
Reengineering of Design Deficiencies in
Component-Based Software Architectures

by

Marie Christin Platenius





Fakultät für Elektrotechnik, Informatik und Mathematik
Heinz Nixdorf Institut und Institut für Informatik
Fachgebiet Softwaretechnik
Warburger Straße 100
33098 Paderborn

Reengineering of Design
Deficiencies in Component-Based

Software Architectures

Master’s Thesis
Submitted to the Software Engineering Research Group

in Partial Fulfillment of the Requirements for the
Degree of

Master of Science

by
Marie Christin Platenius

Im Spiringsfelde 9
33098 Paderborn

Thesis Supervisor:
Jun.-Prof. Dr.-Ing. Steffen Becker

and
Prof. Dr. Uwe Kastens

Paderborn, October 2011





Declaration
(Translation from German)

I hereby declare that I prepared this thesis entirely on my own and have not
used outside sources without declaration in the text. Any concepts or quotations
applicable to these sources are clearly attributed to them. This thesis has not
been submitted in the same or substantially similar version, not even in part, to
any other authority for grading and has not been published elsewhere.

Original Declaration Text in German:

Erklärung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer
als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
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1 Introduction

Nowadays, most software engineers have to work with large software systems. One
possibility to cope with the complexity a software system is to follow the design
principles of a component-based software architecture. As Szyperski et al. point
out, a clear architecture is “the pivotal basis of any large-scale software tech-
nology” [SGM02]. In component-based software architectures, software systems
are composed of reusable modules, the so-called software components. This ap-
proach supports the maintenance of the system by providing an overview of the
system’s components. In the last years, component-based software architectures
received much interest because the concept allows to reuse components in other
systems and thereby reduce development costs and increase the quality of a system
[SGM02].

But many software systems are adapted and extended over a long period of
time. During this time, the software inevitably ages [Par94]. In particular, if
changes are done by developers that are not familiar with the original system and
its concepts, the conceptual architecture of the system can be (unintentionally)
modified. The design erodes [VGB02] and with every modification, the risk for
introducing design deficiencies like anti patterns [BMMM98] or bad smells [Fow99]
increases.

Design deficiencies have a serious impact on a system’s design and by this,
they decrease a software system’s quality. Removing these deficiencies naturally
improves the system’s quality. The removal of design deficiencies can be accom-
plished by reengineering. Software reengineering aims at improving an existing
software system so that it can “continue to be used and adapted at an acceptable
cost” [DDN03]. Thus, reengineering not only means to remove design deficien-
cies but also to restructure a system to fix problems or to prepare it for further
development and extension.

As Figure 1.1 illustrates, the reengineering life cycle consists of a reverse engi-
neering phase and a forward engineering phase [DDN03]. At first, the design of
the system to be reengineered has to be reconstructed from the system’s source
code. This process is called reverse engineering. The design is then modified
according to the adapted requirements. A subsequent forward engineering phase
results in the modified or recreated source code of the system.

1



1. Introduction

Figure 1.1: The reengineering life cycle (from [DDN03])

1.1 Problem

As mentioned above, the reengineering of a software system includes several tasks
and methodologies. This thesis focuses on the analysis and removal of design
deficiencies as part of a reengineer’s challenges. Removing design deficiencies
in a large system is a complicated, error-prone and time-consuming task and it
confronts a reengineer with several problems.

First, she has to identify the design deficiencies in the system. There are already
several approaches to detect design deficiencies in a software system. One of them
has been explored by Travkin [Tra11].

The search for design deficiencies in a large system can be time-consuming, even
with the help of tools that automatically detect candidates for design deficiencies.
The time required to search for design deficiencies in the whole system increases
with the size and the complexity of a system. To get results for a system earlier,
the search scope has to be narrowed down. A solution for this problem is to focus
only on a part of the system. Here, the reengineer is confronted with the next
problem: She has to identify which part of the system is a good starting point for
the detection of design deficiencies.

A design deficiencies detection run can result in a high amount of discovered
design deficiency candidates. But not all of those detected candidates are actually
problematic and depending on the context in which a design deficiency occurs,
some may be more critical than others [vDB11]. Hence, the reengineer has to
decide, which of those occurrences are relevant and should be removed to improve
the software system’s architecture.

At this point, the next problem occurs: how to accomplish the removal of a

2



1.2 Solution Approach

design deficiency? Often several possibilities exist for this. Thus, the reengineer
has to identify appropriate ways to accomplish the removal. This can be done by
consulting design experts or adequate literature, if necessary.

Obviously, the system’s structure is modified by removing a design deficiency. In
order to decide how to remove a design deficiency, the consequences on the system
structure have to be taken into account. It has to be ensured, that no parts of
the system are damaged unintentionally and that no new design deficiencies are
introduced. This is a problem because in general the reengineer has no overview
of the consequences of the reengineering on the system’s architecture and cannot
directly see, which parts of the system change.

The next step, the actual removal of the design deficiency, is an error-prone
task if it is done manually because there is a risk to change parts of the system’s
structure and behavior unintentionally. Because of this, the removal of selected
design deficiencies should be automated.

1.2 Solution Approach

The proposed solution for the described problems is an automatic relevance anal-
ysis with a subsequent architecture prognosis. The relevance analysis simplifies
the reengineer’s decision on which part of the system the search for design defi-
ciencies should be started and it suggests which of the detected deficiencies should
be removed. The architecture prognosis simplifies the decision for a reengineer-
ing strategy that accomplishes the removal of a design deficiency by predicting
its consequences on the system’s architecture. These additional steps have to be
integrated into a reasonable reengineering process.

1.2.1 Relevance Analysis

The relevance analysis consists of two steps. In the first step, the different parts of
the system are analyzed to identify a part where the search for design deficiencies
could be worthwhile. For this, the characteristics of different system parts have
to be analyzed and compared.

In the second relevance analysis step, the design deficiencies in the selected part
and their impact on the software architecture of the system are analyzed.

To determine a design deficiency’s relevance, the relevance analysis tries to
answer the following two questions for each candidate: 1. Is the candidate a critical
design deficiency that has to be removed or is it acceptable and can be tolerated?
2. Would the removal of the candidate have an impact on the architecture or
will the design remain unchanged? Design deficiencies whose removal seems to
modify the system’s design are particularly relevant because they were probably
introduced unintentionally and distort the originally intended architecture.

3



1. Introduction

1.2.2 Reengineering Strategies

In most cases there are different possibilities to accomplish the removal of a design
deficiency. These different reengineering strategies have different consequences for
the system. If the reengineer wants to remove a design deficiency, she has to
decide which of the available strategies fits her requirements best. These different
strategies to handle it have to be presented to the reengineer.

In order to allow an automated removal of the different design deficiencies, the
reengineering strategies have to be specified formally. For this, literature like e.g.
[Fow99] can be consulted.

There might also be situations in which the removal of a design deficiency cannot
be accomplished automatically. In these cases, the reengineer has to remove it
partly or completely on her own.

1.2.3 Architecture Prognosis

The application of the reengineering strategies to remove a design deficiency can
have different consequences on the system’s architecture. But typically the reengi-
neer has no overview of those consequences and does not know how the architecture
changes. In order to discover the consequences of a strategy, the design changes
have to be predicted and have then to be presented to the reengineer. This pro-
cess does not change the original system because it presents only a forecast of a
possibility for modified version of the system.

With this prediction, the reengineer is able to select the best strategy to ac-
complish the removal of a design deficiency in a specific system because she has
an overview of the resulting consequences. The risk of accidental changes is min-
imized due to clearly showing the reengineer which architectural consequences
follow from the selected strategy.

1.3 Limitations

The analyses presented in this thesis focus on software written in an object-
oriented language. In addition they only deal with component-based software
architectures, as defined in Chapter 2.

According to this, only design deficiencies at the architectural level are investi-
gated and not, e.g., code bad smells [Fow99].

There is a great variety of different design deficiencies and many possibilities to
accomplish their removal. This thesis illustrates its concept exemplarily on occur-
rences of the bad smell Interface Violation [vDB11]. Furthermore, the bad smell
Communication via Non-Transfer-Objects [vDB11] is taken as a second example.

The concepts presented in this thesis are based on heuristics. They are intended
to support the reengineer, but the final decisions are intentionally left to the
human. Because of this, the process proposed in this thesis is designed as a semi-
automatic process.

4



1.4 Overview

Chapter 3 gives further information on the steps that are realized within the
scope of this thesis. More conceptual ideas that could not be realized within the
scope of this thesis are presented in Chapter 10.

1.4 Overview

The remainder of this thesis is organized as follows. Chapter 2 introduces the
foundations for this thesis.

The Chapters 3 to 6 deal with the conceptual part of this thesis. Chapter 3
provides an overview of the proposed process. Chapter 4 details on the concept of
the relevance analysis, while the reengineering strategies are illustrated in Chap-
ter 5. The conceptual chapters end with a detailed description of the architecture
prognosis in Chapter 6.

Chapter 7 deals with the realization of the concept, whereas Chapter 8 addresses
the evaluation. In Chapter 9 related work is presented and discussed. Chapter 10
summarizes this thesis and draws conclusions. It also presents ideas for future
work.

5





2 Foundations

This chapter introduces the foundations that will be required throughout the
following chapters of this thesis. These include component-based software archi-
tectures and the proposed reengineering process. Furthermore it gives an overview
of the clustering-based reverse engineering and presents different bad smells.

2.1 Component-Based Software Architectures

In component-based software architectures, software systems are composed of
reusable modules, the so-called software components. The main idea is to cre-
ate the opportunity to reuse components in other systems and thereby reduce the
development costs and increase the quality of the system [SGM02]. Component-
based software development has become a widely accepted software development
approach because of its cost-effectiveness [KP05].

Components can consist of classes (so-called basic components) or can be com-
posed from other components (composite components).

The communication between components is done via interfaces and connectors.
Transfer objects serve as data containers for the messages between components.
The caller component “fills” a transfer object with data and passes it to the called
component that needs that data [vDB11]. Transfer objects are not part of the
system architecture.

Architecture models based on components and their relations between each
other describe a software system on an abstract level and thereby provide a good
overview to the software engineer. For this reason, they facilitate the task of
maintaining or extending an existing software system.

But architecture models (if existing) are often incomplete or out-dated so that
the understanding of an unknown system is a tedious task and extending it be-
comes complicated. Because of this, it is useful to recover architecture models for
existing software systems. The recovery of a component-based software architec-
ture can be done by clustering-based reverse engineering approaches.

2.2 Combined Reengineering Process

Reverse Engineering is the task of analyzing software systems in order to un-
derstand a system and recover its design documentation. There are two main
types of reverse engineering approaches: clustering-based reverse engineering and

7



2. Foundations

Clustering

Components 

Bad Smell Detection 

Detected 

Bad Smell Occurrences

Reengineering 

and Architecture 
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intermediate results

Process Step

Automatic Step

Manual Step

Figure 2.1: Reengineering process with combined clustering and pattern detection
(adapted version from [TvDB11])

pattern-based reverse engineering. Clustering-based approaches group a system’s
elements into components in order to provide an overview of the system [DP09].
Pattern-based approaches try to detect specified patterns which simplifies the un-
derstanding of the original developer’s design intentions [KSRP99].

Both approaches have their drawbacks. One major problem with the clustering-
based reengineering is that it can only recover the structure of the components
but not their purpose. In contrast, pattern-based approaches suffer from a long
run-time needed to analyze a system and often result in an unpractically large set
of detected pattern implementations [TvDB11]. To control these disadvantages,
a combination of both approaches seems promising, as illustrated in [Tra11].

To combine clustering-based and pattern-based reverse engineering approaches,
an iterative process is suitable. Figure 2.1 depicts the process as proposed in
[TvDB11].

The process starts with the source code of the software system to be analyzed.
The source code is the input for the clustering analysis, which groups the system
into components and thereby recovers an initial architecture. One tool that does
a clustering analysis is SoMoX [BHT+10, Kro10]. The clustering with SoMoX is
described in detail in Section 2.3.

In the next step, a pattern detection recovers bad smell occurrences for each of
the architecture’s components. The Reclipse Tool Suite [vDMT10a, vDMT10b]
provides tool support for automatic pattern detection.

Finally, it has to be decided how to handle the detected bad smell occurrences.
This means, it has to be determined which bad smells should be removed and how
to accomplish this. Currently, this step, including the corresponding reengineering
of the architecture, has to be done manually by the reengineer.

Here, it should be emphasized that reengineering is not equatable with a refac-
toring, since refactoring is defined to change a systems internal structure without

8



2.3 Clustering

Figure 2.2: Overview on the clustering with SoMoX (from [Kro10])

changing its external behavior [Fow99]. In opposition to this, the reengineering
strategies covered in this thesis do not always preserve the behavior.

After the reengineering, the system’s architecture may have changed. To evalu-
ate the consequences of the modifications and to further improve the architecture
by detecting new deficiencies, the process can be reiterated.

The presented approach is used as a foundation of this thesis. It is realized by
using SoMoX for the clustering step and Reclipse for the pattern detection, as
Travkin describes in his thesis [Tra11].

2.3 Clustering

This section details on the clustering-based reverse engineering process with So-
MoX. It is mostly based on Krogmann’s thesis [Kro10].

Clustering-based reverse engineering approaches aim at the reconstruction of a
software system’s architecture. For this purpose, the system’s elements are struc-
tured into different components. Because this thesis focuses on object-oriented
systems, the structured elements are classes in this case.

The clustering process used in SoMoX is illustrated in Figure 2.2. To execute
a clustering, the source code of the system has to be analyzed. SoMoX uses a
generalized abstract syntax tree (GAST ) of the source code to analyze a system.
This GAST is a language-independent representation of object-oriented source
code. For creating the GAST from the source code, the parser SISSy [SSM06] is
used (1).

9
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After the parsing step, SoMoX starts with the actual clustering steps (2-8).
The clustering is an iterative process, in which each iteration aims at a higher
abstraction level of components [BHT+10]. Each iteration builds on the results
of the previous iterations and creates an architecture model which describes the
components detected until that iteration. When starting the process, the initial
components are formed from single classes and interfaces. The process ends, if no
further component abstractions are found.

For the clustering, first a number of code metrics is evaluated on the GAST rep-
resentation (2). Metric values are evaluated for so-called component candidates.
A component candidate is a tuple of two sets of classes. Sets of component can-
didates later result in components. The metrics are described in detail in Section
2.3.1.

There are two steps that decide if a component candidate is converted into a
component: the merging step and the composition step. SoMoX determines which
classes are merged into which components and which components are composed
to composite components with the help of a combination of these metric values
(3).

In the merging step (4), the classes of component candidates are merged together
into one component. In the composition step (5), composite components are
composed from component candidates. The decision if component candidates are
merged or composed is made by detection strategies based on the metric values
and thresholds. Detection strategies represent component detection heuristics
and can be subdivided into strategies that suggest a merging step and strategies
that suggest a composition step. The strategies are described in Section 2.3.2.
The thresholds for merging and composition are changed over the iterations to
lower the probability of a component merging and increase the probability of a
composition. The thresholds are explained in detail in Section 2.3.3.

In the next step (6), the detected components of an iteration are integrated in
the architecture result model. After that, the component interfaces are assigned
(7). Similar to the detection of components, separate strategies exist for the de-
tection of interfaces. Finally, the connectors between the components are created
(8).

If no merge and no composition have been performed in the current iteration,
the clustering terminates.

In a next step, the metrics have to be recalculated for the changed parts of the
system and a new iteration can start.

2.3.1 Metrics

In contrast to source code metrics from object-oriented programs, for components
only few metrics are available [CKK01, KP05, WYF03]. Therefore, most of the
basic metrics used in SoMoX are adaptations of object-oriented metrics described
by Martin [Mar94]. The metrics used in SoMoX are calculated for component
candidates and deal with sets of classes, which represent a component candidate.
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2.3 Clustering

The metric value for a component candidate is a real number in the interval
between 0 and 1.

The following presents an overview of the metrics that are relevant for this
thesis.

Coupling The coupling metric used in SoMoX is an adaptation of the existing
object-oriented coupling metric and reuses Martin’s concept of afferent cou-
pling and efferent coupling. Afferent coupling is the number of types outside
a component candidate that depend on types within the component candi-
date, while efferent coupling is the number of types inside a component
candidate that depend on types that are outside the component candidate.
Coupling is calculated as the ratio of accesses inside a component candidate
to the total number of accesses. Assuming, that A and B are sets of classes,
the concrete definition is depicted in Formula 2.1.

Coupling(A,B) :=
R(A,B)

R(A, all)
=

InternalAccesses

ExternalAccesses
(2.1)

Here, R(A,B) represents the number of accesses from A to B and R(A, all)
stands for the number of accesses from A to all classes of the system. An
access can be an access of a type, a method or a field. Coupling is not
commutative, i.e. Coupling(A,B) 6= Coupling(B,A).

PackageMapping The idea behind the package mapping metric is that the classes
that belong to a common component are often located in the same package
structure. The package structure is regarded as a tree structure. The metric
is defined in Formula 2.2.

PackageMapping(A,B) :=

NonLinearMapping(
commonRootHeight(A,B)

maxHeight(A,B)− commonRootHeight(A,B)
)

(2.2)

In this formula, maxHeight(A,B) represents the maximum package tree
height for elements of A and B and commonRootHeight represents the
height of the deepest common node in the package tree of A and B. Pack-
ageMapping depends on NonLinearMapping, which filters out components
that only share a very top-level package, by using a threshold of 0.2, as
depicted in Formula 2.3.

NonLinearMapping(x) :=

{
x if x > 0.2
0 else

(2.3)

InterfaceViolation The Interface Violation metric calculates the ratio of the num-
ber of accesses between two classes bypassing interfaces and the number of
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all accesses. The definition is illustrated in Formula 2.4.

InterfaceV iolation(A,B) :=
RI(A,B)

R(A, all)
(2.4)

RI(A,B) represents the number of accesses from A to B that bypass inter-
faces. The metric value is 0 if the whole communication between A and B
is accomplished via interfaces.

2.3.2 Component Detection Strategies

Each component detection strategy is used to identify characteristics of a potential
component, like high coupling or interface communication. Strategies combine the
metrics from Section 2.3.1 to form higher level recognition mechanisms.

The strategies operate on component candidates and evaluate whether a compo-
nent candidate should become a component. A strategy results in a value between
0 and 1, where 1 suggests to convert a candidate into a component and 0 suggests
to reject the component candidate. The result values from all strategy evaluations
for one component candidate are aggregated into a value that indicates whether
a component should be created from the candidate, or if the candidate should be
rejected. Strategies are composable so that interdependencies among them can be
expressed.

The component detection strategies used in SoMoX are Interface Adherence,
Interface Bypassing, Consistent Naming, Abstract/Concrete Balance, Hierarchy
Mapping, Subsystem Component, Component Merge and Component Composi-
tion.

The strategies needed for this thesis are explained below.

Interface Adherence The Interface Adherence strategy is based on the interface
violation metric. The strategy checks whether component candidates are
coupled at the code level prior to indicating interface communication. Inter-
face adherence then results in a rating value of 0, if no coupling is present at
the code level. Apart from that, component candidates with a clear interface
communication style get a high interface adherence rating, which is derived
from interface violations (see Formula 2.5).

InterfaceAdherence(A,B) :=
1−max(IV (A,B) if max(Coupling(A,B), Coupling(B,A) > ε

, IV (B,A))
0 else

(2.5)

Hierarchy Mapping The Hierarchy Mapping strategy is used to gain a language-
independent component detection mechanism which evaluates the adherence
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2.3 Clustering

Figure 2.3: The merging of classes of a component candidate into a single compo-
nent via the component merge strategy (from [Kro10])

of component candidates to hierarchies expressed in packages and directories.
For Java-based systems, hierarchy mapping results in the same value, as
the package mapping metric, while for systems written in C++, hierarchy
mapping is equal to the metric Directory Mapping.

