac:AC [VelocityControl] ac:AC [DistanceControl]

∆cur

df1

df2

vcur

vreq
a

∆req

vFront

a

Fig. 8. Interface Statechart of theAC component

The Interface Statechart abstracts from the component’s internals as it just contains
the externally relevant behavior: the different control modes, the modes’ continuous
in- and outputs, and the deadline information for switches between the control modes.
Whether fading is required and which kind of fading function is applied and which
continuous feedback controllers are applied is not important for the external view. This
interface representation is used when the different components are embedded into each
other (see below).

Behavioral Embedding In the previous sections two components and their behaviors
have been specified. Although they are embedded hierarchically from the structural
point of view (cf. Figure 2), their behavior is executed concurrently. We sayAC is
hierarchically, parallel embeddedinto Shuttle. As it makes no sense forAC to be in
stateDistanceControl while Synchronization is in stateconvoyFront, which represents
the situation when there is no further shuttle before, the two behavior descriptions have
to be coordinated.

Therefore, theShuttle statechart from Figure 6 is extended to a Hybrid Statechart.
Figure 9 depicts the orthogonalSynchronization state, whose sub-states embed different
configurations each consisting of oneAC instanceand its current internal state and con-
tinuous interface. So in Figure 9 is specified thatAC has to be in stateDistanceControl
whenSynchronization is in stateconvoyRear. If Synchronization is in statenoConvoy or
convoyFront AC has to be in stateVelocityControl. Consequently, a state change within
the orthogonalSynchronization state implies a state change in its embeddedAC compo-
nent. As only the external visible information of theAC component is important when

H wait

isConvoyOK
/ convoyOK

/ noConvoy
isConvoyOk

convoyFront noConvoy
default

/ doBreakConvoy
when(convoyNotUseful)

after (15 msec)

convoyRear

ac:AC [DistanceControl]
breakConvoy / breakConvoy /

/ buildConvoy
when(convoyUseful)

Synchronization

ac:AC [VelocityControl] ac:AC [VelocityControl]

d1

d1

d1

a

∆cur

∆req

vFront

d1

d1

d1

d1

vcur

vreq
a

vcur

vreq
a

Fig. 9.Behavioral embedding

it is embedded, the form of the embedded component is equal to the single states of the
Interface Statechart from Figure 8.

This kind of modeling has the advantage that it supports the decomposition into
multiple components that is required to handle the complexity in mechatronic systems.
Further the control engineering know-how is separated from the software engineering
know-how: The discrete coordination and communication is specified by the statechart
from Figure 6, the continuous behavior and the restrictions of the controller exchange is
specified in Figure 7 and the later integration is specified in Figure 9. Another advantage
is the support for flexible continuous interfaces.

In order to ensure that the results of the compositional verification are not invali-
dated by the detailed realization of theShuttle component, the component realization
has to be a refinement of the role behavior (see Section 4.2). The statechart from Figure
6 is a refinement of the roles from Figures 4 and 5. Consequently, it needs to be ensured
that the embedding ofAC still just refines the specified real-time behavior from Figure
6 and is not adding additional behavior or is in conflict with the real-time specification
of this superordinated component.

Assume, for example, in Figures 6 and 9 is specified that a change from stateno-
Convoy to convoyRear has to be finished after200 msec and that this change implies a
change of the embeddedAC component fromVelocityControl to DistanceControl. Then
in Figure 8 the minimal fading duration may not be above200 msec.

This example demonstrates how consistency is approved by simple syntactical
checks between the superordinated component and the Interface Statecharts of the em-
bedded components: In the above exampledf1 ⊆ dc must be satisfied. Such checks
have to be enforced for every possible change of the global state (the current global
state consists of the current states of all components). Due to the hierarchical parallel
embedding, the global state space is restricted: AlthoughSynchronization consists of3
states andAC of 2 states, the hierarchical parallel composition consists not of2 ∗ 3 = 6
states, but just of3 states.5 This information is contained in the specification in Figure
9 and does not need to be derived by a costly reachability analysis. Consequently, the
number of consistency checks to be enforced are usually not exponential in the num-

5 This is because the state combinations(convoyFront, DistanceControl), (noConvoy, Dis-
tanceControl), and(convoyRear, VelocityControl) are not reachable.

ber of states. If these consistency checks are successful the results of the compositional
model checking are valid even for components that embed further components in the
hierarchical, parallel manner. A detailed description and formalization can be found in
[25].