The most important strategies are the component merge strategy and the com-
ponent composition strategy as they are used to make the final decision for a
merge or a composition. The component merge and the component composition
strategies share common sub-strategies.

Component Merge

The Component Merge strategy decides whether to merge the elements of a com-
ponent candidate into a single component, as depicted in Figure 2.3. A component
merge lets the classes of a component candidate become members of one compo-
nent. Merging is applied in the earlier iterations of the clustering to gain a higher
abstraction level of basic components. This is controlled by a dynamic merge
threshold (see Section 2.3.3).

The concrete formula of the merge strategy is given in Formula 2.6.

ComponentMerge(A,B) :=

(w1 ∗ InterfaceBypassing(A,B)+
w2 ∗ ConsistentNaming(A,B)+
w3 ∗ AbstractConcreteBalance(A,B)+
w4 ∗HierarchyMapping(A,B))
/4

(2.6)

The component merge strategy comprises interface bypassing, consistent naming,
abstract/concrete balance and hierarchy mapping. The weights wx for the sub-
strategies are real numbers in the interval between 0 and 1. The weights are used
to manually adapt the detection strategies to a specific system.

The component merge metric identifies situations where classes of a compo-
nent candidate are strongly coupled, bypass interfaces in internal communication,
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Figure 2.4: The creation of new composite components from a component candi-
date via the component composition strategy (from [Kro10])

have a consistent naming scheme and are located in the same area of the system
hierarchy.

Component Composition

The Component Composition strategy is responsible for the decision whether to
convert a component candidate into a composite component, as depicted in Figure
2.4. This strategy prefers components which communicate via interfaces, which is
the most important difference to the component merge strategy. Furthermore, in
addition to the substrategies used in component merge, the subsystem component
strategy is used to identify composition scenarios.

The concrete formula of the composition strategy is given in Formula 2.7.

ComponentComposition(A,B) :=

(w1 ∗ InterfaceAdherence(A,B)+
w2 ∗ ConsistentNaming(A,B)+
w3 ∗ AbstractConcreteBalance(A,B)+
w4 ∗HierarchyMapping(A,B))
w5 ∗ SubsystemComponent(A,B))
/5

(2.7)
The component composition strategy comprises interface adherence, consistent
naming, abstract/concrete balance, hierarchy mapping and subsystem component.
The weights can differ from the component merge strategy.

The dynamic threshold assures that high-level components with “a weak man-
ifestation in artifacts” [Kro10] are identified for component composition.

2.3.3 Thresholds

SoMoX uses two separate thresholds for the merge step and for the composition
step. These thresholds are dynamically changed over the iterations, which influ-
ences the abstraction levels of the resulting components. By this, the increasing
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Figure 2.5: A filtered component indicating graph for the threshold t = 0.4

abstraction in later iterations is ensured.

While the threshold for a component merge is increasing, the threshold for a
component composition decreases. This lowers the probability of a component
merging and increases the probability of a composition with each iteration.

The initial threshold values and the final threshold values as well as the decre-
mentation / incrementation step width are configured by the user before the clus-
tering.

The dynamic thresholds are only adapted if no new component has been iden-
tified in an iteration.

2.3.4 Component Indicating Graph

The algorithm which decides whether to merge or to compose components from a
component candidate operates on a graph structure. Each element of a component
candidate is represented by a vertice. Each component candidate is represented
by a directed edge between those vertices with a weight that is derived from
the component detection strategies. To determine a merge or a composition of
a component candidate, the edges are filtered with regard to the thresholds, as
shown in Figure 2.5. Component candidates that remain connected, are converted
into components. In the example in Figure 2.5 the threshold is 0.4 and the edges
that do not pass the threshold are marked gray. As a consequence A, B and C will
be merged into the same component because they are still connected without the
edges below the threshold.

The merge and the composition steps operate on the same graph structure, but
the component detection strategies from which the graph is built differ and with
them the edge weights which results in other sets of filtered edges.

Before the start of a new clustering iteration, only the metrics for the changed
parts of the unfiltered graph are recalculated.

The component connectors are also derived from this graph.
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2.3.5 Limitations of the Clustering

Besides the drawback that the clustering can only recover the structure of the
components but not their purpose, as mentioned in Section 2.2, the clustering-
based reverse engineering approach has some more drawbacks.

Another drawback is that all clustering decisions are based on metric values.
The use of metrics cannot capture all architecture-relevant information and some
useful information are to complex for these metrics, which are at a high level of
abstraction [vDB11].

Another major problem occurs if the system to be clustered contains design de-
ficiencies. One important metric for the clustering is the metric Coupling. Classes
which are strongly coupled will probably be grouped together in the same com-
ponent while uncoupled classes may be placed in different components. There
are many design deficiencies like anti patterns and bad smells that increase the
coupling between classes. One example for this is the bad smell Interface Vi-
olation (see Section 2.4). Engineers may unintentionally introduce such design
deficiencies and thereby increase the coupling between classes that originally were
not intended to belong to the same conceptual component. But the clustering
results obviously reflect the actual architecture instead the conceptual architec-
ture. Because of this, bad smells can adulterate the clustering decisions and as a
consequence a misleading architecture model is created.

2.4 Bad Smells

Software is often developed, adapted and maintained over a large period of time
involving many different engineers. Because of this, it is often the case that design
and implementation deficiencies like Anti Patterns [BMMM98] and Bad Smells
[Fow99] are introduced.

A bad smell is a sign of a potential problem in a software system’s design.

In the following sections, different bad smells that are used in this thesis are
described.

2.4.1 Interface Violation

The bad smell Interface Violation describes a situation where an interface is inten-
tionally bypassed. An example is illustrated in Figure 2.6 as source code extract
(a) and as class diagram (b). The example system consists of two classes: A and
B. The class A that implements an interface IA and the class B that implements an
interface IB. Suppose that class A calls the method m2() of the interface IB and
also the method m3() of the concrete class B that implements IB. To access the
method m3(), class A has to downcast its IB object to the concrete type B. The
expected way for the classes to communicate would be to rather communicate ex-
clusively via the interfaces. However, this is not possible in this situation because
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class A implements IA {

  IB ib = … 

  m1() {

    …

    B b = (B) ib;

    b.m3();

    …

  }

}

class B implements IB {

  m2() {…}

  m3() {…}

}

interface IA {

  m1();

}

interface IB {

  m2();

}

A
B

IA IB

m1() m2()

m3()

1

1

a) Source Code b) Class Diagram with Metrics Annotation

Coupling(A,B) = 1.0

Figure 2.6: The bad smell Interface Violation (from [vDB11])
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m1()
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C1 C2

Figure 2.7: Bad smell Communication via Non-Transfer-Object (from [vDB11])

the interface IB does not define the method m3(). Such a design flow could have
been done by an unexperienced programmer.

Interface violations lead to a high coupling of the classes that are involved.
The Reclipse specification of interface violation used to detect this bad smell

is depicted and described in Appendix A.1. The name of the specification is
IllegalMethodAccess and it is an extended version of the specification created
by Travkin [Tra11].

2.4.2 Communication via Non-Transfer-Objects

As pointed out in Section 2.1, in component-based software architectures, transfer
objects should be used for the data exchange between two components.

In the system depicted in Figure 2.7, the two components C1 and C2 are con-
nected via the interface IB and should therefore exchange data via the transfer
object AToBTO. Instead of letting the class A pass a reference to C to the class B,
it should use the transfer object and fill it with data from C. The consequence,
if the communication is done directly and not via the transfer object, is that the
coupling between A and B would be increased. Furthermore, class B gets access to
all functionality of C, which is not intended by the conceptual architecture.
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Figure 2.8: Packages and classes from the example store system
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Figure 2.9: Recovered architecture of the example store system

The specification of this bad smell is shown in the appendix in Section A.1.

2.5 Running Example

Throughout this thesis, a simple program that represents a store system is used
as a running example. The relevant classes are depicted in Figure 2.8. The
store system contains the interfaces IListView, ICalculator and ISearch that
are implemented by the concrete classes ProductsListView, PriceCalculator

and ProductSearch. IListView and ProductsListView belong to the package
store.ui which contains the view parts of the system. ProductsListView rep-
resents a view that shows a list which contains different products. IListView

defines a general interface for views with list elements. The remaining elements
belong to the package store.logic which consists of classes that are responsible
for the business logic. The class PriceCalculator is used to calculate a products
price, and the class ProductSearch implements a search algorithm for products.
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The system contains two occurrences of the bad smell Interface Violation:
one between ProductsListView and ProductSearch and another one between
PriceCalculator and ProductSearch.

The architecture that is recovered with the clustering in SoMoX for this system
is depicted in Figure 2.9. All classes are merged into the same component which
has the interfaces IListView, ISearch and ICalculator.
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3 Reengineering Process

As described in Chapter 1, the reengineer needs to be supported in several deci-
sions:

• In which part of the system is the search for bad smells worthwhile?

• Which detected bad smells should be removed?

• How should the removal be accomplished best?

To solve these problems, an automatic relevance analysis with a subsequent
architecture prognosis is proposed.

The new reengineering process is depicted in Figure 3.1. The rectangles repre-
sent process steps and the arrows represent the control flow between them. Most
of the control flow arrows are annotated with the artifact that is the result of
the previous step and is used in the next step. Additional icons differentiate be-
tween the steps that can be performed automatically and the steps that need user
intervention.

The new reengineering process is based on the process proposed by Travkin et
al. [vDB11] and presented in Chapter 2.2 but several steps were added.

Like the original process, the new process starts with a Clustering analysis
that clusters the given software system into a component structure as described
in Section 2.3. Thereby an initial architecture of the system is recovered. The
clustering is done automatically, but the reengineer is involved in order to configure
it.

Because of potential design deficiencies that may adulterate the clustering re-
sults, a bad smell detection follows. As Travkin describes [Tra11], a bad smell
detection should be executed on one or more of the selected components sepa-
rately, due to performance reasons. As a consequence, the reengineer has to select
components from the initial architecture to build the search scope, before the bad
smell detection can start. At this point, the contributions of this thesis start. To
support the reengineer in her decision, which components are a worthwhile input
for the bad smell detection, an automatic analysis can indicate components that
seem to be critical. This Component Relevance Analysis rates the components
that result from the clustering and thereby suggest a sensible input for the bad
smell detection. Section 4.1 illustrates this procedure in detail.

After one or more relevant components have been chosen, the Bad Smell Detec-

tion on Selected Components can start. The detection is performed automati-
cally, but the reengineer has to specify the bad smells that are to be detected. The
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Figure 3.1: Reengineering process

detection results in a set of detected bad smell occurrences. This set may contain
a large number of detection results and among these can be potential bad smell
candidates that do not necessarily represent real design deficiencies. Section 4.2.1
details on this problem. Because of the presence of these detected bad smell occur-
rences that do not represent design deficiencies, the second step of the relevance
analysis is needed: the Bad Smell Relevance Analysis. This analysis takes the
unfiltered set of detected bad smell occurrences as input and rates the bad smell
occurrences’ relevance, and by this evaluates, which bad smell occurrences should
be reengineered first. The rating is done automatically. Section 4.2 details on the
rating algorithm.

With the help of the relevance analysis, the reengineer gets an overview of the
severity of the bad smell occurrences. In the following step, the reengineer can se-
lect a relevant bad smell occurrence that should be removed. Hitherto, the removal
of the bad smell had do be done manually by the reengineer. To accomplish the
removal of the selected bad smell, she also has to select an adequate reengineering
strategy that performs the removal. To support the decision for a reengineering
strategy an Architecture Prognosis can be executed. The architecture progno-
sis takes the selected bad smell occurrence and a reengineering strategy as input.
Based on this input, the reengineer gets a preview of the system’s design as it looks
after the removal of the bad smell. For each available reengineering strategy, an
architecture prognosis can be done. The architecture prognosis is illustrated in
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Section 6. It is executed automatically.
Using the information gained from the architecture prognosis, the reengineer can

choose her preferred way to remove the bad smell in the next step (Reengineering
Strategy Selection for Transformation) to execute the actual transforma-
tion step. As a last step, the selected strategy can be applied by executing an
automatic Transformation.

The resulting system with the new architecture can then be the input for a new
clustering iteration. In the future this step could be improved if an architecture
created in the architecture prognosis is used, instead of executing a new clustering.
After the clustering the reengineer has to decide if she is satisfied with the newly
recovered architecture, of if she wants to start a new iteration of the reengineering
process, to further improve this architecture by removing further bad smells, if
possible.

The process contains steps that are executed automatically and steps in which
the reengineer is involved, which makes this process semi-automatic. Thereby the
important decisions are left to the human, but automatic tools provide support to
simplify this by helping the reengineer to make more informed and thereby better
decisions.

The clustering and the bad smell detection are already available, as pointed out
in Chapter 2. This thesis focuses on the relevance analysis and the architecture
prognosis. These steps are specified in more detail in the following chapters.
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4 Relevance Analysis

In the reengineering process presented in Chapter 3, one or more components
that were identified in the clustering, can be selected to be the search scope of
the subsequent bad smell detection. For this, the user has to decide, in which
component an analysis could be worthwhile. In the original reengineering process,
she had to do this manually. This is a time-consuming task because it requires a
close inspection of all components.

After the bad smell analysis is executed, the reengineer sees herself confronted
with a high amount of detected bad smell occurrences. An occurrence of a bad
smell in a software system is not necessarily a design flaw. Depending on the
context in which the bad smell occurs, some bad smell occurrences may be more
critical than others (see Section 4.2 for further explanations).

For this reason, the relevance of each detected bad smell occurrence has to be
analyzed so that it can be determined if the occurrence should be removed or not.
Currently, this has to be done manually by inspecting each bad smell occurrence.
Such an inspection includes a detailed look at all the classes, methods and at-
tributes that are involved in the bad smell occurrence as well as inspecting their
context. Furthermore the discovered characteristics of the bad smell occurrences
have to be compared with each other. As a consequence, this inspection obviously
is a tedious task.

In this thesis I present a concept to automatically determine the components’
relevance for a bad smell detection. This automated analysis simplifies and speeds
up the decision-making process for the reengineer and helps her to give a more
informed decision. Section 4.1 details on this approach.

Furthermore an analysis is presented, in which the bad smell occurrences and
their impact on the software architecture of the system are analyzed automatically.
The concept for this analysis is pointed out in Section 4.2.

This leads to a Relevance Analysis that involves two steps: the identification of
relevant components and the identification of relevant bad smells.

Both steps are realized by a rating concept that determines relevance values by
using a composition of different strategies.

The remainder of this chapter proceeds with describing the identification of
relevant components and then the identification of relevant bad smells. In both
sections, first the concept is motivated, then the integration in the reengineering
process is illustrated. Next the rating strategies are explained in detail and at last
it is illustrated how the rating result is calculated from the strategies.
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Figure 4.1: The component relevance analysis in the reengineering process

4.1 Rating Concept for Relevant Components

The first step of the relevance analysis is the component relevance analysis. It is
executed after the clustering and before the bad smell detection.

4.1.1 Motivation

To improve a system’s quality, bad smells in the system’s architecture are to be
detected. As pointed out in Section 2.2, a drawback of the bad smell detection is
its performance. Even for middle-sized systems it can take several hours till the
reengineer gets usable results. Furthermore, the set of results usually is unprac-
tically large. As a consequence, the input for the analysis has to be reduced to
avoid these problems.

As Travkin proposes, to narrow down the search scope, one or more compo-
nents of the system under analysis can to be selected for the bad smell detection
[Tra11]. The components for the selection on which part of a system the bad smell
detection is executed are taken from the architecture model that is created during
the clustering.

To reduce the time required for the whole detection and reengineering process,
the reengineer should start his search in a relevant component. A relevant compo-
nent is promising to contain design deficiencies whose removal have a significant
impact on the system’s architecture.

In the component relevance analysis, relevant components are identified to guide
the user’s decision in which component of a software system the search for bad
smells could be worthwhile.
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4.1.2 Integration in the Reengineering Process

f is performed after the clustering and requires the metric values, the clustering
configuration and the components from the clustering, as depicted in Figure 4.1.
It results in a set of relevant components that are proposed to be the subject to
a bad smell detection. The bad smell detection is the subsequent step.

4.1.3 Rating Strategies

Two different strategies are used to rate a component’s relevance: the Closeness
to Threshold Strategy and the Component Complexity Strategy.

Closeness to Threshold In this strategy, the current merge and composition
thresholds are regarded. The decision for or against a merge or a com-
position is derived from the metric values that are composed to a merge
and a composition metric. The occurrences of bad smells can adulterate the
metric values as shown in Section 2.3. It is possible that if the values for
a merge or composition metric are close to the threshold, the decision for
or against the merge or composition could be wrong because of bad smells.
Because of this, the modification of components that originate from such
potentially adulterated decisions, could have a great impact on the architec-
ture, when they are modified. This makes them relevant to search for bad
smells.

To determine a concrete relevance value according to this assumption, in
addition to the thresholds, the merge and composition metric values are
required. The metric values are determined for the component candidates
from the different iterations in the clustering, but only the resulting compo-
nents from the clustered architecture model are an output of the clustering.
So the component candidates from the iterations that correspond to the
components from the architecture model have to be derived from the com-
ponents. This is done by comparing the classes of the component candidates
and the classes that the components contain.

The iterations with the lowest current merge threshold are the first iterations
in a clustering run because the current merge threshold is increased over the
iterations and the probability for a merge decreases. According to this,
the most relevant components are components that contain classes from
component candidates whose merge value in the iterations with the lowest
current merge threshold was narrow to the current merge threshold.

On the other hand, the iterations with the lowest current composition thresh-
old are the last iterations because the current composition threshold is in-
creased over the iterations and the probability for a composition increases.
Thus, also components that contain classes from component candidates
whose composition value in the iterations with the lowest current composi-
tion threshold was narrow to the current composition threshold are relevant.
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4. Relevance Analysis

The formulas for the exact relevance value for the Closeness To Threshold
strategy (CTT) are depicted in Formula 4.1 to 4.5.

comp :=the current component, contains a set of classes Classes

FirstIts := the iterations with the lowest current merge threshold

LastIts := the iterations with the lowest current compose threshold

CCandsi := the set of component candidates in iteration i

cc ∈ CCandsi :=(ClassesA,ClassesB)

(4.1)

rMergecc :=

{
1 if |Merge−mergeThreshold| < ε
0 else

rComposecc :=

{
1 if |Compose− composeThreshold| < ε
0 else

(4.2)

vcomp,cc :=



0 if #(cc.ClassesA ∩ comp.Classes) = 0 ∧
#(cc.ClassesB ∩ comp.Classes) = 0

1 if #(cc.ClassesA ∩ comp.Classes) ≥ 1 ⊕
#(cc.ClassesB ∩ comp.Classes) ≥ 1

2 if #(cc.ClassesA ∩ comp.Classes) ≥ 1 ∧
#(cc.ClassesB ∩ comp.Classes) ≥ 1

(4.3)

CTT (comp) :=
∑

i∈FirstIts

( ∑
cc∈CCandsi

vcomp,cc · rMergecc

)

+
∑

i∈LastIts

( ∑
cc∈CCandsi

vcomp,cc · rComposecc

)
(4.4)

AllCCands :=
∑

i∈FirstIts∪LastIts

#CCands

CTTnorm(comp) :=
CTT (comp)

AllCCands · 2

(4.5)

The calculation of the relevance value takes five steps:

1. As depicted in Formula 4.1, comp is defined as the current component
for that the relevance is calculated. As explained above, the first it-
erations (FirstIts) and the last iterations (LastIts) are considered.
CCandsi is the set of component candidates contained in the architec-
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4.1 Rating Concept for Relevant Components

ture model of the current iteration. Each of these candidates consist of
two sets of classes: ClassesA and ClassesB.

2. rMerge and rCompose indicate if a component candidate is relevant
and included in the rating (see Formula 4.2). They are determined by
calculating the deviation of the threshold from the merge value or the
compose value, respectively. If the deviation is greater than a chosen
bound ε, rMerge or rCompose are set to 1, otherwise the value is 0.

3. vcomp,cc represents the rating value for a (component, componentcandi-
date)-tuple. It is defined as illustrated in Formula 4.3: The rating
value is 0 if the two components of the component candidate cc and
the component comp have no classes in common, 1 if one of the two
components of cc and comp have at least one class in common, and 2
if both components of cc share at least one class with comp.

4. For the result of the relevance strategy CTT , the rating value then is
multiplied with the rMerge value or the rCompose value, respectively,
as shown in Formula 4.4. The is done for each component candidate in
the first iterations or the last iterations, respectively.

5. To make the relevance values of different components comparable, they
are normalized. This is done by dividing the value of CTT by AllC-
Cands ·2 (Formula 4.5). AllCCands represents the sum of the number
of component candidates from all regarded iterations, i.e., the iterations
with the lowest merge value and the iterations with the lowest compose
value. The factor 2 is needed because a component candidate consists
of two components which can increase the rating value by 2.

Component Complexity Complex components consist of many classes, attributes,
methods and interfaces. Because of this, they are unclear and confusing, dif-
ficult to maintain and to adapt, and this situation worsens more and more
over the time. Thus, the risk of accidentally embedding design deficiencies
increases. This leads to the assumption that, the more complex the compo-
nent, the more likely it is to contain bad smell occurrences. This makes the
complexity of a component significant to rate the relevance of a component
for the bad smell detection.

In this thesis, the complexity is calculated by using a simplified version of
the formula for the Plain Component Complexity as described by Cho et
al. [CKK01]. There, the sum of classes, interfaces, and methods and the
complexity of classes and methods is calculated. In this thesis, the formula
depicted in Formula 4.6 is used.
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4. Relevance Analysis

Complexity(comp) :=#classes(comp)

+ #interfaces(comp)

+ #methods(comp)

+
∑

c∈Classes(comp)

#attributes(c)

+
∑

m∈Methods(comp)

#arguments(m)

MaxSum :=Overall#Classes + Overall#Interfaces

+ Overall#Methods + Overall#Attributes

+ Overall#Arguments

Complexitynorm(comp) :=
Complexity(comp)

MaxSum
(4.6)

The sum of the classes, interfaces, methods, attributes and arguments of
a component is divided by the sum of the classes, interfaces, methods, at-
tributes and arguments of all components, to normalize the complexity value.

All relevance strategies result in a value between zero and one.
How these relevance values are processed further is described in the following

section.

4.1.4 Rating Result

To identify relevant components from the rating values the different strategies
provide, further calculations have to be done.

For this purpose, the components that are pareto optimal with respect to the
relevance strategies are highlighted in the visualization of the analysis results.

The pareto optimal components are assumed to be good subjects for a bad smell
detection because they represent the best available combination of relevance val-
ues, i.e., they are built from component candidates that are close to the merge
or composition thresholds and in addition, they are among the most complex
components of the system. Thus, the reengineer can directly focus on these candi-
dates and thereby she can more easily and quickly continue with the reengineering
process.

The pareto optimal set contains solutions that represent the best possible trade-
off among the objectives [CDJ10]. A solution is called pareto optimal if and only
if there is no solution that dominates this solution. Here, we use the dominates
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4.1 Rating Concept for Relevant Components
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Figure 4.2: Example for the calculation of the relevance values result

relation in a maximization context: A solution y dominates a solution z iff ∀i ∈
[1...n], fi(y) ≥ fi(z) and ∃i ∈ [1...n] such that fi(y) > fi(z).

In the cases where several pareto optimal solutions exist, a further criterion is
required to determine the most relevant component. Because of this, in addition
to determining the pareto optimality, the length of the vector from the origin
to the point constituted by the relevance values in a multi dimensional space, is
calculated. The higher the geometric distance to the origin, the more relevant
is the corresponding component. The resulting values are normalized to a value
between zero and one to simplify the comparison. The resulting formula is depicted
in Formula 4.7.

Relevance(C) :=

√
n∑

i=1

v2
i

√
n

|vi ∈ [0; 1] (4.7)

with v as the relevance value of the strategy i and n being the total number of
strategies.

Figure 4.2 visualizes a set of example relevance values as table (a) and as graph
(b). As illustrated in the graph, each relevance strategy defines a dimension:
the Complexity strategy represents the x-axis and the Closeness To Threshold
strategy represents the y-axis. x1 to x6 represent the components. The pareto
optimal components x1, x2, x4 and x6 are marked with a blue frame. They build
up a pareto front. Each candidate below the pareto front is dominated by the other
candidates, hence, it is not pareto optimal (here: x3 and x5) and therefore less
interesting. The pareto optimal candidates differ in their distance from the origin.
x1 is the component with the largest origin vector, which is marked with a blue
arrow. Note that the length of the vectors from the origin has been normalized.
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Figure 4.3: Relevance values results for the running example

The resulting graph for the running example is depicted in Figure 4.3. In
this example, only one pareto optimal component exists: x2. It represents the
composite component that consists of the two other components in this example,
which leads to this clear result.

This approach to calculate an overall result for the relevance is easily extendable.
Since the pareto optimality as well as the length of the vector to the origin are
computable for arbitrarily many dimensions. Any number of strategies can be
added to rate the relevance of a component.

4.2 Rating Concept for Relevant Bad Smell
Occurrences

In the following sections, the concept for the bad smell relevance analysis is ex-
plained. Here, the relevance of a bad smell occurrence is determined on the basis
of the metric values of the clustering analysis.

The bad smell relevance analysis is executed after the bad smell detection and
before the decision for a reengineering strategy is made.

4.2.1 Motivation

The example store system as introduced in Section 2.5 contains two occurrences
of the bad smell Interface Violation: one between the classes ProductsListView

and ProductSearch and another one between the classes PriceCalculator and
ProductSearch, as depicted in Figure 4.4.

In component-based software architectures, the communication between com-
ponents is strictly defined. The communication within a component can be
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Figure 4.4: Example system with one relevant and one less relevant bad smell

handled more easily, for example for a better efficiency. As a consequence, de-
sign deficiencies regarding the communication between components can be distin-
guished by heuristics using this knowledge. For example, regarding the fact that
ProductsListView and ProductSearch belong to different conceptual compo-
nents, the interface violation between those classes probably is a design deficiency
and should be removed. In contrast, the interface violation between the classes
PriceCalculator and ProductSearch which belong to the same part of the sys-
tem, may be intended and is not necessarily a deficiency of the architecture.

To conclude, not all bad smell occurrences are equal. Heuristics can be used
to distinguish bad smell occurrences that are really problematic from occurrences
that can be tolerated in a component-based software architecture. Heuristics
about the design of the system under analysis are already available by the metrics
used in the clustering and partly reused in the component relevance analysis. In
the bad smell relevance analysis, the metric values are used again, but this time
to rate the relevance of bad smell occurrences.

In the simple example used above, the relevance can be determined by regard-
ing the locations of the classes, i.e. the membership to a package in java. The
metric Package Mapping used in the clustering (see Section 2.3.1) represents this
heuristic, so this can be used here, to indicate the relevance of these interface
violation occurrences.

The remainder of this chapter details on how the package mapping metric is
used for the relevance analysis and which other metric values from the clustering
can be used to evaluate the relevance of this and other bad smells.
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Figure 4.5: The bad smell relevance analysis in the reengineering process

4.2.2 Integration in the Reengineering Process

In the reengineering process, the bad smell relevance analysis is the step after the
bad smell detection, as depicted in Figure 4.5. It takes the detection results, i.e.
the detected bad smell occurrences, as input, as well as the metric values and
the clustering configuration. The relevant bad smell analysis results in a set of
relevant bad smells.

4.2.3 Rating Strategies

Similar to the components relevance analysis, several rating strategies are used to
determine the relevance value of a bad smell occurrence. The applicability of the
strategies depends on the bad smell types.

The relevance strategies are described below.

Class Locations The idea behind this strategy is that classes that reside in the
same part of the system (i.e. are in the same branch in the package tree
or even belong to the same package), are intended to collaborate with each
other. Consequently, an occurrence of a bad smell like Interface Violation
between classes that are located far away from each other, is a more serious
design problem, than an occurrence between classes in the same package.
For this strategy, the value of the PackageMapping metric is used. The
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4.2 Rating Concept for Relevant Bad Smell Occurrences

exact formula is depicted in Formula 4.8.

CCBS := Component Candidate that corresponds to the Bad

Smell Occurrence BS

RelevanceCL(BS) := 1− PackageMapping(CCBS)

(4.8)

Here, BS is the bad smell occurrence and CCBS represents the component
candidate that contains the classes that are involved in the bad smell oc-
currence BS The higher the PackageMapping value, the less relevant the
occurrence is rated.

This strategy is applicable for the bad smells Interface Violation and Com-
munication via Non-Transfer Objects.

For non-java-based systems, the same strategy can be used with the Direc-
toryMapping metric [Kro10] instead of the PackageMapping metric.

Number of External Accesses In order to achieve high reusability, different com-
ponents of a system ought to be loosely coupled [Mye75, LTC02]. In a
clustering algorithm, high coupling between components is an indicator for
a component merge [CKK08, Kro10]. As pointed out in Section 2.3.1 the
metric Coupling is defined as the ratio of internal accesses and external ac-
cesses. The bad smell Interface Violation increases the numbers of internal
accesses and external accesses for a component candidate by two for each.
This implies that Interface Violation occurrences adulterate the component
design especially for components with few external accesses. In contrast, an
Interface Violation occurrence in a component with many external accesses
is not as problematic. Because of this, bad smell occurrences in a component
candidate with a high External Accesses metric value are rated as less rele-
vant than occurrences in a candidate with a lower External Accesses value,
as illustrated in Formula 4.9.

RelevanceEA(BS) := 1− ExternalAccesses(CCBS) (4.9)

This strategy is applicable for the bad smell Interface Violation.

Higher Interface Adherence The Higher Interface Adherence strategy does a
prediction for the reengineered system in which the regarded bad smell has
been removed. For this estimation, the fact that the value for the met-
ric InterfaceAdherence increases, if an Interface Violation occurrence was
removed, is used.

The InterfaceAdherence metric value only takes part in the calculations for
the overall metric values, if the metric value for Coupling is greater or equal
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4. Relevance Analysis

to ε (see Section 2.3.2). Because of this, the Higher Interface Adherence
strategy returns zero for component candidates whose coupling is less then ε
(see Formula 4.10). Otherwise, the following steps are processed to calculate
a relevance value for this strategy:

First, a higher value InterfaceAdherence value has to be chosen. Currently,
the maximum value (1) is used for this. In the future a better heuristic can
be applied to search a more adequate value.

Then a new value for the overall Merge metric is calculated for the compo-
nent candidate that corresponds to the bad smell occurrence, as described
above. The new value is based on the new InterfaceAdherence value, while
the values of the other basic metrics remain unchanged.

Next, the relation of the new Merge value to the CurrentMergeThreshold
is compared to the relation of the original Merge value to the threshold.
Only the cases in which the relation has changed are of interest:

1. the newly calculated Merge value is lower than the current merge
threshold, but the old value was higher, or

2. the new Merge value is higher than the threshold, but the old value
was lower.

If one of these cases is true, the result is the deviation of the value to the
threshold. Otherwise, the result is zero. Formula 4.11 shows the exact
formula.

RelevanceHIA(BS) :=

{
0 if (coupling(CCBS) < ε

Dev(CCBS) else
(4.10)

Dev(CCBS) :=


|tMerge −Mergenew| if ((Mergeold < tMerge

∧ Mergenew ≥ tMerge)
∨ (Mergeold ≥ tMerge

∧ Mergenew < tMerge))
0 else

(4.11)

Here, tMerge represents the current merge threshold, Mergenew represents
the new calculated value for the overall merge value regarding an Inter-
faceAdherence value of 1, and Mergeold represents the old overall Merge
value with the original InterfaceAdherence value.

In the future, this strategy could be extended to also consider the Compose
metric value.

This strategy is applicable for the bad smell Interface Violation.

36



4.2 Rating Concept for Relevant Bad Smell Occurrences

Communication via Data Classes As explained in Section 2.1, transfer objects
serve as data containers for messages between components. As a conse-
quence, transfer object classes are simple data classes that do not contain
any methods that implement the application logic. In a good component-
oriented design, transfer object classes are marked as such.

In the clustering with SoMoX, transfer objects are recognized and not as-
signed to any components. Because of this, a Communication via Non-
Transfer Objects occurrence is less relevant for reengineering, if the non-
transfer object is a data class, which indicates that an incorrectly marked
transfer object is used. The closer the non-transfer object class comes to
being a data class, the more the relevance value decreases (see Formula
4.12).

RelevanceDC(BS) := 1− IsDataClass(BS.dataClass)
(4.12)

IsDataClass(c) :={
0 if #Fields(c) = 0

1−
(

#AllMethods(c)
#NonAccessors(c)+MissingAccessors(c)

)
else

(4.13)

MissingAccessors(c) := |2 ·#Fields(c))−#Setters(c)−#Getters(c)|
(4.14)

BS.dataClass represents the non-transfer object class.

Formula 4.13 depicts how a the similarity of the non-transfer object class to
a data class is calculated. A regular data class has a two accessor methods
for each field: one getter and one setter. The MissingAccessors formula
(see Formula 4.14) is calculated by counting the fields and subtracting the
number of getters and setters. By this a wrong number of accessor methods
is detected. The more the number of accessors deviates from the regular
case, the higher is the MissingAccessors value.

In the IsDataClass(c) formula, the MissingAccessors value is added to
the number of methods that are not getters or setters. Then the number of
all methods in the class is divided by the sum. The result is then subtracted
from one. If the class contains no fields (it is not a data class) IsDataClass
returns 0 and the relevance strategy returns 1, i.e., the bad smell occurrence
is very relevant.

Data classes can be identified during different steps in the process. For
classes that have already been identified as data class in the clustering, this
strategy returns 0.
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Figure 4.6: Results of the bad smell relevance analysis for the running example

This strategy is only applicable to rate the relevance of the bad smell Com-
munication via Non-Transfer Objects.

4.2.4 Rating Result

The overall rating result for the bad smell occurrences is determined in the same
way as in the relevance analysis for components (see Paragraph 4.1.4). The only
further restriction is that it has to be taken into account if a certain strategy is
applicable for the current bad smell, or not.

The results for the two Interface Violation occurrences in the running example
are depicted in Figure 4.6. Since this thesis presents three relevance strategies
for the Bad Smell Relevance Analysis for Interface Violation occurrences, three
dimensions are taken into account this time: Class Locations (CL), Number of Ex-
ternal Accesses (NEA) and Higher Interface Adherence (HIA). Both occurrences are
pareto optimal, but considering the distance to the origin, the interface violation
in the class ProductsListView is more relevant, than the interface violation in
PriceCalculator.

A high relevance value indicates a high probability that the current bad smell
occurrence is a good subject to reengineering and that the reengineering would
change the system’s recovered architecture. However, it is not guaranteed that the
recovered architecture is significantly influenced by the removal of the bad smell
occurrence.
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After the Reengineer, supported by the relevance analysis, has decided, which bad
smell occurrence should be removed, she has to find a way to accomplish this. This
currently has to be done manually by first identifying appropriate Reengineering
Strategies by consulting design experts or adequate literature, if necessary.

In many cases there are different reengineering strategies to accomplish the
removal of a bad smell. Then, the reengineer has to decide which strategy fits her
requirements best. To determine the best reengineering strategy for the removal
of a bad smell occurrence, the consequences on the system’s architecture are an
important criterion. If this has to be done manually, the task of deciding on an
appropriate strategy becomes time-consuming.

To support this process, different reengineering strategies for specified bad
smells can be specified. For a detected bad smell occurrence, the appropriate
reengineering strategies are then presented to the reengineer. Then, the reengi-
neer can select between the proposed reengineering strategies in order to perform
an architecture prognosis (see Chapter 6) that shows the impact of the application
of the reengineering strategy on the system’s architecture. Thus, the reengineer
can easily make a more informed decision for her reengineering, to get the expected
results.

For the selected interface violation occurrence from the running example (see
Chapters 2 and 4), the reengineer has several possibilities to correct this design
deficiency. Here, two strategies are explained exemplarily.

First, she could simply remove the call and the cast as illustrated in the activity
diagram in Figure 5.1. In consequence, the behavior of the system is modified
because a part of the method’s functionality gets lost.

The other possibility is to extend the interface by adding a new method dec-
laration to the interface (see Figure 5.2). Then the method of the interface can
be called instead of the method of the concrete subclass. Furthermore, the cast
can be removed. The modification of the interface has the consequence that other
classes that implement that interface have to implement the new method, too.

In Figure 5.3, an extract of the original source code (a) and of the system
after the application of the both strategies (b+c) is depicted. In this source code

Remove call statement Remove cast statement

Figure 5.1: Reengineering strategy that removes the call as activity diagram
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Figure 5.2: Reengineering strategy that extends the interface as activity diagram

class ProductsListView implements IListView {

  ISearch search = … 

  printList() {

    …

    ProductSearch pSearch = (ProductSearch) search;

    pSearch.searchProducer();

    …

  }

}

class ProductSearch implements ISearch {

  searchPrice() {…}

  searchProducer() {…}

  ...

}

interface IListView {

  printList();

}

interface ISearch {

  searchPrice();

}

a) Original Source Code Extract

class ProductsListView  

implements IListView {

  ISearch search = … 

  printList() {

    …

    …

  }

}

class ProductSearch 

implements ISearch {

  searchPrice() {…}

  searchProducer() {…}

  ...

}

interface IListView {

  printList();

}

interface ISearch {

  searchPrice();

}

b) Source Code Reengineered by Removing the Call

class ProductsListView 

implements IListView {

  ISearch search = … 

  printList() {

    …

    search.searchProducer();

    …

  }

}

class ProductSearch 

implements ISearch {

  searchPrice() {…}

  searchProducer() {…}

  ...

}

interface IListView {

  printList();

}

interface ISearch {

  searchPrice();

  searchProducer();

}

c) Source Code Reengineered by Extending the Interface

Figure 5.3: Source code example for interface violation and reengineered systems

extract, the @Override annotations are used to illustrate the differences in the
system that are introduces with the adaptation of the interface.

The lines responsible for the interface violation occurrence are marked red. They
are contained in the printList() method of the ProductsListView class and
include the downcast of the object search to the concrete type ProductSearch

as well as the call of the method searchProducer().

The changes done by the reengineering strategies are marked in blue. The result
of the application of the reengineering strategy that removes the call is depicted
in part b. The only part of the system that changes is the method printList().

The second reengineering strategy is more complex. A method declaration
for the method searchProducer() is added to the interface ISearch and the
searchProducer method in the concrete class ProductSearch now implements
the method from the interface. This leads to the fact that the searchProducer()

call in printList() can be done on the object search of the type ISearch

and because of this, the line with the cast statement can be deleted. As stated
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Figure 5.5: The reengineering strategy selection in the reengineering process

above, this has the consequence that other classes that implement the interface
ISearch also have to be adapted, i.e. they have to implement the new method
searchProducer(). The implementation of those methods is a task that has to
be done manually by the reengineer. All other modifications of this strategy can
be executed automatically.

A comparison of the original system to the reengineered system in form of a class
structure is depicted in Figure 5.4. In part a, the original system is shown as class
diagram, in part b, the system after the application of the second reengineering
strategy, as described above, is shown. In contrast to the original system, in the
new class structure the class ProductsListView has no longer a reference to the
concrete class ProductSearch. Instead, the interface ISearch has been extended.