5 Discussion

The UML 2.0 specification is the de facto standard in modeling. As our and the UML’s
modeling philosophy have some things in common, we decided to extend the UML
2.0 specification for the design of hybrid mechatronic real-time systems: The specifica-
tion of the whole system’s structure by hierarchical components, ports, interfaces and
connectors is in both approaches similar.

The communication protocols are specified in UML through so calledProtocol State
Machines (PSM), which have the syntax of finite state machines. Instead of PSMs we
apply our real-time extension of the UML statecharts, theReal-Time Statechartsto
specify real-time communication protocols. In Real-Time Statecharts it is possible to
specify deadlines, worst case execution times, clocks, clock resets, time guards, and
time invariants. We use these models to ensure correctness by model checking.

The behavior of a single component is specified by Hybrid Statecharts instead of
UML statecharts. We extended the concept of Real-Time Statecharts to Hybrid State-
charts as the hierarchical composition of components results in multiple behavior de-
scriptions, which have to be coordinated. Therefore each discrete state is associated with
a configuration of embedded components. Further it is possible to apply output cross-
fading when reconfiguring the configurations. The notion of Hybrid Statecharts helps
to ensure, that the properties, verified through compositional model checking, still hold
and they enable to embed components from other domains (e.g. hybrid components).

Consequently our approach does not change the UML approach, it just extends its
notation and semantics. Therefore, it is possible for system engineers to design hybrid
mechatronic real-time systems, by following a well-known approach.

6 Conclusion and Future Work

Reconfigurable mechatronic systems in the domain of safety-critical distributed systems
must be carefully designed. We presented a design approach which not only considers
real-time issues but also allows for a mixture of discrete event-based as well as con-
tinuous behavior. In addition, the applied modeling approach contains means for the
compositional verification of safety-critical properties. Finally, the models built with
our approach are used to synthesize source code, which respects the real-time issues
and the safety-critical properties. By creating the Mechatronic UML, we extended the
industry standard UML rather than creating a completely new specification language in
order to built upon experience of the developer.

Tool support (in form of a plug-in for the Fujaba Tool Suite6) for the specification,
verification and automatic source code synthesis of the Real-Time Statecharts and the

6 www.fujaba.de

real-time coordination patterns exists and early evaluation reports have been success-
ful. For the support of hybrid behavior a prototypic implementation exists and we are
currently working on the tool support. In the future, we will employ graph transforma-
tions [26] to describe the reconfiguration of the behavior w.r.t. the online addition or
removal of coordination pattern roles. By this reconfiguration the hybrid components
can reconfigure themselves to different coordination scenarios to optimize their memory
and processing power footprints. These reconfigurations specified by graph transforma-
tions are also targets for the verification of safety-critical properties. Reliability and
availability are other important aspects of reconfigurable mechatronic systems. We will
generalize and apply the approaches of [27, 28] in the domain of mechatronic systems
and combine them with the approach outlined in this paper.

AcknowledgementsThe authors thank Oliver Oberschelp for the support in the control
engineering domain.

References

1. Object Management Group: Model Driven Architecture (MDA) Edited by Joaquin Miller
and Jishnu Mukerji. (2001)

2. Object Management Group: UML 2.0 Superstructure Specification. (2003) Document
ptc/03-08-02.

3. Ogata, K.: Modern Control Engineering. Prentice Hall (2002)
4. Selic, B., Gullekson, G., Ward, P.: Real-Time Object-Oriented Modeling. John Wiley and

Sons, Inc. (1994)
5. Selic, B., Rumbaugh, J.: Using UML for Modeling Complex Real-Time Systems. Technical

report, ObjectTime Limited (1998)
6. Saksena, M., Karvelas, P., Wang, Y.: Automatic Synthesis of Multi-Tasking Implementations

from Real-Time Object-Oriented Models. In: The Third IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing, Newport Beach, California (2000)

7. Larsen, K., Pettersson, P., Yi, W.: UPPAAL in a Nutshell. Springer International Journal of
Software Tools for Technology1 (1997)

8. Bichler, L., Radermacher, A., Schürr, A.: Evaluation uml extensions for modeling realtime
systems. In: Proc. on the 2002 IEEE Workshop on Object-oriented Realtime-dependable
Systems WORDS’02, San Diego, USA, IEEE Computer Society Press (2002) 271–278