After the reengineer selected a bad smell occurrence and a reengineering strategy
to accomplish this, the architecture prognosis can be started. The relevant process
extract is shown in Figure 5.5.
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Note that there also might be cases in which the removal of a bad smell cannot
be accomplished fully automatically. Then the reengineer has to intervene and to
remove a bad smell partly or completely by himself.
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6 Architecture Prognosis

The following chapter details on the concept for the architecture prognosis. First,
the idea for an architecture prognosis is motivated. Then, the comparison criteria
and the actual prognosis calculation are explained.

6.1 Motivation

To support the decision which reengineering strategy should be applied to her
system, the reengineer has to find out which strategy meets his requirements best.
For this, one important decision criterion is the consequence of the application of
a strategy to the system under analysis.

For example, the two reengineering strategies for interface violation occurrences,
as presented in Chapter 5, have different consequences. If the reengineer decides
to remove the bad smell by deleting the call, the behavior of the system is changed.
In contrast, if the reengineer selects the reengineering strategy that extends the
interface, the behavior remains unchanged but more parts of the system have to
be adapted. To make a decision to apply one of the strategies, the reengineer has
to know the consequences in both cases and she should have an overview about
the impact on the system’s architecture.

The different reengineering strategies effect different modifications in the class
structure as well as in the metric values. Because of this, the resulting component
structure of the clustering after the reengineering can differ in both cases. Two
possible resulting architectures for a part of the example system and the reengi-
neering strategies presented in Chapter 5 are depicted in Figure 6.1. In the first
possible architecture (a), the two classes ProductsListView and ProductSearch

are merged into one component with the interfaces IListView and ISearch. This

ProductSearch

ProductsList
View

IListView, 

ISearch

ProductsList
View

Product
Search

ISearchIListView

a) Recovered Architecture 1 b) Recovered Architecture 2

Figure 6.1: Recovered example architectures
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is the same result as from the initial clustering (see Section 2.5), but one class
is left out to preserve clarity. The reason for the merge in one component is
that the coupling between the classes ProductsListView and ProductSearch is
still tight. In the second possible architecture (b), two components are recovered:
one component that contains the class ProductsListView and has the interface
IListView and one component that contains the class ProductSearch and the in-
terface ISearch. The both components are connected via the ISearch interface.
In this case, the removal of the interface violation between ProductsListView

and ProductSearch caused these classes to be loosely coupled, so that they are
clustered into different components.

For the presented example situation, the first recovered architecture possibil-
ity (a) is predicted. How the architecture changes depends on how the metric
values are influenced by the application of a reengineering strategy. This, in turn,
depends on the strategy, as well as on the original system, i.e., the classes that
are involved and the selected bad smell occurrence. In most cases, the conse-
quences of the application of the different reengineering strategies on the system’s
architecture are not obvious. For this reason, I propose a prognosis, in which
the consequences of a reengineering strategy are calculated and presented to the
reengineer.

In this Architecture Prognosis, the concrete architecture that will be created by
the reengineering is calculated and presented to the user. This helps the reengi-
neer to decide, how to accomplish the removal of bad smells, so that the target
architecture meets his requirements best.

For this purpose, the architecture resulting from the clustering (referred to
as original architecture) is compared with the anticipated architecture from the
prognosis (referred to as predicted architecture).

6.2 Integration in the Reengineering Process

The architecture prognosis can be started after the step in which the reengineer se-
lects a bad smell occurrence to remove and a reengineering strategy to accomplish
the removal (see Figure 6.2). In addition to the selected bad smell occurrence
and the reengineering strategy, the architecture prognosis takes the current ar-
chitecture model, created in the clustering, as input. It results in a predicted
architecture to the bad smell occurrence and reengineering strategy tuple.

If the reengineer plans to remove several bad smell occurrences successively, she
can reuse the predicted architecture for the next prognosis.

6.3 Comparison Criteria

First, it has to be determined which information should be included in the prog-
nosis.
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Figure 6.2: The architecture prognosis in the reengineering process

There are several levels of detail at which the two architectures can be com-
pared. On a very abstract level, there is the comparison of the number of existing
components. In addition, the number of primitive components as well as the num-
ber of composite components can be regarded. This level of detail is sufficient if
only a rough overview of the changes between the two architectures is of interest
to the user.

The next step is to compare the total number of interfaces and the number of
messages between components. These values are needed if the communication and
the collaboration between the components are of interest.

On a more detailed level, the size of the particular components and their con-
crete composition becomes relevant. This comprises the sub components for com-
posite components and the implementing classes for primitive components. This
data could concern users that need a more detailed view of the predicted archi-
tecture. One use case could be that further analyses have to be executed on the
predicted architecture, for example to evaluate certain characteristics of single
components.

Other details that could be considered are the connectors between interfaces
and how the interfaces are used, i.e., the concrete sequences of messages that are
sent. This information is of interest, e.g., if a subsequent behavioral analysis on
the predicted architecture is intended. Also for a performance analysis this could
be useful.

For the first version of an architecture prognosis in the presented reengineering
process, this thesis focuses on the more abstract levels of detail. According to this,
the following criteria of the original architecture and the predicted architecture
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are compared:

• Total number of existing components

• Number of primitive components

• Number of composite components

• Total number of interfaces

• Total number of messages

• The size and the composition of components

6.4 Prognosis Calculation

To create the prognosis, a component model of the predicted architecture has to
be calculated. The simplest possibility to obtain the predicted architecture is to
executing a reengineering strategy on a copy of the system and executing a new
clustering on the reengineered copy.

For this, the same configuration for the clustering has to be used as in the
initial clustering. Using the same configuration is important because otherwise
the results are not comparable because the clustering could proceed differently
for the same input. For this purpose, the configuration is stored in the metric
values model during the clustering which makes the configuration from the initial
clustering accessible to the architecture prognosis.

According to this, the required inputs for the architecture prognosis are: The
metric values model of the original architecture, a bad smell occurrence to be
removed, an appropriate reengineering strategy to accomplish the removal, and
component models of the original and of the predicted architecture.

In the future a more efficient way to create the predicted architecture without
performing new clustering on the whole system could be investigated. But because
the clustering is a complex process that includes several iterations which are based
on each other, it is a difficult task to manipulate the results only for the modified
part of the system.

To simplify the comparison for the user, the differences between the original ar-
chitecture and the predicted architecture are highlighted. Furthermore, for classes
that are assigned to another component in the predicted architecture, than before,
it is displayed, where these classes were located in the original architecture.

Figure 6.3 depicts a visualization of an architecture prognosis for the running
example. Part a shows the original architecture and Part b shows the predicted
architecture. The original architecture in this example only consists of one com-
ponent, which is here named comp 1. The predicted architecture consists of two
components, comp 1 and comp 2. Modified components are visualized with a
yellow border in this figure.
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Figure 6.3: An architecture prognosis for the example system

The reason for the new component structure is that the class ProductSearch

is assigned to another component after the reengineering. In this figure, this is
marked in the original architecture by a red border. Objects that in the predicted
architecture are new in comparison to the original architecture are colored green.
In this case this applies to the component comp 2. For the class ProductSearch in
the predicted architecture, the label “was in comp 1” indicates the former location
of the class.
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7 Realization

This chapter describes how the approach presented in the chapters 3 to 6 was
realized. This includes the storage of the metric values from the clustering as
they are required for the relevance analysis. Furthermore, the implementation of
the relevance analysis and the architecture prognosis are explained and a short
overview of the user interface is given.

7.1 Overview

The relevance analysis and the architecture prognosis are realized as Eclipse plug-
ins. Figure 7.1 shows the components involved and the dependencies between
them. Dependencies between subcomponents of a composite component are omit-
ted for a better readability.

The components that were developed within the scope of this work are marked
blue. The Relevance Analysis component as well as the Architecture Progno-

sis component include two plug-ins: one that contains the logical part of the
realization and one plug-in for the user interface.

As depicted in the figure, the Relevance Analysis and the Architecture

Prognosis require other components from SISSy, SoMoX, Reclipse and Fujaba.
From SISSy, the GAST Meta Model is used. This model specifies the parsed ab-
stract syntax tree of the system under analysis. The used subcomponents of
SoMoX are the SoMoX Core, the Source Code Decorator Meta Model and the
Metric Values Meta Model. The SoMoX Core is responsible for configuring and
starting of the clustering process. The Source Code Decorator Meta Model

specifies the correspondence of elements from the architecture model (SAMM)
to the model elements from the GAST. Therefore, the Source Code Decorator

Meta Model can be used to access both, the components and their implement-
ing classes. The Metric Values Meta Model was developed within the scope of
this work and is used for the storage of the metric values from the clustering.
This model is explained in detail in Section 7.2.1. From the Reclipse compo-
nent, the Reclipse Structure Specification subcomponent is used, as well
as the Reclipse Inference. Reclipse Structure Specification contains the
meta model for the pattern specification language used in Reclipse. Classes as-
sociated with the pattern detection are contained in the Reclipse Inference

component. The Fujaba component holds the Story Diagram Meta Model and
a Story Diagram Interpreter which can execute story diagrams specified with
that meta model. The story diagrams are used to specify the reengineering strate-
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Reclipse Structure Specification
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Story Diagram Interpreter

Architecture Prognosis

Figure 7.1: Component architecture of the developed tools and their environment

gies.

The Relevance Analysis uses the SoMoX Core because the core contains the
SoMoX configuration. Furthermore, it depends on the Source Code Decorator

Meta Model and the Metric Values Meta Model. The Relevance Analysis

also has dependencies to the Reclipse Inference and to the Reclipse Struc-

ture Specification because of the required model elements. The architecture
prognosis needs to start a SoMoX clustering as well as the story diagram in-
terpreter. Because of that, the Architecture Prognosis component has more
dependencies than the Relevance Analysis. It uses the SoMoX Core, the Source
Code Decorator Meta Model and the Metric Values Meta Model from SoMoX
and the GAST Meta Model from SISSy. Furthermore, the Reclipse Inference is
used and the Story Diagram Interpreter and the Story Diagram Meta Model

that belong to the Fujaba Tool-Suite.

7.2 Storage of Metric Values

The relevance analysis uses the metric values from the clustering.

They are calculated during the clustering by SoMoX and have to be stored in
a way that allows further processing. An appropriate meta model was specified
using Ecore [SBPM08].
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Figure 7.2: Meta model for storing the metric values

7.2.1 Metric Values Model

The model used to save the metric values is depicted in Figure 7.2. The root ele-
ment MetricValuesModel contains properties of the SoMoX configuration, like
the attributes minCompThreshold for the minimal composition threshold and
maxMergeThreshold for the maximal merge threshold. Furthermore it stores
the metric weights. A MetricValuesModel consists of several iterations. The
element Iteration has a number to identify its related clustering step. In ad-
dition, it stores the composition and the merge threshold used in this iteration
(curCompThreshold, curMergeThreshold) and a boolean value isMergeItera-

tion that indicates if the iteration is used to merge component candidates, or
to create composite components. In contrast to the other thresholds, the cur-
rent composition threshold and the current merge threshold have to be stored
in the iteration because they are modified during the process, as described in
Section 2.3. An Iteration contains componentCandidates and components. A
ComponentCandidate references two Components. Components can have arbi-
trarily many subComponents. If a Component has at least one sub component,
it is a composite component, otherwise it is a primitive component. Further-
more, the Component class has a reference to GASTClass from the GAST meta
model because components can consist of several classes. A ComponentCandidate

has metricValues which are assigned to it by the clustering. The MetricValue

element has a metricID and a value which stores the actual metric values, de-
termined in the clustering for the component candidates.
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Figure 7.3: Simplified illustration of the method that is responsible for the recovery
of components in the clustering

7.2.2 Integration of the Metric Values Model in the Clustering
Process

To store the metric values computed in each iteration of the clustering process,
the class from SoMoX that is responsible for performing the clustering iterations
had to be modified. The method that implements the main clustering process is
illustrated in the activity diagram in Figure 7.3. The blue parts of the diagram
were added to save the metric values. The first step that is taken in every clus-
tering iteration is the calculation of the metrics graph (see Chapter 2.3). There,
for each component candidate, the metric values are calculated. During this step,
SoMoX also filters the component candidates, so that only candidates that pass
the minimum merge threshold (for merge iterations) or the minimum composition
threshold (for compose iterations) will be processed further. However, for the
metric values model, all component candidates have to be regarded because, e.g.,
those that are slightly below a threshold, are still significant in the relevance anal-
ysis. Because of this, an additional step Calculate unfiltered Metric Graph

is added in which a graph is created, that contains the metric values for each
component candidate. This graph is used in the Save Metric Values Model

operation.

The Save Metric Values Model operation saves all data from the clustering
process that will be required later. This includes configuration values and informa-
tion about each iteration and particularly the metric values. While configuration
values are only stored in the first iteration, the metric values are saved in each
iteration for the current set of component candidates. The operation takes the
unfiltered metrics graph as input, together with the set of current component can-
didates. Furthermore, the current SoMoX configuration is required, in addition
to the number of the current iteration and the current merge and compose thresh-
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Figure 7.4: The classes used for the relevance analysis

olds. The data then is store using the Metric Values Model described in Section
7.2.1.

7.3 Relevance Analysis

The relevance analysis is split into the relevance analysis for components and the
relevance analysis for bad smells.

Figure 7.4 shows the class structure of the relevance analysis implementation.
The core is formed by the abstract class AbstractRelevanceAnalysis and its sub-
classes RelevantComponentsAnalysis and RelevantBadSmellsAnalysis. The
concrete analysis classes implement a method startAnalysis to start the cal-
culation process and a method getResults that returns the analysis results.
AbstractRelevanceAnalysis references the MetricValuesModel to access the
metric values from the clustering, while RelevantComponentsAnalysis has a ref-
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Figure 7.5: Relevant Components View

erence to the SourceCodeDecoratorRepository, which is the root class of the
source code decorator model from SoMoX, to access the architecture created in
the clustering. RelevantBadSmellsAnalysis references the ASGAnnotation class
from Reclipse to access the detected bad smell occurrences. Both analysis classes
hold sets of relevance strategies. To simplify the process of extending or adapting
the relevance analysis, the relevance strategies are loosely coupled to the analysis
algorithm by the strategy design pattern [GHJV95] with the analysis classes in
the role of the contexts. Strategies belonging to the component relevance ana-
lysis implement the IComponentsStrategy interface and strategies for the bad
smell relevance analysis implement the IBadSmellsStrategy interface. In both
analysis parts, it is distinguished between relevance strategies and result strate-
gies. Relevance strategies in the component relevance analysis extend the abstract
class ComponentsRelevanceStrategy. Result strategies used in the component
relevance analysis extend the abstract class ComponentsResultStrategy. The
ComponentsResultStrategy has a list of maps that hold the relevance values for
all component/strategy pairs. Relevance strategies in the bad smell relevance ana-
lysis extend the abstract class BadSmellsRelevanceStrategy. This class provides
the abstract method applicable. This returns a boolean value that determines if
a strategy is applicable for a given bad smell type. Result strategies in the bad
smell relevance analysis extend the abstract class BadSmellsResultStrategy. It
has a list of maps that hold the relevance values for the the bad smell occur-
rence/strategy pairs. Each strategy implements a getRelevanceValue method
that returns a double value that represents the result for that strategy.

7.3.1 User Interface

The results of both relevance analyses are visualized in two views: the Relevant

Components View and the Relevant Bad Smells View. Both views show the
analysis results in tabular form.

Figure 7.5 shows the Relevant Components View for the store example.
Each line presents one component. The column Component shows the classes the

component consists of. The second and third columns Closeness To Threshold

and Complexity (CPC) show the values of the two relevance strategies (see 4.1.3).
The Relevance Total column shows the normalized vector length and the col-
umn Pareto Optimality tells if the candidate is pareto optimal, as described in
Section 4.1.4. Pareto optimal candidates are highlighted with a yellow background
in the whole line. If the candidate with the highest vector length is not pareto

54



7.4 Reengineering Strategies

Figure 7.6: Relevant Bad Smells View

optimal, the Relevance Total field for this candidate is highlighted as well.
Figure 7.6 shows the Relevant Bad Smells View for interface violation occur-

rences of the store example. Each line presents one bad smell occurrence. The
first column Bad Smell shows the name of the bad smell specification. The sec-
ond column Roles shows the roles of the pattern specification and the names of
the objects that play theses roles in the concrete pattern candidate. The next
columns show the relevance values for the different strategies that were explained
in Section 4.2.3: Relevance CL presents the value for the relevance strategy Class
Locations ; Relevance NEA shows the value for the relevance strategy NumberO-
fExternalAccesses ; the value for the Higher Interface Adherence relevance strategy
is presented in the column Relevance HIA; Relevance DCC shows the value for
the Communication via Data Classes relevance strategy. The last two columns are
the same as in the Relevant Components View. They show the overall relevance
and if a candidate is pareto optimal. Pareto optimal candidates are highlighted
as well as the candidate with the highest overall relevance.

7.4 Reengineering Strategies

The reengineering strategies are specified by story diagrams, which are graphical
in-place model-to-model transformations [FNTZ00, Z0̈1].

The reengineering strategies fit to the bad smell specifications described in Sec-
tion 2.4. These strategies take objects with the types of the annotated elements
from the pattern specification as parameters. The object variables names in the
story diagrams that accord to an element in the specification (and are bound per
parameter expression because of this), have the same names as in the pattern
specifications.

To add a short description that helps to clarify the intent of a reengineering
strategy, EAnnotation objects with the key http://reclipse.reengineering.-

org/strategydescription are added to the story diagrams.
The concrete story diagrams to the strategies described in Section 5 are illus-

trated in the Appendix A.2.

7.5 Architecture Prognosis

The input that is required for the execution of the architecture prognosis is:

• The metric values model of the original architecture: This model has been
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Figure 7.7: Realization of the architecture prognosis

saved in the initial clustering and is then used to start the clustering after
the application of the reengineering strategy with the same parameters as
the original clustering.

• The bad smell occurrence to be removed: This is selected by the user and
provides references to the concrete objects from the GAST that has to be
transformed. This information is used when executing the transformation.

• The selected reengineering strategy to accomplish the removal of the bad
smell occurrence: This is also selected by the user. The transformation is
done by executing this strategy.

• The SAMM of the original and of the predicted architecture: The SAMMs
are required to get the data to compare both architectures. The SAMM
of the predicted architecture is created during the clustering on the reengi-
neered copy of the system.

• The Source Code Decorator Model of the original and the predicted archi-
tecture: Those models provide additional data to compare the particular
components of the both architectures. The Source Code Decorator of the
predicted architecture is created during the clustering on the reengineered
copy of the system, like its SAMM.

To execute the architecture prognosis, the bad smell occurrence to remove and
the reengineering strategy have to be selected by the user. Furthermore, the metric
values of the initial clustering have to be provided. Other required inputs can be
derived from the bad smell occurrence, provided that the SAMM and the Source
Code Decorator files from one clustering run are stored in the same folder, which
is the default setting in SoMoX.
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To calculate the prognosis results, several steps are needed as depicted in Figure
7.7. First, the transformation has to be executed by starting the Story Diagram

Interpreter with the story diagram that represents the chosen reengineering
strategy and bad smell occurrence. The result is a transformed GAST copy that
represents the reengineered system. Then, SoMoX has to be started to execute the
clustering on this transformed GAST. During the clustering, a new SAMM and a
new Source Code Decorator Model are created, which specify the new architecture
model. This new architecture model as well as the original model that was input
for the initial clustering run, are given to the Prognosis Calculator. There, the
architecture prognosis results are calculated, analyzed and visualized.

7.5.1 Executing the Reengineering Strategy

To start the story diagram interpreter, a story diagram and objects from the host
graph as context are required. The story diagram is the reengineering strategy
that is selected by the user. The architecture prognosis is performed on a copy
of the GAST that was an input for the initial clustering. The host graph is this
copy. The objects that are given as argument are taken from the selected bad smell
occurrence which is represented by an annotation from the Reclipse annotations
model. From that annotation, each annotated element is transferred. With this
data, the interpreter can execute the given reengineering strategy on the GAST
copy. After that, the transformed copy is stored in a new Ecore resource.

7.5.2 Starting a Clustering with SoMoX

Typically, when starting SoMoX, the user creates a clustering configuration. By
this a set of values is specified, e.g., metric weights, merge and composition thresh-
olds, and a blacklist of files that are to be ignored in the clustering. When ex-
ecuting a new clustering for the architecture prognosis, it is important that the
same configuration as in the initial clustering is used (see Chapter 6). The con-
figuration from the initial clustering is restored by taking the stored configuration
values from the metric values model and using them to create a new instance
of the class SoMoXConfiguration. The only values of the configuration that are
modified, are the input file, which then contains the transformed GAST instead
of the original GAST, and the output folder to prevent the overwriting of the
original clustering results, like the SAMM or the Source Code Decorator Model.
The resulting configuration is then used when starting SoMoX.

7.5.3 Calculating the Prognosis Results

The calculation process for the prognosis results uses the SAMM and the Source
Code Decorator Model from the initial clustering (original architecture) and from
the clustering executed on the transformed GAST (predicted architecture).
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Figure 7.8: The architecture prognosis view

Some of the proposed comparison criteria can be derived directly from those
models. These are the total number of components, the number of primitive
components, the number of composite components, the total number of interfaces
and the total number of messages (see Chapter 6).

To compare the composition of the particular components, for the original archi-
tecture as well as for the predicted architecture, component trees are constructed.
Those component trees represent the component structure with sub components as
children of composite components and classes as children of primitive components.
The differences in both architectures have to be highlighted. The assignment of
components in the original architecture model and components in the new archi-
tecture model is done by comparing the component names.

The collected and calculated values are visualized to the user as a view. Details
are described in the following paragraph.

7.5.4 User Interface

The Architecture Prognosis View presents the results from the prognosis in
form of a comparison between original architecture and predicted architecture.
Figure 7.8 shows the comparison for an extended version of the store example
(see Section 8.1). There, the prognosis is shown for the removal of an interface
violation occurrence by extending the interface.

On the top part of the view, a table juxtaposes the original architecture to the
predicted architecture. The lines of this table show the total number of compo-
nents, the number of primitive components, the number of composite components,
the number of interfaces and the number of messages for each architecture.

Below the table, the elements of the both architectures are shown by two tree
viewers: the original architecture on the left, the predicted architecture on the
right. In the first lines only the top level elements are shown: the components.
Primitive and composite components can be distinguished by different icons and
by the name of the component. For primitive components, a label between the
component name shows how many classes it consist of. For composite compo-
nents, the number of sub components is presented in this label. The lines can be
expanded so that the implementing classes or sub components can be inspected.
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To simplify the comparison of the architectures, lines that differ are highlighted
with a yellow background. Components that are missing in the predicted archi-
tecture are highlighted with a red background on the original architecture side,
while components that are new in the predicted architecture are highlighted with
a green background on the predicted architecture side.
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8 Evaluation

This chapter deals with the evaluation of the concept presented in Chapters 3 to
6. To validate the concept, the whole reengineering process illustrated in Chapter
3 is applied to an artificial fabricated example system and to two existing software
systems: CoCoME and Palladio FileShare. For the existing software systems, first
the procedure of the evaluation is described and then the results are illustrated.
Section 8.4 discusses the evaluation results.

8.1 Store Example

For a first validation step the proposed approach is tested on a more complex
version of the store example presented in Section 2.5. The system contains 8
classes containing the logic part of the system, 15 model classes and 9 classes
concerned with the user interface of the system. The conceptual architecture is
depicted in Figure 8.1.

Several bad smell occurrences were intentionally inserted into the system.
The clustering resulted in 5 components: 3 primitive components and 2 com-

posite components, as depicted in the left part of Figure 8.2. In the recovered
components, the model classes were all assigned to the same primitive compo-
nent (PC No.60) but the classes that belong to the logic component of the system
where incorrectly merged into the same component with some of the UI classes
(PC No.58). The third primitive component (PC No.64) contains the remaining
two classes of that belong to the UI part. The used clustering configuration and
a detailed list of clustering results are shown in the appendix (Section B.1).

Figure 8.2 also shows the results of the component relevance analysis.
The relevance ratings suggest a composite component for the bad smell detec-

tion. The suggested component is also the largest component in the system. It
contains all the bad smell occurrences named above.

Ten interface violation occurrences and two non-transfer object communication
occurrences were detected in this system. Figure 8.3 depicts these occurrences in
diagram that contains the involved classes and in a list.

Figure 8.3 also shows the overall relevance values for each bad smell occurrence.
The bad smell relevance analysis identified the interface violation occurrences be-
tween PriceCalculator and ProductSearch and between ProductSearch and
ProductsListView as pareto optimal. The occurrence between ProductSearch

and ProductsListView is the only one between two conceptual components and
consequently it correctly received the highest relevance value among all occur-
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< store.ui >

 MainMenu, ProductsListView, StorePresenter, 
ProductsListViewEntry, SellerListView, SellerMenu, 

CustomerListView, CustomerMenu

< store.model  >

DVDImpl, StorePackageImpl, ProducerImpl, StoreFactoryImpl, 
WishlistImpl, SellerImpl, BookImpl, ProductImpl, 

CustomerImpl, StoreImpl, StoreAdapterFactory, StoreSwitch

< store.logic >
 

Main, StoreCreator, AccountOwnerCreator, ProductCreator, 
ProductSearch, StoreManager, PriceCalculator, 

ProducerSearch, CustomerSearch

Figure 8.1: Conceptual architecture of the extended store example

< CC No. 3 >

< PC No. 64 >

< CC No. 1 >

< PC No. 60  >

< PC No. 58 >

PC No. 58

CTT Complexity
Total

Relevance

Pareto-

Optimal

0,121

0,19

0,013

0,287

0,298

Component

PC No. 60

PC No. 64

CC No. 1

CC No. 3

0,154

0,085

0,015

0,24

0,255

0,072

0,254

0,011

0,327

0,336

false

false

false

false

true

Figure 8.2: Detected component structure and component relevance ratings
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Figure 8.3: The bad smell occurrences in the store example

rences. Among the non-transfer object communication occurrences, one achieved
a very high rating because of the correctly identified data class StoreDetails,
while the other one received a very low rating.

The Architecture Prognosis showed that the removal of two of the interface
violations (the occurrence between MainMenu and CustomerMenu with a relevance
value of 0,523 and the occurrence between ProductsListView and CustomerMenu

with a relevance value of 0,523) would lead to an architecture that consists of
only one composite component instead of two. The removal of the other interface
violations would lead to an architecture that is equal to the original architecture.
The interface violation occurrences for whose removal a modified architecture was
predicted are not pareto optimal with respect to their relevance. But nevertheless,
they achieved a high rating compared to most of the other interface violations and
they are the most relevance occurrences within the UI component. The application
of each of the two reengineering strategies described in Chapter 5 lead to the same
results for the removal of each interface violation.

Even after all interface violations have been remove automatically and the non-
transfer object communication occurrences has been removed manually, the pre-
dicted architecture did not result in the conceptual architecture, where logic classes
and user interface classes are separated. This issue is discussed later in this chapter
(Section 8.4).

8.2 CoCoME

To further validate the approach this thesis presents, it is applied to the refer-
ence implementation of the Common Component Modeling Example CoCoME
[HKW+08]. CoCoME represents a trading system. Its architecture is component-
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Figure 8.4: The components from the clustering on CoCoME and their relevance

based and is intended to illustrate good component-oriented design. Another
reason to choose CoCoME as an example software system in this thesis is that its
conceptual architecture is well-documented. Furthermore, a reference implemen-
tation exists which was created manually and contains several design deficiencies
[vDB11]. It consists of 127 classes with over 5000 lines of code. CoCoME has also
been used to gain practical experiences with the bad smell detection [Tra11] and
as case study for the clustering [Kro10].

8.2.1 Procedure

The application of the approach on CoCoME consists of the steps from the pro-
posed process as presented in Chapter 3:

1. Initial clustering

2. Component relevance analysis

3. Bad smell detection

4. Bad smell relevance analysis

5. Selection of bad smell occurrence and reengineering strategy

6. Architecture Prognosis

Table 8.1 depicts the configuration used for the clustering.

8.2.2 Results

1. Initial clustering:

The initial clustering performed with the metric values from Table 8.1 results
in a component structure of 6 primitive components and 4 composite com-
ponents. The precise assignment of the classes to the components is listed
in the appendix (Section B.2). The clustering was done in 16 iterations.
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Metric Weight

Package Mapping 60
Directory Mapping 0
DMS 5
Low Coupling 0
High Coupling 15
Low Name Resemblance 5
Mid Name Resemblance 15
High Name Resemblance 30
Highest Name Resemblance 45
Low SLAQ 0
High SLAQ 15
Composition: Interface Adherence 40
Clustering Composition Threshold Max Value 100
Clustering Composition Threshold Min Value 25
Clustering Composition Threshold Decrement 10
Merge: Interface Violation 10
Clustering Merge Threshold Max Value 100
Clustering Merge Threshold Min Value 45
Clustering Merge Threshold Increment 10

Blacklist everything but org.cocome.*
Additional filter .*TO|.*Event

Table 8.1: Configuration used for the clustering on CoCoME

2. Component relevance analysis:

Figure 8.4 shows the relevance rating of the components from CoCoME. The
most relevant component by far is the composite component CC No.7. It
dominates regarding the value from the complexity strategy (≈ 0, 2747) and
regarding the value from the Closeness To Threshold strategy (≈ 0.306).
The relevance of a component is not equivalent to the number of bad smell
occurrences contained in that component. The component relevance analy-
sis evaluates more than that (see Closeness To Threshold strategy, Section
4.1.3). Nevertheless, to evaluate this aspect of the component relevance
analysis, a bad smell detection was carried out on each of the components
and the number of detected bad smells per component was compared to the
relevance hierarchy. Table 8.2 shows the results. Each line represents the
values for a given component. The second and third column show the num-
ber of occurrences for the bad smells Interface Violation and Communication
via Non-Transfer-Objects that were detected within the selected component.
The column Relevance shows the rating for the overall relevance indicated
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Bad Smells Component Relevance Ratings

Selected Interface Non-TO- Overall Overall CTT CTT Compl. Compl.
Components Violation Comm. Relevance Relevance (rank) (rank)

(rank)
PC No. 46 2 0 0,0053 10 0,0057 9 0,0048 10
PC No. 86 0 0 0,0068 9 0,0033 10 0,0091 9
PC No. 88 0 0 0,1157 5 0,128 5 0,1019 5
PC No. 90 9 0 0,0332 8 0,0354 8 0,0309 8
PC No. 92 0 0 0,0587 7 0,0395 7 0,0731 6
PC No. 94 0 0 0,0768 6 0,0937 6 0,0549 7
CC No. 1 0 0 0,1306 4 0,1332 4 0,128 4
CC No. 3 9 0 0,1638 3 0,1686 3 0,1589 3
CC No. 5 11 0 0,1691 2 0,174 2 0,1637 2
CC No. 7 2 0 0,2905 1 0,3056 1 0,2747 1

All 13 31
All PCs 13 0
All CCs 11 21

Table 8.2: The components detected in CoCoME, the detected bad smells per
component and relevance ratings

by the length of the vector from the origin, as described in Section 4.1.4,
while the columns CTT and Compl. show the values for the two relevance
strategies. The (rank) columns show a ranking of the components regard-
ing the relevance, e.g. the component with rank 1 is the most relevant and
the component with rank 10 is the one with the lowest relevance value.

As depicted in the table, the components in which bad smells are detected
are PC No.46, PC No.90, CC No.3, CC No.5 and CC No.7. All relevance
values correctly identified the three composite components (No.3, No.5, and
No.7) as relevant for the bad smells search: they got the first three ranks in
the overall relevance value as well in both relevance strategies. However, the
two primitive components No.46 and No.90 got a very low rating, although
the search within them revealed bad smell occurrences.

As a second test, detection runs on all components together, on all primi-
tive components together, and on all composite components together were
executed. The results are depicted in the three rows at the bottom of the
table. It is noticeable, that the Non-Transfer Object occurrences were only
detected when searching in more than one component. Section 8.4 discusses
this issue in detail.

To perform a comprehensive evaluation of the next process steps indepen-
dently from the results of the component relevance analysis, I selected the
set of all components to be the input for the bad smell detection in the next
step.

3. Bad smell detection:

The results from the bad smell detection are depicted in Figure 8.5. 13
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Figure 8.5: Detected bad smells in the selected component of CoCoME

Figure 8.6: Interface violation occurrences in CoCoME, rated by their relevance

occurrences of the bad smell Interface Violation were found: 11 times the
IllegalMethodAccess pattern and two times the IllegalMethodAccess-

BetweenComponents pattern. It is notable that all IllegalMethodAccess
occurrences concern the interface PersistenceContext and a method named
getEntityManager which is located in the class PersistenceContextImpl.
The accessing class is either StoreQueryImpl or EnterpriseQueryImpl.

Furthermore, 31 occurrences of NonTOCommunication were detected. Af-
ter manually inspecting the results, I identified 15 of these candidates as
false positives because the called class in these cases was a class named
FillTranferObjects. This class is used to create transfer objects and
hence, passing non-transfer objects can be tolerated in this case. Conse-
quently, this class should probably have been excluded from the clustering.
Eight other NonTOCommunication occurrences among the 31 candidates
were related to classes with the suffix Event as non-transfer object. These
can also be viewed as false positives because in CoCoME the event classes
are not part of the architecture. To filter such cases, the used bad smell
specification should be adapted.

4. Bad smell relevance analysis:

Figure 8.6 depicts the results of the bad smell relevance analysis for the
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Figure 8.7: Communication via non-transfer object occurrences in CoCoME, rated
by their relevance

detected interface violations. The IllegalMethodAccess occurrences in the
class EnterpriseQueryImpl are rated higher than the ones in StoreQuery-

Impl. The difference is due to the result for the relevance strategy Number
of External Accesses.

The ratings for the different bad smell occurrences are all very similar be-
cause in most cases the same classes are involved. The impact of such
situations is discussed in Section 8.4.

Figure 8.7 shows the ratings of the relevance analysis for the detected Com-
munication via Non-Transfer Object occurrences. Most of occurrences re-
lated to the class FillTransferObjects are rated as not very relevant. This
result corresponds to my observations that these candidates are false pos-
itives and should be ignored as pointed out above. To conclude, in such
situations, the rating received from the bad smell relevance analysis seems
to be useful to the reengineer.

5. Selection of bad smell occurrence and reengineering strategy:

I selected one of the two most relevant IllegalMethodAccess occurrences
to be removed. The method inside which the interface violation takes place
is getMeanTimeToDelivery, in the class EnterpriseQueryImpl.

To accomplish the removal, the two reengineering strategies illustrated in
Chapter 5 were proposed, as shown in the screenshot in Figure 8.8.

I decided to execute the architecture prognosis for the application of the
strategy that extends the interface first for two reasons: 1. I did not want
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Figure 8.8: The reengineering strategies selection page from the Architecture
Prognosis Wizard

to loose a part of the system’s behavior by deleting a method call. 2. From
the results of the Bad Smell Relevance Analysis, I knew that there were
several relevant interface violation occurrences that concern the same inter-
face as the occurrence that I wanted to remove. Because of this, it seemed
worthwhile to extend the interface, in order to improve the whole system’s
quality.

6. Architecture prognosis:

Figure 8.9 shows a screenshot of the Architecture Prognosis View for the
removal of the selected bad smell occurrence. As depicted there, the ar-
chitecture created in the original clustering consists of 11 components: 7
primitive components and 4 composite components. In contrast, the pre-
dicted architecture consists of only 10 components: 7 primitive components
and 3 composite components. The component trees show that the composite
component CC No.5 is missing in the predicted architecture. In addition,
the component CC No.3 changed: in the predicted architecture, it contains
one component more than in the original architecture.

Figure 8.10 shows an abstract illustration of the component structure cre-
ated in the initial clustering and the predicted component structure for the
selected combination of a bad smell occurrence and reengineering strategy.
The notation is similar to UML component diagrams but additionally for
the interesting components, the contained classes are visualized and inter-
faces and connectors are left out due to readability reasons. In addition to
the component name that was given by the clustering, a second label shows
the name of the corresponding conceptual component as documented.

In the original architecture, the component inventory.data is fragmented
into the primitive components PC No.90 which is located in the composite
component CC No.3 and PC No.46 which is located in CC No.5. CC No.5

also contains CC No.3. In contrast, in the predicted architecture, the primi-
tive components PC No.90 and PC No.46 that make up the data component,
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Figure 8.9: The Architecture Prognosis View for the selected reengineering on
CoCoME
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< CC No. 7 >

< CC No. 5 >

< CC No. 3 > 

< PC No. 92 >
(inventory.application)

< PC No. 46 >
(inventory.data)

EnterpriseQueryImpl

< CC No. 1 >

< PC No. 94 >
(inventory.gui)

< PC No. 86 >
(external)

< PC No. 88 >
(cashdeskline) 

< PC No. 90 >
(inventory.data)

PersistenceContextImpl, 
TransactionContextImpl, 

StoreQueryImpl, 

StoreQueryImplTest, FillDB

< CC No. 5 >

< CC No. 3 >

< PC No. 92 >
(inventory.application)

< PC No. 46 >
(inventory.data)

EnterpriseQueryImpl

< CC No. 1 >

< PC No. 94 >
(inventory.gui)

< PC No. 90 >
(inventory.data)

PersistenceContextImpl, 
TransactionContextImpl, 

StoreQueryImpl, 

StoreQueryImplTest, FillDB

a) Original Architecture

b) Predicted Architecture

< PC No. 86 >
(external)

< PC No. 88 >
(cashdeskline) 

Figure 8.10: The original and a predicted components in CoCoME
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are both assigned to CC No.3.

To conclude, the architecture after the removal of the selected bad smell
occurrence is closer to the conceptual architecture than before, which sup-
ports the assumptions of this thesis. However, the predicted architecture
still differs from the conceptual architecture, e.g. the conceptual compo-
nent inventory.data still consists of two parts. After performing several
iterations of the reengineering process, in which all other interface violation
occurrences were removed one after another, the predicted architecture did
not change again.

In a next evaluation step, I executed the architecture prognosis for one of the
less relevant bad smell occurrences: The method containing the interface vio-
lation is named queryStoreById and located in the class StoreQueryImpl.
Again I chose the reengineering strategy that extends the interface. This
time the predicted architecture remained equal to the original architecture.
This means that the bad smell relevance analysis correctly identified bad
smell occurrences whose removal lead to an architecture that is closer than
the conceptual architecture than the original architecture, while bad smell
occurrences whose removal did not change the architecture received a lower
rating. To conclude, the bad smell relevance analysis was an actual support
to the reengineer in this situation.

8.3 Palladio FileShare

Palladio FileShare realizes a server-based file sharing platform. It is written in Java
and represents a typical business information system. The system’s architecture is
well-documented and has already been used as case study for the clustering with
SoMoX [Kro10, KKR10].

8.3.1 Procedure

For the application of the approach on Palladio FileShare, the performed steps
used above have been slightly adapted, in order to learn more about the reasons
for the analysis results:

1. Initial clustering of the original system

2. Addition of bad smells and clustering of the adapted system

3. Clustering of the adapted system

4. Component relevance analysis

5. Bad smell relevance analysis

6. Architecture prognosis
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Table 8.3 depicts the configuration used for the initial clustering and the clustering
of the adapted system. This configuration is a slightly adapted version from the
one used by Krogmann et al. [KKR10].