9. OMG: UML Profile for Schedulability, Performance, and Time Specification. OMG Docu-
ment ptc/02-03-02 (2002)

10. Gu, Z., Kodase, S., Wang, S., Shin, K.G.: A Model-Based Approach to System-Level De-
pendency and Real-Time Analysis of Embedded Software. In: The 9th IEEE Real-Time and
Embedded Technology and Applications Symposium, Toronto, Canada. (2003)

11. Masse, J., Kim, S., Hong, S.: Tool Set Implementation for Scenario-based Multithreading of
UML-RT Models and Experimental Validation. In: The 9th IEEE Real-Time and Embedded
Technology and Applications Symposium, Toronto, Canada. (2003)

12. Awad, M., Kuusela, J., Ziegler, J.: Object-Oriented Technology for Real-Time Systems: A
Practical Approach Using OMT and Fusion. Prentice Hall (1996)

13. Douglass, B.P.: Real-Time UML: Developing Efficient Objects for Embedded Systems. The
Addison-Wesley Object Technology Series. Addison-Wesley (1999) Second Edition.

14. Gomaa, H.: Designing Concurrent, Distributed, and Real-Time Applications with UML.
Addison-Wesley (2000)

15. Object Management Group: UML for System Engineering Request for Proposal. (2003)
Document ad/03-03-41.

16. David, A., M̈oller, M., Yi, W.: Formal Verification of UML Statecharts with Real-Time
Extensions. In Kutsche, R.D., Weber, H., eds.: 5th International Conference on Fundamental
Approaches to Software Engineering (FASE 2002), April 2002, Grenoble, France. Volume
2306 of LNCS., Springer (2002) 218–232

17. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic Model Checking for Real-
Time Systems. In: Proc. of IEEE Symposium on Logic in Computer Science. (1992)

18. Amnell, T., David, A., Fersman, E., Pettersson, M.O.M.P., Yi, W.: Tools for Real-Time
UML: Formal Verification and Code Synthesis. In: Workshop on Specification, Implemen-
tation and Validation of Object-oriented Embedded Systems (SIVOES’2001). (2001)

19. de Niz, D., Rajkumar, R.: Time Weaver: A Software-Through-Models Framework for Em-
bedded Real-Time Systems. In: Proceedings of the 2003 ACM SIGPLAN conference on
Language, compiler, and tool for embedded systems (LCTES), San Diego, California, USA,
ACM Press (2003)

20. Szyperski, C.: Component Software, Beyond Object-Oriented Programming. Addison-
Wesley (1998)

21. Giese, H., Burmester, S.: Real-Time Statechart Semantics. Technical Report tr-ri-03-239,
University of Paderborn, Paderborn, Germany (2003)

22. Burmester, S., Giese, H.: The Fujaba Real-Time Statechart PlugIn. In: Proc. of the Fujaba
Days 2003, Kassel, Germany. (2003)

23. Flake, S., Mueller, W.: An OCL Extension for Real-Time Constraints. In: Object Model-
ing with the OCL: The Rationale behind the Object Constraint Language. Volume 2263 of
LNCS. Springer (2002) 150–171

24. Giese, H., Tichy, M., Burmester, S., Schäfer, W., Flake, S.: Towards the Compositional
Verification of Real-Time UML Designs. In: Proc. of the European Software Engineering
Conference (ESEC), Helsinki, Finland. (2003)

25. Burmester, S., Giese, H., Schäfer, W., Oberschelp, O.: Hybrid UML Components for the
Correct Design of Complex Selfoptimizing Mechatronic Systems. In: Proc. of International
Symposium on Foundations of Software Engineering (FSE), Newport Beach, CA USA (sub-
mitted), ACM Press (2004)

26. Rozenberg, G., ed.: Handbook of Graph Grammars and Computing by Graph Transforma-
tion. Volume 1. World Scientific, Singapore (1999)

27. Tichy, M., Giese, H.: Seamless UML Support for Service-based Software Architectures.
In: Proc. of the International Workshop on scientiFic engIneering of Distributed Java applI-
cations (FIDJI) 2003, Luxembourg. Volume 2952 of Lecture Notes in Computer Science.
(2003)

28. Tichy, M., Giese, H.: A Self-Optimizing Run-Time Architecture for Configurable Depend-
ability of Services. In de Lemos, R., Gacek, C., Romanovsky, A., eds.: Architecting Depend-
able Systems II. Lecture Notes in Computer Science. Springer Verlag (2004) (to appear).