Metric Weight

Package Mapping 100
Directory Mapping 0
DMS 7
Low Coupling 0
High Coupling 10
Low Name Resemblance 5
Mid Name Resemblance 15
High Name Resemblance 40
Highest Name Resemblance 90
Low SLAQ 0
High SLAQ 25
Composition: Interface Adherence 25
Clustering Composition Threshold Max Value 80
Clustering Composition Threshold Min Value 25
Clustering Composition Threshold Decrement 15
Merge: Interface Violation 10
Clustering Merge Threshold Max Value 100
Clustering Merge Threshold Min Value 41
Clustering Merge Threshold Increment 7

Blacklist java, de.uka.ipd.sdq,
de.uka.ipd.sdq.BySuite,
de.uka.ipd.sdq.palladio-

fileshare.testdriver

Table 8.3: Configuration used for the Clustering on Palladio FileShare

8.3.2 Results

1. Initial clustering of the original system:

The initial clustering performed on the original Palladio FileShare System
with the metric values from Table ?? resulted in a component structure
with 12 primitive components and 3 composite components. The clustering
was done in 16 iterations. A sketch of the composition of the components
with reference to the conceptual components is depicted in Figure 8.11.
The two composite components CC No.1 and CC No.5 contain the parts
that are documented as the compression and hashing components. The
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< CC No. 1 > < CC No. 3 >
(BusinessLogic)

< PC No. 92 >
BusinessFacade, 

BusinessCore, 
BusinessRunner

< PC No. 94 >
Util, Storage

< PC No. 96 >
CopyrightedMaterial-

Database, DbAccess

< PC No. 98 >
ExistingFilesDatabase, 

DbAccess

< CC No.  5 >

(Compression & Hashing)

(Compression & Hashing)

Figure 8.11: Discovered components in Palladio FileShare

figure abstracts from the detailed composition of these components, since
the further evaluation focuses on the other composite component CC No.3:
This component contains the business logic part of the system. It contains
four primitive components.

The precise assignment of the classes to the components is listed in the
appendix (Section B.3).

2. Addition of bad smells and clustering of the adapted system:

No interface violations that accord to the IllegalMethodAccess specifica-
tion have been found in the original Palladio FileShare system. To investi-
gate the detailed difference between a system that does not contain interface
violations and a system that contains interface violations and to enable an
evaluation of the relevance analyses, I added two interface violations to the
system. Both are within the class BusinessCore in the business logic com-
ponent and both bypass the interface IExistingFilesDatabase.

Nevertheless, a clustering on the adapted system resulted in the same archi-
tecture as the clustering on the original system. The reasons are discussed
later.

3. Component relevance analysis:

Table 8.4 shows the detected bad smells and relevance ratings for the compo-
nents that were discovered in Palladio FileShare. The two interface violation
occurrences were detected in the primitive component PC No.92 and in the
containing composite component CC No.3. This time, the two relevance
strategies differ in their calculations for the components. While the strategy
CTT rates the component PC No.92 with a relevance value of 0.0118 on rank
8, the Complexity strategy rates it with 0.027 on rank 11. The composite
component CC No.3 is rated with 0.0405 on rank 4 by CTT and with 0.0642

on rank 5 by Complexity. To conclude, the CTT strategy returns better re-
sults for the two components, where the bad smells were detected. But on
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the whole, both strategies did not correctly detect these components to be
more relevant than the others.

Bad Smells Relevance Ratings

Selected Interface Relevance Relevance CTT CTT Compl. Compl.
Components Violation (rank) (rank) (rank)

CC No. 5 0 0,234 1 0,2445 1 0,223 1
CC No. 1 0 0,1508 2 0,0127 7 0,2128 2

PC No. 86 0 0,086 3 0,0031 14 0,1216 3
PC No. 106 0 0,0819 4 0,1045 2 0,05 8
PC No. 104 0 0,063 5 0,0737 3 0,05 9

CC No. 3 2 0,0537 6 0,0405 4 0,0642 5
PC No. 102 0 0,0514 7 0,033 6 0,0649 4
PC No. 100 0 0,0473 8 0,0332 5 0,0581 6
PC No. 88 0 0,0361 9 0,0063 12 0,0507 7
PC No. 90 0 0,0288 10 0,0034 13 0,0405 10
PC No. 92 2 0,0209 11 0,0118 8 0,027 11
PC No. 94 0 0,0135 12 0,0089 10 0,0169 12
PC No. 98 0 0,0078 13 0,0087 11 0,0068 13
PC No. 96 0 0,0075 14 0,0092 9 0,0054 14
PC No. 38 0 0,0059 15 0,0019 15 0,0081 15

Table 8.4: The components detected in Palladio FileShare, the detected interface
violations and relevance ratings

4. Bad smell relevance analysis:

Both interface violation occurrences received the same rating: The strategy
Class Locations calculated a value of 0.3333, the strategy Number of

External Accesses resulted in a value of 0.81, and the Higher Interface

Adherence value is 0.0.

5. Architecture prognosis:

The removal of the two bad smells had only little impact on the architecture.
The architecture prognosis did not show any modifications. This finding
matches the results from the comparison between the original architecture
and the architecture with the added bad smells, which is further discussed
in Section 8.4.

8.4 Discussion

This section discusses the evaluation results and problematic issues that were
detected during the evaluation. First, it details on the clustering results, then on
both relevance analyses, after that it focuses on the architecture prognosis, and
finally issues of the proposed reengineering process in general are pointed out.

Most of the points mentioned here are taken up in Section 10.2 which discusses
ideas for future work.
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8.4.1 Clustering

The result of the application of several iterations of the reengineering process to
the store system and to CoCoME was that even after all interface violations were
removed, the predicted architecture did not result in the conceptual architecture
where logic classes and user interface classes are separated. This shows that the
systems may contain some more design problems that are no interface violations
or non-transfer object communication occurrences. As a consequence, some more
different types of bad smells should be investigated and supported in the process
so that the actual architecture can be significantly improved by the application of
the proposed reengineering process. But obviously good results results can only be
achieved, if the original developers of the system intended to follow the conceptual
architecture during their implementation.

Another interesting aspect to discuss is the strange behavior of the clustering
on systems that contain bad smells in opposition to “clean” systems, as reported
in the results of the application on the process on Palladio FileShare (Section
8.3). In contrast to the assumptions, the clustering of the adapted version of
PalladioFileShare that contains bad smells results in the same architecture as
the initial clustering. As a consequence I decided to take a deeper look at the
metric values for the architecture with the two interface violations and the original
architecture.

Table 8.5 lists some of the metric values for the component candidate <Business-
Facade, BusinessCore, BusinessRunner>, <ExistingFilesDatabase, DbAccess>.
The metric values for the component candidate from the original system differ
from the values from the adapted system in the metrics InterfaceAdherence,
InterfaceAccesses, Coupling, InternalAccesses, ExternalAccesses and the
overall merge metric. The coupling between the two components is higher (0,3684)
for the system with the interface violation than for the system without (0,2941).
This is in line with the assumptions made throughout this thesis.

However, this change does not have the expected impact on the final clustering
results: The merge value of the component candidate without interface viola-
tions and the low coupling is slightly higher (0,3388) than for the component
candidate with interface violations and with the higher coupling (0,2886). The
reason is that a coupling value higher than ε = 0.3 leads to the involvement of
the InterfaceAdherence value which reduces the overall merge value (see Section
2.3.1).

<BusinessFacade, BusinessCore, BusinessRunner>, <ExistingFilesDatabase, DbAccess>

Interface- Interface Coupling Internal External Package- Merge Compose
Adherence Accesses Accesses Accesses Mapping

With IVs 0,1429 1 0,3684 7 19 0,6667 0,2886 0,3191
Without IVs 0,6 3 0,2941 5 17 0,6667 0,3388 0,3191

Table 8.5: Metric values with and without interface violations
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As a consequence, in another clustering configuration, where the merge thresh-
old reaches a value between 0,3388 and 0,2886, an architecture without design
problems probably has more merged and thereby more complex components, then
an architecture containing bad smells like interface violation.

Another unexpected effect that can be seen in the metric values of other compo-
nent candidates is that as a consequence of changes in one class and one interface,
characteristics of a class that has no visible relations to the changed class, are
modified. For example the adaptations done in the business logic component of
Palladio FileShare strongly influence the class BinTree that is located inside the
compression part of the system. This shows that the behavior of the calculations
of the metric values and their behavior regarding changes in parts of the system
should be more deeply investigated to benefit from them in the relevance analyses
or in the architecture prognosis.

8.4.2 Component Relevance Analysis

As the evaluation results show, the component relevance analysis offers several
opportunities for improvement.

One effect that occurs most of the time in the component relevance analysis is
that the largest component is rated as the most relevant in both available strate-
gies. This happens because both strategies depend on the size of the component:
The largest component in most cases is also the most complex component; and
the probability that one of the contained component candidates has a merge or
composition metric value close to the threshold is the higher the larger the sur-
rounding component is. Furthermore, in many cases the components clustered
with SoMoX are all contained in one composite component, as it is the case in the
configuration used for the evaluation with the store system (Section 8.1) and with
CoCoME (Section 8.2). As a consequence, there exists a composite component
that is by far the largest component because it contains all other components. In
most cases this will be the component that is rated with the highest relevance so
that the user might select the component that contains the whole system as input
for the bad smell detection. It is probably natural that the largest component
contain the most bad smell occurrences (which is similar to the idea behind the
complexity strategy, namely that the most complex component may have a high
probability to contain most bad smell occurrences). But since the runtime of the
bad smell detection depends on the size of the input system, i.e., the size of the
component selected to contain the search scope, this result probably does not help
the user because she does not want to choose the largest component. Because of
this, this problem should be further investigated. Maybe composite components
that contain the whole system should be ignored in the component relevance anal-
ysis or some kind of automated analysis for the trade-off of size against relevance
could be done.

However, this also shows that it is not sufficient to only show the pareto optimal
candidates because a composite component that contains all other components of
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the system, will always be the only pareto optimal candidate. By also calcu-
lating the geometric distance, a more precise measurement that can be used to
distinguish between the relevance of all components, is presented.

The other issue of the component relevance analysis that is worthy of discussion,
is that not all bad smell occurrences can be detected when only searching in one
component in contrast to regarding a combination of components. The component
relevance analysis at the moment does not take this into account and only rates
single components.

8.4.3 Bad Smell Relevance Analysis

In the evaluation of CoCoME, the removal of a bad smell occurrence that is rated
more relevant led to a modified architecture, while the removal of a bad smell
occurrence that is rated less relevant led to no architecture changes. This shows
that the bad smell relevance analysis delivers useful results. With the help of these
results, the reengineer is supported in her decision which bad smell occurrences
to remove.

To further improve the bad smell relevance analysis, groups of bad smell occur-
rences could be regarded. The interface violation occurrences detected in CoCoME
are all very similar because they all bypass the same interface. The bad smell rel-
evance analysis should recognize such similar occurrences as group of bad smells.
The larger a group of similar occurrences is, the more relevant is its removal.

Furthermore, it has to be taken into account that the detection of bad smells
depends highly on the context in which they are searched, i.e. the surrounding
project. Because of this, the specifications have to be adapted to the project under
analysis. For example the bad smell Non-Transfer Object Communication is
only automatically detectable, if transfer objects are marked with the suffix TO,
as it is the case in CoCoME. As a consequence, to allow a more comprehensive
evaluation of the bad smell relevance analysis, some more projects have to be
inspected in detail.

The evaluation on CoCoME also revealed that the bad smell specifications, e.g.
the specification for Non-Transfer Object Communication, could be optimized to
gain more precise results in the bad smell detection.

8.4.4 Architecture Prognosis

Another conspicuity is that in most cases the removal of one bad smell occur-
rence is not so crucial for the overall architecture that the architecture prognosis
is worthwhile. Because of this, it should be considered to remove several bad
smells in the same reengineering iteration. However, this is only possible if the
removal of one selected bad smell occurrence does not influence the removal of
another selected bad smell occurrence or if the dependencies between several bad
smell occurrences can be taken into account in the reengineering strategies to
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accomplish the removal. For example, the removal of an interface violation occur-
rence by extending the interface influences all other interface violation occurrences
that are related to the same interface. But interface violations are likely to oc-
cur repeatedly in the same context. If an interface is bypassed one time, this
can easily to happen again because the involved classes are probably badly de-
signed. As pointed out above, this is the case in CoCoME. It seems sensible to
remove such groups of similar bad smell occurrences at the same time. In the
interface violation case, for example, once the interface has been extended for the
other similar occurrences only the cast has to be removed. To allow the removal
of such invalidated interface violation occurrences, I created another bad smell
specification, which detects exactly those cases in which the interface has already
been extended and only the cast statement has to be removed. This specification
Invalidated IllegalMethodAccess and an according reengineering strategy are
illustrated in the Appendix A.

8.4.5 Reengineering Process

A problem seems to be that the whole reengineering process depends on the clus-
tering results. To verify this, I performed the evaluation process on CoCoME as
pointed out in Section 8.2 with another clustering configuration. The other config-
uration differs from the one documented above only in the value for the minimum
merge threshold. As a result, the clustering created a component structure similar
to the one described above but apparently more “stable” against modifications.
Even after several reengineering iterations in which all interface violation occur-
rences were removed, the predicted architecture did not differ from the original
architecture. To handle this problem, more investigations on the clustering con-
figurations should be done.
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9 Related Work

This chapter presents some work related to this thesis and compares the results
to the contributions of this thesis. The first section discusses research about bad
smell detection in general. The second section deals with reengineering processes.
In the third section, the work that refers to the validation of the relevance of
bad smells is discussed. After that, related work to the architecture prognosis is
presented.

9.1 Bad Smell Detection

In the last decade, much research has been done on bad smells at the source code
level (see [ZHB11] for an overview). Code bad smells are widely used for detecting
refactoring opportunities in software [MT04].

Many papers about bad smell detection were published. For example, one bad
smell detection approach has been developed lately by Moha, Gueheneuc, Duchien
and Le Meur [MGDLM10]. The technique allows the specification and the detec-
tion of code and design smells. The detection algorithms are generated from the
specifications and then applied automatically on design models of systems. How-
ever, the detected bad smell occurrences have to be validated manually to verify
that they are true positives. The refactoring is expected to be done manually, too.

Many of the bad smell detection approaches found in literature use metrics
for the detection. For example, Munro developed an approach to automatically
detect bad smells in Java systems using software metrics that are calculated on
the source code [Mun05]. In this approach too, the Reengineer has to manually
determine the relevance of a detected bad smell occurrence.

Furthermore, many tools for bad smell refactoring exist. For example, many
development environments contain support for automatic code refactoring (e.g.
Eclipse or IntelliJ). In Eclipse, even a preview on code level is available for most
refactorings. However, these refactorings are not always related to bad smell
occurrences and a bad smell detection is not integrated into these tools.

Design deficiencies on the architectural level are not investigated as exhaustively
as code bad smells. A few approaches that regard design problems of a system
are taken up in the Sections 9.3 and 9.4.
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9.2 Reengineering Processes

Tourwé and Mens [TM03] propose a refactoring process that shows certain par-
allels to the reengineering process presented in this thesis. They detect bad smell
occurrences in an application automatically and then let the user choose between
several refactoring possibilities. Subsequently the refactoring is applied automat-
ically. These steps are also part of the reengineering process in this thesis, but
there, the user is supported in making her decision for a bad smell to remove and
a refactoring possibility by the relevance analysis and the architecture progno-
sis. In Tourwé’s and Mens’ refactoring process, the user has to decide without
this assistance. Apparently, the integration of the bad smell detection and the
reengineering in an architectural context, as my thesis proposes, provides addi-
tional possibilities that are not available for approaches like the one of Tourwé
and Mens, since they only deal with code bad smells.

Tourwé and Mens also identified the problem of the long run time of a bad smell
search on a whole software system, but they try to overcome this by confining the
number of searched bad smells instead reducing the search scope to a only a part
of the system. This could also be an idea for the reengineering process proposed
in this thesis, but the pattern detection algorithm of Reclipse uses an incremental
bottom-up analysis which benefits from first detecting low-level patterns which
can be reused in other pattern specifications without having to search for them
again. According to this, the overall runtime of the detection process when doing
several searches for only subsets the available bad smells, will not be significantly
reduced.

9.3 Validation of the Relevance of Bad Smells

Only few studies investigate the impact of bad smells [ZHB11]. Among these are
the works of Kasper et al. [KG08] and Li et al. [LS07]. The results of these
studies imply that some bad smells may not be design deficiencies. Some bad
smells even increase the reliability of software. This supports the assumption of
this thesis that a relevance analysis on bad smells is necessary before executing a
reengineering.

There are already several approaches on the detection and refactoring of design
problems. However, none of these approaches includes an analysis of a design
problem’s relevance on the system’s architecture.

In a metrics-based refactoring approach, Simon et al. use the calculation of
distance-based cohesion between classes, methods and attributes [SSL01]. In con-
trast to our approach, they start with the refactoring strategy and search appli-
cation locations, instead of starting with the design problem to search suitable
refactoring strategies. Bad smell candidates are selected by evaluating their rel-
evance to the reengineer’s purpose, which can be understanding, modification or
quality improvement.
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Marinescu added a filtering mechanism to his metric-based bad smell detection
approach that determines which occurrences are relevant for further processing
[Mar04]. This approach also uses the composition of several metrics to detect
design deficiencies. In the filtering mechanism, detected occurrences with extreme
metric values or values that are in a particular range are searched.

Trifu et al. developed an approach to correct design flaws where the influence of
a flaw on specified quality factors are defined [TSG04]. But instead of evaluating
the influence of a detected design flaw occurrence, they use the influence values
to determine which flaws to search first. Proposals for the most problematic
design flaws are made based on severity values that are derived from a selected
software context. For the refactoring of the system, they suggest a set of correction
strategies for each design flaw.

Bourquin and Keller presented an approach that is focused on refactorings on
the architecture level [BK07]. They analyze the relevance of their refactorings on
the architecture after the application. To analyze the refactoring results, they use
code metrics and a comparison between the number of detected bad smells before
and after the refactoring.

9.4 Architecture Prognosis

Little work has been done in the area of architecture prognosis for reengineered
software systems.

One methodology that is similar to an architecture prognosis is a change impact
analysis. Change impact analyses have been performed on the code level repeat-
edly (e.g. [GL91]). In contrast, Zhao et al. present an approach to support a
change impact analysis of software architectures [ZYXX02]. They use slicing and
chopping techniques on an architectural level to analyze the effect of changes in
a software component. The process can be executed automatically and supports
maintainers of the system when adapting it.

Zhao et al. do not present a concept to visualize the original and the new archi-
tecture, which would be a useful addition for this approach. But steps from Zhao’s
approach could be usefully integrated into the architecture prognosis presented in
this thesis. Further investigations have to be done, if architectural slicing could
help to avoid to execute a whole new clustering to create the predicted architec-
ture.

Structural Analysis for Java (SA4J) [SA4] detects anti patterns and provides
guidelines for refactoring. The tool only performs a structural analysis for the anti
pattern detection in contrast to Reclipse, which is capable of additionally analyzing
dynamic information. In SA4J, the detected anti patterns are visualized as UML
diagrams. The tool is also able to execute a “what-if” analysis on the impact of a
change on functionality of an application. A prognosis on the system’s design is
not provided.
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10 Summary and Future Work

This chapter summarizes this thesis, draws conclusions, and presents ideas for
future work.

10.1 Summary

Since software systems are adapted and extended over a long time, the systems’
design is prone to erode. With every modification, the risk of introducing design
deficiencies which decrease a software system’s quality, increases. The removal
of design deficiencies can be accomplished by reengineering. This thesis deals
with problems that occur during the reengineering of component-based software
systems. It is based on a process that contains a clustering step which extracts
a component structure from a system’s source code and a subsequent bad smell
detection to recognize design problems.

The first problem occurs before executing the bad smell detection. Since a bad
smell detection suffers from a long run-time and an impractically large result set,
the search scope has to be narrowed down. As a consequence, it is proposed to
perform the bad smell detection on a subset of all components in the system. The
problem is that then this subset has to be wisely selected. This saves extra work
and time that comes with the need to execute several bad smell detection runs
on the system. The problem is solved by automatically analyzing the clustered
components of the system with respect to their relevance for a bad smell detection.
This component relevance analysis currently consists of two rating strategies: one
that evaluates the complexity of a component and one that detects indications for
uncertain decisions made in the clustering.

After performing the bad smell detection, the reengineer gets a set of detected
bad smell occurrences. Since not all bad smell occurrences are problematic design
deficiencies, she has analyze which of them should be removed in order to im-
prove the system’s quality. To accomplish this, an automatic bad smell relevance
analysis has been presented. This analysis rates which bad smell occurrences are
problematic and should be removed and which occurrences are tolerable in the
context of the system. This is currently done by four strategies. A set of appli-
cable relevance strategies exist for each bad smell. For example for the bad smell
interface violation, three applicable strategies have been presented: one evaluates
the locations of the involved classes, one regards the classes’ external accesses,
and one calculates the changes on the interface adherence.

The question that comes next is how the removal of a bad smell occurrence can
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be accomplished. Typically, several possibilities to remove a bad smell exist and
the reengineer has to select one of them. To make an informed decision, it is helpful
to know the consequences that the application of a given reengineering strategy
has. Because of this, an architecture prognosis is proposed which compares the
current architecture with the predicted architecture that results from the removal
of the selected combination of bad smell occurrence and reengineering strategy.

The evaluation showed that the reengineer is supported in the decisions she has
to make during the reengineering process. But many issues remain that currently
lead to problems and could be improved in the future.

To conclude, the reengineer is supported in making a more informed and thereby
probably better decisions when removing design deficiencies.

10.1.1 Discussion of the Limitations

As pointed out in Chapter 1, the contributions of this thesis are limited to
component-based software architectures. This constraint allows to give more de-
tailed statements about the quality of a system’s architecture because certain rules
(as described in Chapter 2.1) have to be obeyed. How the concepts can be applied
to non-component-based software architectures, has to be investigated further.
For example, the problem to narrow down the search space for the bad smell de-
tection, would be more difficult if no clear boundaries between components are
available.

The focus on bad smells on the architectural level limits the variety of problems
in a software system to potential design deficiencies that concern larger parts of a
system, than code bad smells. This allows to give statements about consequences
on the overall architecture and how it changes when removing the bad smell which
is not possible when only regarding bad smells on the code level.

Furthermore, the analyses done in the thesis focus on software written in an
object-oriented programming language. Probably, most process steps can be
adapted to work on non-object-oriented languages but this might be a labor-
intensive task, since the existing concepts for the clustering, the bad smell detec-
tion and the contributions of this thesis were developed for object-oriented systems
and the precise consequences of this adjustment have to be investigated.

10.2 Future Work

This section discusses ideas for future work that could not be realized within the
scope of this thesis. It is structured into future work for the relevance analysis,
for the reengineering strategies, for the architecture prognosis and miscellaneous
future work.
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10.2.1 Future Work for the Relevance Analysis

First of all, future work includes extending the relevance analysis by adding more
relevance strategies to both, the component relevance analysis and the bad smell
relevance analysis. By this, a more precise statement about the relevance could be
given. For example, another relevance strategy in the component relevance anal-
ysis could use the metric value InterfaceAdherence or InterfaceAccesses and
thereby rate components by the amount of communication via interfaces within
them or between them and other components.

Furthermore, the bad smell relevance analysis should be extended to support
a larger number of bad smells. At the moment, only the bad smells Interface
Violation and Communication via Non-Transfer Objects are regarded within the
scope of this thesis but there are many more interesting design deficiencies, like
for example the bad smell UnauthorizedCall. It was also detected in CoCoME as
Travkin reports in his thesis [Tra11].

In the component relevance analysis, larger improvements should be done. As
already discussed in Section 8.4, some bad smells are only discovered when search-
ing in more than one component. However, the component relevance analysis
currently is based on suggestions for individual components to narrow down the
search scope instead of regarding combinations of components. A future version of
the component relevance analysis should rather consider the possibility to select a
set of components as input for the bad smell detection than focusing on the rating
of single components.

As already pointed out in Section 8.4, an interesting improvement of the bad
smell relevance analysis could be to take into account groups of similar bad smell
occurrences. Similar bad smell occurrences could be defined as involving the same
interface or as sharing the same interface and the same accessing class. If an
interface is bypassed several times (maybe even in the same class), the removal of
these bad smells may be more critical then the removal of an interface violation
of an interface that is only bypassed once. New relevance strategies that take
considerations like this into account could be added to the bad smell relevance
analysis and thereby improve the results significantly.

The extension of the result strategies that combine the values from the different
relevance strategies could be worth considering. For example, instead of regarding
the length of the vector from the origin (i.e. the geometric distance), also the
manhattan distance [Bla04] could be used. This would have the effect that outliers
in one of the relevance strategies receive more attention in the overall result.

Even though the relevance strategies can be realized to be loosely coupled from
the rest of the analysis algorithm, which makes them easily replaceable and ex-
tendable, a more flexible solution to configure the relevance analysis could be
useful. Particularly because the relevance strategies are specific for the bad smells
which in turn depend on the project convention, it should be possible to let the
user define her own relevance strategies. As a consequence, an idea for future
work is to allow the user to specify the relevance strategies and even the result
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strategies by herself. Then the relevance analysis could be adapted such that rele-
vance strategies specified by the user are taken as input, calculated and presented
in the result view. A specification editor for relevance strategies could list all
available metrics from the clustering and provide operators for combining them to
arithmetic expressions. These expressions should also be able to contain method
calls for more complex relevance strategies that need to be formulated in a more
powerful language, like the prevalent programming languages.

Another idea to improve the relevance analyses is to introduce weights for the
relevance strategies. With this modification, the analyses can be made config-
urable, like the clustering. Since the clustering should be configured according
to the characteristics of the system under analysis, this seems to be sensible for
the relevance analyses, as well. For example, in systems in which the developers
attach great importance to the package structure, the clustering should be con-
figured with a high Package Mapping weight and according to this, a high weight
for the Class Locations Strategy in the bad smell relevance analysis could also be
considered.

10.2.2 Future Work for the Reengineering Strategies

More investigation has to be done on reengineering strategies, too. Additional
strategies would give the user more selection possibilities to accomplish the re-
moval of a bad smell occurrence in a way that fits her requirements best. As
pointed out above, an extension to support a larger number bad smells is required.
This holds for the reengineering strategies, too.

In particular, if more reengineering strategies are available, it is possible that
some strategies are not always applicable for each bad smell occurrence of the same
bad smell type. Because of this, it would be helpful to perform an automatic test
of the applicability of a strategy. This could also be realized with story diagrams.
Then, only the applicable strategies will be proposed to the user.

To further simplify the selection of a reengineering strategy, the strategy as
well as the bad smell occurrence should be visualized in an adequate way. For
the visualization of bad smell occurrences, the visualization of pattern detection
results in Reclipse [PvDT11] could be reused.

To allow a more comfortable handling of the reengineering strategies, I recom-
mend to create a reengineering strategies editor. In addition to a story diagram
editor, the bad smell specification that belongs to a reengineering strategy could
be regarded, e.g. the binding of annotated elements via parameters to object
variables could be simplified, or the bad smell specification could be visualized
beneath the editor. This would allow a much easier creation process for reengi-
neering strategies because the input parameters and the object variables that have
to be bound to them, can be calculated automatically. Furthermore, the anno-
tations for the documentation of a reengineering strategy could be considered in
such an editor.

Another idea is to regard sets of similar bad smell occurrences (cf. Section 8.4
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and Section 10.2.1). For example, in some cases it could be sensible to remove
all interface violations that concern the same interface at once, if the desired
strategy is to extend the interface. It should be investigated if this is applicable
for other bad smells or other reengineering strategies, as well. If this is the case,
new reengineering strategies to realize this are to be created.

10.2.3 Future Work for the Architecture Prognosis

Currently, the architecture prognosis executes a new clustering on the whole ar-
chitecture. This is sufficient at the moment but if larger software is analyzed
and an architecture prognosis has to be executed for several combinations of bad
smell occurrences and reengineering strategies, it could become a time-consuming
process. A clustering of the whole system is not necessarily needed since only a
few parts of the component structure are changed when applying a reengineering
strategy. If it is possible to only regard a part of the system in the architecture
prognosis, and how the concepts have to be changed in this case, could be a sub-
ject to further investigations. One idea is to use architectural slicing, as described
by Zhao et al. [ZYXX02] (see Chapter 9).

Another part of the architecture prognosis that should be improved is the visu-
alization. Some users might prefer a more graphical representation of the compar-
ison between original architecture and predicted architecture, while the textual
visualization could benefit from improvements that lead to a better overview, too.
For this, existing architecture visualization approaches could be integrated. A
promising candidate for this could be an approach to visualize enterprise archi-
tectures, based on software cartography developed at the TU München [BEL+07,
Wit07]. This approach has already been used in combination with the Palladio
Component Model [KSB+09].

Furthermore, more details on the predicted architecture could be of interest
(see Chapter 6). Comparison criteria that are not realized yet could be taken
into account in a next version of the architecture prognosis, for example, more
details on modifications regarding the interfaces of components which have not
been examined within the scope of this thesis.

In addition, parts of the architecture prognosis could easily be extracted to
be used as an architecture comparison between two different architecture models
that are available for the same project. With this extension, further interesting use
cases would be supported, for example, the architecture comparison of different
project branches that have been developed in parallel.

10.2.4 Miscellaneous Future Work

The proposed reengineering process provides much space for further enhance-
ments, too.

One additional process step could be the integration of an automatic recom-
mendation for a sensible order to remove bad smells. Here, it should be taken into
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account that the removal of one bad smell occurrence could make another bad
smell occurrence obsolete. Moreover, applying one reengineering strategy could
give rise to other strategies, as considered by Tourwé and Mens [TM03]. The de-
velopment of a concept for such a reengineering recommendation requires to study
the dependencies between different bad smell occurrences or different reengineer-
ing strategies. A similar approach is described by Counsell et al. [CHN+06] and
Liu et al. [LYN+09].

Another topic for future work is the last process step, the execution of the
actual transformation of the system’s source code. After the reengineer has made
her decision for a reengineering (i.e., a bad smell occurrence to remove and a
reengineering strategy to accomplish this), the transformation should be executed
automatically (if possible) to avoid error-prone and time-consuming extra work
for the reengineer. Currently, the reengineering results in a modified GAST model
which can be the input for a new iteration of the reverse engineering process but
the actual input system, i.e., the source code of the system, remains unchanged.
Thus, a way to manipulate the underlying source code according to the model
transformations has to be found. This could for example be the generation of new
source code from the modified AST.

Another open question is when to end the process. At the moment, the reengi-
neer has to decide by herself when the reengineering process is finished by regard-
ing the architecture clustered in the current iteration (see Chapter 3). To support
her decision, a further analysis could be done that determines if the current archi-
tecture of the system is satisfying or if it needs further reengineering iterations.
Here, measurements as done by Sarkar et al. [SKR08] could be useful.

Furthermore, it is not satisfying that the whole process, including the bad smell
detection, currently only uses a static analysis of the system’s structure. It has
been demonstrated that a dynamic analysis is required to perform a reliable pat-
tern detection that excludes false positives [Wen07, vDP09, Vol10]. Tourwé and
Mens also mentioned that an approach which combines static and dynamic infor-
mation for the bad smell detection, seems promising [TM03]. It is conceivable that
the relevance analysis or the architecture prognosis could also benefit from the ad-
ditional usage of dynamic information. Because of this, it should be checked if a
dynamic analysis can be used to improve the results of this reengineering process.
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Appendix A

Specifications

This Chapter details on the used bad smell specifications and the reengineering
strategies to accomplish the removal of the bad smell occurrences detected on the
basis of these specifications.

A.1 Bad Smell Specifications

This section shows and describes the used specifications used in Reclipse to detect
the bad smells Interface Violation and Communication via Non-Transfer Objects.

A.1.1 Interface Violation

The Reclipse specification of interface violation used to detect this bad smell is
depicted in Figure A.1. This specification is an adapted version of the specification
Travkin uses in his thesis [Tra11]. The reason is that the detected structure is
reused in the reengineering strategies and there, some elements are needed, that
were not references in Travkin’s specification (e.g. the interface object).

The method that contains the interface violation is represented by the object
accessingMethod. The class accessingClass is the owner of this method. The
accessingMethod accesses another method which is named accessedMethod.
This accessedMethod is located in another class accessedMethodOwner which
implements the bypassed interface. The accessingMethod also contains a state-
ment castStmt that does a cast to the concrete type accessedMethodOwner. The
same statement accesses a variable with the interface type.

When creating this specification, a trade-off between an exact and detailed
specification that does not lead to any false positives in the pattern detection and
a more generalized version that allows to detect implementation variants of the
pattern, too, had to be found. For example the variable var of the interface

type, could be a local variable or a parameter. Two other implementation vari-
ants are that the cast and the call of the accessed method could be done in the
same statement, or in different statements. Because the specification covers these
possibilities, the pattern detection with this specification may detect a few false
positives, e.g. in the case that a more complex combination of casts and calls is
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:IllegalMethodAccess

accessingClass:GASTClass

accessingMethod:Method

castStmt:SimpleStatement

varAccess:VariableAccess

call:FunctionAccess

cast:CastTypeAccess

var:Variable
interface:GASTClass

interface: EBoolean = true

implements:InheritanceTypeAccess

accessedMethodOwner:GASTClass

interface: EBoolean = false

status: Status = NORMAL

qualifiedName: EString = RegEx: [^(java)].*

compAnno:Component

accessedMethod:Method

decl:Method

sp IllegalMethodAccess

«create»

«create»

accessedMethodOwner

«create»

accessingClass

«create»

castStmt

«create»

functionAccess

«create»

accessedMethod

«create»

implementedInterface

«create»

accessingMethod

methods

classes

allStatements

accesses

accesses

accesses

accessedTarget

accessedTarget
accessedClass

type

accessedClass

inheritanceTypeAccesses

methods

overriddenMember

Figure A.1: IllegalMethodAccess (InterfaceViolation) Structural Pattern

done in one statement. More details on the detection results created with this
pattern specification are given in Chapter 8.

As Travkin points out in his thesis [Tra11], another version of this pattern spec-
ification, which considers interface violation occurrences between different compo-
nents, should be used, too. This specification has also been adapted and differs
from the specification in Figure A.1 only in the connections between the classes
and the components.

The reengineering strategies that remove both types of IllegalMethodAccess
occurrences is illustrated in Section A.2.

Invalidated Interface Violation

Figure A.2 illustrates a specification that is used to detect interface violation oc-
currences that have been invalidated by extending the interface by the according
reengineering strategy, as discussed in Section 8.4. The invalidated interface vio-
lation occurrences could correctly access the interface’s method declaration since
it has been added, but they are still doing an unnecessary cast to the subtype.
The specification is nearly equal to the normal IllegalMethodAccess specifica-
tion as presented above, with one exception: the presence of the method object
dec which represents the method declaration from the interface this time is not
forbidden but mandatory.

The reengineering strategy that removes invalidated interface violations is de-
scribed in Section A.2.

A.1.2 NonTOCommunication

The specification for the bad smell communication via non-transfer objects has
been taken from [Tra11]. It is depicted in Figure A.3. The class that contains the
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:Invalidated_IllegalMethodAccess

class1:GASTClass

method1:Method

call:FunctionAccess method2:Method

class2:GASTClass

interface: EBoolean = false

status: Status = NORMAL

simpleName: EString = RegEx: [^(java)].*

interface:GASTClass

interface: EBoolean...

castStmt:SimpleStatement

implements:InheritanceTypeAccess

cast:CastTypeAccess

varAccess1:VariableAccess var1:Variable

decl:Method

compAnno:Component

sp Invalidated_IllegalMethodAccess
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castStmt

«create»
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Figure A.2: Invalidated IllegalMethodAccess Structural Pattern

:NonTOCommunication

comp:Component

callingClass:GASTClass

call:FunctionAccess calledMethod:Method

mOwner:GASTClass comp2:Component

parameter:FormalParameter

paramType:GASTClass

status: Status = NORMAL

simpleName: EString = RegEx: .*[^(TO)]

primitive: EBoolean = false

spNonTOCommunication

«create»«create»

callingClass

«create»

calledMethod

«create»

nonTO

«create»

calledClass

«create»

functionAccess

classes

allAccesses

accessedTarget formalParameters

methods

classes
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Figure A.3: NonTOCommunication Structural Pattern
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callcallStmt:SimpleStatement
parentStatement

◄

<<destroy>><<destroy>><<destroy>>

interfaceViolationReengineeringStrategy1(FunctionAccess call, GASTClass class2, GASTClass interface)

castStmt:SimpleStatement

method

<<destroy>>

allStatements  ▲

<<destroy>>

var1:LocalVariable

var2:LocalVariable
localVariables

►

localVariables

►
class2

interface
 type

►

▼  superTypes

statements

►

<<destroy>>

 typeDeclaration

►

accesses

►
access:VariableAccess

accessedTarget  ▼

<<destroy>>

<<destroy>>

<<destroy>> <<destroy>>

<<destroy>>

dta:DeclarationTypeAccess

2. Remove cast statement

 accessedTarget

►

<<destroy>> <<destroy>>

block:BlockStmt

statements

►  

1. Remove call statement

method:Method block:BlockStmt
allStatements

►

Figure A.4: Reengineering Strategy 1 for Interface Violation: remove call

problematic method call (callingClass) is part of another component then the
class that owns the called method (mOwner). The type of the parameter of the
called method (paramType is the non-transfer object class. This specification is
specialized for the detection in CoCoME, which can be seen at the simpleName

attribute constrains, which is responsible for filtering transfer objects that are
marked with TO.

A.2 Reengineering Strategies

This section shows and describes the concrete story diagrams that realize the
reengineering strategies to remove an interface violation occurrence, as explained
in Section 5 and occurrences of the bad smell Communication via Non-Transfer
Objects.

A.2.1 Reengineering Strategies to Remove Interface Violations

Figure A.4 shows a reengineering strategy that removes an Interface Violation
occurrence by deleting the call as described in Chapter 5. The interface violation
specification this strategy corresponds is depicted in Section A.1.

In the story node 1, the statement callStmt that contains the call, and the
call itself are removed from their containing block. After the deletion of the call,
the cast statement is not needed anymore. Because of this, in the story node
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call

interface

accessedTarget

►

<<create>>

<<destroy>>

interfaceViolationReengineeringStrategy2

(FunctionAccess call, GASTClass interface, Method method, SimpleStatement castStmt, GASTClass accessedMethodOwner)

methods

►

<<create>>

accessedTarget

►

<<create>>
overriddenMember

►  

<<create>>

interface

class:GASTClass

implements:InheritanceTypeAccess

inheritanceTypeAccesses

▼

accessedClass

▼

class method

methodDecl

<<create>>
methods

▼

<<create>>
overriddenMember

▼

methods

►X

[end]

[each time]

method

returnType:GASTType

typeAccessOld:

DeclarationTypeAccess

typeAccessNew:

DeclarationTypeAccess

returnTypeAccess

►
methodDecl:Method

visibility := PUBLIC

abstract := true

name := method.name

returnTypeAccess

►

<<create>>
<<create>>

<<create>>

▼  accessedTarget

▲  accessedTarget

methodStub:Method

visibility := PUBLIC

name := methodDecl.name

returnType

typeAccessNew2:

DeclarationTypeAccess

returnTypeAccess

►

<<create>>
<<create>>

<<create>>
▼  accessedTarget

method

param:FormalParameter

formalParameters

▼

[end]

[each time]

methodDecl newParam:FormalParameterformalParameters

►

<<create>>
<<create>>

name := param.name

typeAccessNewParam:

DeclarationTypeAccess

typeDeclaration

►

<<create>>

<<create>>

paramType:GASTType

<<create>>

accessedTarget

◄

type

►
param

castStmt

<<destroy>>

methodStub newParam:FormalParameterformalParameters

►

<<create>>
<<create>>

name := param.name

typeAccessNewParam:

DeclarationTypeAccess

typeDeclaration

►

<<create>>

<<create>>

paramType:GASTType

<<create>>

accessedTarget

◄

type

►
param

method

param:FormalParameter

formalParameters

▼

[each time]

[end]

[failure]

[success]

varAccess1:VariableAccess

call

var1:Variable

varAccess2:VariableAccess

stmt:SimpleStatement varAccessNew:VariableAccess

var2:Variable

interface

accesses  ▲

accessedTarget

►

▲  accessedTarget

▲  accesses

accesses

◄

accesses

►

▲  accessedTarget

▲  type

method2:Method

▼  localVariables

localVariables

◄  
<<destroy>>

<<destroy>>
<<destroy>>

<<destroy>>

<<destroy>>

<<destroy>>

<<create>>

<<create>> <<create>>

<<destroy>>

1. Add method declaration to interface and set it as accessed target

4. Remove cast statement, local variable and accesses, create new access

5. For each implementing class...

...create new method stub

8. ...create parameter for method stub 7. For each parameter...

9. For each parameter… (2) 10. … create parameter for method declaration

castStmt

call

accesses ▼

2. Decide if cast and call are 

done in same statement

[failure]

cast:CastTypeAccess

statements  ▲
<<destroy>>

block:BlockStmt

[success]

castStmt

3. Remove cast

<<destroy>>

accesses

◄

<<destroy>><<destroy>>

accessedMethodOwner

accessedTarget

◄

<<destroy>>

6. … generate method stub

Figure A.5: Reengineering Strategy 2 for Interface Violation: add method decla-
ration to interface
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2, the cast statement castStmt is removed together with the therein contained
variable access access and the accessed variable var1 and the therein contained
type access dta.

The reengineering strategy depicted in Figure A.5, removes an Interface Vio-
lation occurrence by extending the interface (see Chapter 5). In story node 1,
a new method declaration methodDecl is created and added to the interface.
This method declaration has the same return type as the concrete method method

which overrides methodDecl. Furthermore, the target of the call is no longer
method but now the newly created methodDecl. In the story node 2, a differen-
tiation between two cases takes place: in the first case, the cast and the call are
done in the same statement. If this is the case, only the cast has to be remove,
which happens in story node 3. In the other case, the cast and the call are done
in different statements. Then, story node 4 is executed. There, the no longer
required cast statement (castStmt) and the local variable var1 declared therein
are deleted as well as all accesses to that variable. Furthermore, a new variable
access varAccessNew on the variable with the type of the interface is created
and added to the statement that contains the call. In the story nodes 5 and
6, for each class that implements the interface, a method methodStub for the
newly created method declaration in the interface, is created and added to the
class. The class that contained the interface violation is excluded from this pro-
cedure by the negative link to the method object variable and the failure edge.
The methodStub objects get the same return types and parameters as the method
that is pulled to the interface (story nodes 7 and 8). After that, the according
parameters are also added to the newly created methodDecl (story nodes 9 and
10).

Reengineering Strategy to Remove Invalidated Interface Violation
Occurrences

Figure A.6 presents a reengineering strategy that is capable of removing interface
violation occurrences that has been invalidated by the application of the reengi-
neering strategy 2, depicted above. This reengineering strategies corresponds to
the specification Invalidated IllegalMethodAccess.

The reengineering strategy to remove invalidated interface violation occurrences
is a part of reengineering strategy 2, which extends an interface. However, the
strategy is a reduced version, since the interface does not have to be extended any
more and only the cast and a variable access, if necessary, have to be deleted.

A.2.2 Reengineering Strategies to Remove Communication via
Non-Transfer Object

The trivial solution to accomplish the removal of a Communication via Non-
Transfer Object occurrence is to simply remove the forbidden call. Figure A.7
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call interface

accessedTarget

►

<<destroy>>

distortedIVStrategy

(FunctionAccess call, GASTClass interface, Method method, SimpleStatement castStmt, GASTClass accessedMethodOwner)

methods

◄

<<create>>

accessedTarget

►

overriddenMember

►  
method

methodDecl:Method

castStmt

<<destroy>>

varAccess1:VariableAccess

call

var1:Variable

varAccess2:VariableAccess

stmt:SimpleStatement varAccessNew:VariableAccess

var2:Variable

interface

accesses  ▲

accessedTarget

►

▲  accessedTarget

▲  accesses

accesses

◄

accesses

►

▲  accessedTarget

▲  type

method:Method

▼  localVariables

localVariables

◄  
<<destroy>>

<<destroy>>
<<destroy>>

<<destroy>>

<<destroy>>

<<destroy>>

<<create>>

<<create>> <<create>>

<<destroy>>

Add method declaration to interface and set it as accessed target

Remove cast statement, local variable and accesses, create new access

castStmt

call

accesses ▼

Decide if cast and call are 

done in same statement

[failure]

cast:CastTypeAccess

statements  ▲
<<destroy>>

block:BlockStmt

[success]

castStmt

Remove cast

<<destroy>>

accesses

◄

<<destroy>><<destroy>>

accessedMethodOwner

accessedTarget

◄

<<destroy>>

Figure A.6: Reengineering Strategy to Remove Invalidated Interface Violation
Occurrences
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nonTOCommunicationStrategy

(FunctionAccess call, GASTClass callingClass, Method calledMethod, GASTClass calledClass, GASTClass nonTO)

newStmt:Statement

1. Remove call statement

<<destroy>>

call
surroundingStatement

►

<<destroy>><<destroy>>

Figure A.7: Reengineering Strategy to Remove Non-Transfer Object Communica-
tion occurrences

depicts a story diagram that realizes this strategy. There, the bound call object
is removed as well as the surrounding statement newStmt.

Another possible strategy could introduce a new interface that is implemented
by the class of the non-transfer object. By this, the communication could be made
explicit instead of violating the transfer object constraints. As a consequence
the concerned components will be coupled tighter at each other. However, this
strategy requires complicated interventions in the system’s abstract syntax tree.
To realize complex reengineering strategies like this is future work.
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Appendix B

Recovered Architectures

This chapter lists the recovered components for the clusterings executed in the
evaluation (see Chapter 8).

B.1 Store Example, initial Clustering

Table B.1 depicts the configuration used for the clustering on the extended exam-
ple store system.

The allocation of the classes to the components when using the configuration
illustrated in Table B.1 is depicted in Figure B.1. The figure shows the compo-
nents in a simplified component diagram. It is intended to show the hierarchical
structure of the components. The interfaces and connectors are left out to beware
the readability. In addition, the contained classes of the components are visualized
by their names within the containing component.

Additionally, the following list shows the classes with their qualified names and
their affiliation to the components:

• PC No. 58

– de.upb.examples.reengineering.store.Main

– de.upb.examples.reengineering.store.logic.StoreCreator

– de.upb.examples.reengineering.store.logic.AccountOwnerCreator

– de.upb.examples.reengineering.store.logic.ProductCreator

– de.upb.examples.reengineering.store.logic.ProductSearch

– de.upb.examples.reengineering.store.logic.StoreManager

– de.upb.examples.reengineering.store.logic.PriceCalculator

– de.upb.examples.reengineering.store.logic.ProducerSearch

– de.upb.examples.reengineering.store.logic.CustomerSearch

– de.upb.examples.reengineering.store.ui.MainMenu

– de.upb.examples.reengineering.store.ui.ProductsListView

– de.upb.examples.reengineering.store.ui.StorePresenter

– de.upb.examples.reengineering.store.ui.ProductsListViewEntry

– de.upb.examples.reengineering.store.ui.seller.SellerListView

– de.upb.examples.reengineering.store.ui.seller.SellerMenu

• PC No. 60
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B. Recovered Architectures

Metric Weight

Package Mapping 70
Directory Mapping 0
DMS 5
Low Coupling 0
High Coupling 15
Low Name Resemblance 5
Mid Name Resemblance 15
High Name Resemblance 30
Highest Name Resemblance 45
Low SLAQ 0
High SLAQ 15
Composition: Interface Adherence 40
Clustering Composition Threshold Max Value 100
Clustering Composition Threshold Min Value 25
Clustering Composition Threshold Decrement 10
Merge: Interface Violation 10
Clustering Merge Threshold Max Value 100
Clustering Merge Threshold Min Value 45
Clustering Merge Threshold Increment 10

Blacklist java.*
Additional filter .*TO

Table B.1: Configuration used for the Clustering on the Store System

– de.upb.examples.reengineering.store.model.impl.DVDImpl

– de.upb.examples.reengineering.store.model.impl.StorePackageImpl

– de.upb.examples.reengineering.store.model.impl.ProducerImpl

– de.upb.examples.reengineering.store.model.impl.StoreFactoryImpl

– de.upb.examples.reengineering.store.model.impl.WishlistImpl

– de.upb.examples.reengineering.store.model.impl.SellerImpl

– de.upb.examples.reengineering.store.model.impl.BookImpl

– de.upb.examples.reengineering.store.model.impl.ProductImpl

– de.upb.examples.reengineering.store.model.impl.CustomerImpl

– de.upb.examples.reengineering.store.model.impl.StoreImpl

– de.upb.examples.reengineering.store.model.util.StoreAdapterFactory

– de.upb.examples.reengineering.store.model.util.StoreSwitch

• PC No. 64

– de.upb.examples.reengineering.store.ui.customer.CustomerListView

– de.upb.examples.reengineering.store.ui.customer.CustomerMenu

• CC No. 1
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B.2 CoCoME, initial Clustering

< CC No. 3 >

< PC No. 64 >
CustomerListView, 

CustomerMenu

< CC No. 1 >

< PC No. 60  >

DVDImpl, StorePackageImpl, ProducerImpl, 
StoreFactoryImpl, WishlistImpl, SellerImpl, BookImpl, 

ProductImpl, CustomerImpl, StoreImpl, StoreAdapterFactory, 
StoreSwitch

< PC No. 58 >
 

Main, StoreCreator, AccountOwnerCreator, ProductCreator, 
ProductSearch, StoreManager, PriceCalculator, 
ProducerSearch, CustomerSearch, MainMenu, 

ProductsListView, StorePresenter, ProductsListViewEntry, 
SellerListView, SellerMenu

Figure B.1: Components recovered from the extended Store Example

< CC No. 7 >

< CC No. 5 >

< CC No. 3 >

< PC No. 92 >

ApplicationFactory, StoreImpl, 
FillTransferObjects, ProductDispatcher, 

AmplStarter, RmIRegistry 

< PC No. 46 >
EnterpriseQueryImpl

< CC No. 1 >

< PC No. 94 >

RefreshButton, ProductSupplierTableModel, 
StoreDescr, ProductSupplierStockItem-

TabelModel, OrderButton, Store, Connector, 
ProductStockItemTableModel, 

ProductSupplierOrderTableModel, Connector, 
Reporting

< PC No. 86 >

Debit, BankImpl

< PC No. 88 >
 

KeyStroke, PaymentMode, CoordinatorEventHandlerImpl, 
Coordinator, CashDesk, CashBox, 

CashBoxControllerEventHandlerImpl, LightDisplayController, 
LightDisplayControllerEventHandlerImpl, PrinterController, 

PrinterStates, PrinterControllerEventHandlerImpl, 
ApplicationEventHandlerImpl, CashDeskStates, 

ScannerControllerEventHandlerImpl, 
CardReaderControllerEventHandlerImpl, CashDeskGUI, 

GUIEventHandlerImpl

               < PC No. 90 >

PersistenceContextImpl, 
TransactionContextImpl, 

StoreQueryImpl, 
StoreQueryImplTest, FillDB

Figure B.2: Results of the initial Clustering in CoCoME

– PC No. 58

– PC No. 60

• CC No. 3

– PC No. 64

– CC No. 1

B.2 CoCoME, initial Clustering

The recovered components and the classes they contained in the initial cluster-
ing with CoCoME is depicted in Figure B.2. The used configuration has been
described in Section 8.2.

The classes with their qualified names and their affiliation to the components
is also listed here:
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• PC No. 46

– org.cocome.tradingsystem.inventory.data.enterprise.impl.EnterpriseQueryImpl

• PC No. 86

– org.cocome.tradingsystem.external.Debit

– org.cocome.tradingsystem.external.impl.BankImpl

• PC No. 88

– org.cocome.tradingsystem.cashdeskline.datatypes.KeyStroke

– org.cocome.tradingsystem.cashdeskline.datatypes.PaymentMode

– org.cocome.tradingsystem.cashdeskline.coordinator.impl.CoordinatorEventHandlerImpl

– org.cocome.tradingsystem.cashdeskline.coordinator.impl.Coordinator

– org.cocome.tradingsystem.cashdeskline.cashdenk.CashDesk

– org.cocome.tradingsystem.cashdeskline.cashdesk.cashboxcontroller.impl.CashBox

– org.cocome.tradingsystem.cashdeskline.cashdesk.cashboxcontroller.impl.CashBoxControllerEvent-
HandlerImpl

– org.cocome.tradingsystem.cashdeskline.cashdesk.lightdisplaycontroller.impl.LightDisplayController

– org.cocome.tradingsystem.cashdeskline.cashdesk.lightdisplaycontroller.impl.LightDisplayController-
EventHandlerImpl

– org.cocome.tradingsystem.cashdeskline.cashdesk.printercontroller.impl.PrinterController

– org.cocome.tradingsystem.cashdeskline.cashdesk.printercontroller.impl.PrinterStates

– org.cocome.tradingsystem.cashdeskline.cashdesk.printercontroller.impl.PrinterControllerEventHandler-
Impl

– org.cocome.tradingsystem.cashdeskline.cashdesk.application.impl.ApplicationEventHandlerImpl

– org.cocome.tradingsystem.cashdeskline.cashdesk.application.impl.CashDeskStates

– org.cocome.tradingsystem.cashdeskline.cashdesk.scannercontroller.impl.ScannerControllerEventHandler-
Impl

– org.cocome.tradingsystem.cashdeskline.cashdesk.cardreadercontroller.impl.CardReaderController-
EventHandlerImpl

– org.cocome.tradingsystem.cashdeskline.cashdesk.gui.impl.CashDeskGUI

– org.cocome.tradingsystem.cashdeskline.cashdesk.gui.impl.GUIEventHandlerImpl

• PC No. 90

– org.cocome.tradingsystem.inventory.data.persistence.impl.PersistenceContextImpl

– org.cocome.tradingsystem.inventory.data.persistence.impl.TransactionContextImpl

– org.cocome.tradingsystem.inventory.data.store.impl.StoreQueryImpl

– org.cocome.tradingsystem.inventory.data.test.StoreQueryImplTest

– org.cocome.tradingsystem.inventory.data.test.FillDB

• PC No. 92

– org.cocome.tradingsystem.inventory.application.ApplicationFactory

– org.cocome.tradingsystem.inventory.application.store.impl.StoreImpl

– org.cocome.tradingsystem.inventory.application.store.impl.FillTransferObjects

– org.cocome.tradingsystem.inventory.application.productdispatcher.impl.ProductDispatcher

– org.cocome.tradingsystem.inventory.application.productdispatcher.impl.AmplStarter

– org.cocome.tradingsystem.inventory.application.util.RmIRegistry

• PC No. 94

– org.cocome.tradingsystem.inventory.gui.store.RefreshButton
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– org.cocome.tradingsystem.inventory.gui.store.ProductSupplierTableModel

– org.cocome.tradingsystem.inventory.gui.store.StoreDescr

– org.cocome.tradingsystem.inventory.gui.store.ProductSupplierStockItemTableModel

– org.cocome.tradingsystem.inventory.gui.store.OrderButton

– org.cocome.tradingsystem.inventory.gui.store.Store

– org.cocome.tradingsystem.inventory.gui.storeConnector

– org.cocome.tradingsystem.inventory.gui.store.ProductStockItemTableModel

– org.cocome.tradingsystem.inventory.gui.store.ProductSupplierOrderTableModel

– org.cocome.tradingsystem.inventory.gui.reporting.Connector

– org.cocome.tradingsystem.inventory.gui.reporting.Reporting

• CC No. 1

– PC No. 92

– PC No. 94

• CC No. 3

– PC No. 92

– CC No. 1

• CC No. 5

– PC No. 46

– CC No. 3

• CC No. 7

– PC No. 86

– PC No. 88

– CC No. 5

B.3 Palladio FileShare, initial Clustering

The allocation of the classes to the components when using the configuration
illustrated in Section 8.3 is illustrated in Figure B.3 and in the following list:

• PC No. 38

– de.uka.ipd.palladiofileshare.algorithms.SimpleLZW

• PC No. 86

– de.uka.ipd.palladiofileshare.legacy.algorithms.SevenZip.Compression.LZMA.Decoder

– de.uka.ipd.palladiofileshare.legacy.algorithms.SevenZip.Compression.LZMA.Decoder$LiteralDecoder

– de.uka.ipd.palladiofileshare.legacy.algorithms.SevenZip.Compression.LZMA.Decoder$LenDecoder

– de.uka.ipd.palladiofileshare.legacy.algorithms.SevenZip.Compression.LZMA.Decoder$LiteralDecoder$Decoder2

– de.uka.ipd.palladiofileshare.legacy.algorithms.SevenZip.Compression.LZMA.Encoder$LiteralEncoder$Encoder2

– de.uka.ipd.palladiofileshare.legacy.algorithms.SevenZip.Compression.LZMA.Encoder$Optimal

– de.uka.ipd.palladiofileshare.legacy.algorithms.SevenZip.Compression.LZMA.Encoder$LenPriceTableEncoder

– de.uka.ipd.palladiofileshare.legacy.algorithms.SevenZip.Compression.LZMA.Encoder$LiteralEncoder

– de.uka.ipd.palladiofileshare.legacy.algorithms.SevenZip.Compression.LZMA.Encoder$LenEncoder

– de.uka.ipd.palladiofileshare.legacy.algorithms.SevenZip.Compression.LZMA.Encoder
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< CC No. 5 > < CC No. 3 >

< PC No. 92 >
BusinessFacade, 

BusinessCore, 
BusinessRunner

< PC No. 94 >
Util, Storage

< PC No. 96 >
CopyrightedMaterial-
Database, DbAccess

< PC No. 98 >
ExistingFilesDatabase, 

DbAccess

< CC No. 1 >

< PC No. 38 >
SimpleLZW

< PC No. 86 >
Decoder, LiteralDecoder, 
LenDecoder, Decoder2, 

Encoder2, Optimal, 
LenPriceTableEncoder, 

LiteralEncoder, LenEncoder, 
Encoder, Base

< PC No. 88 >
BitTreeEncoder, 
BitTreeDecoder, 

Decoder, Encoder

< PC No. 90 >
OutWindow, 
InWindow, 

BinTree

< PC No. 100 >
PrimitiveOrderedHasher, 

ByteArrayVector, 
SimpleLZW

< PC No. 102 >
CRC, CRandomGenerator, 

CBitRandomGenerator, 
CBenchRandomGenerator, 

MyInputStream, CrcOutStream, 
MyOutputStream, CProgressInfo, 

LzmaBench, CommandLine, LzmaAlone

< PC No. 104 >
HashTable, Compressor, OutputBuffer, 

InputBuffer, SuffixTable, DeStack, 
CodeTable, CompressionRunner, Compress

Figure B.3: Recovered Components in Palladio FileShare

– de.uka.ipd.palladiofileshare.legacy.algorithms.SevenZip.Compression.LZMA.Base

• PC No. 88

– de.uka.ipd.palladiofileshare.legacy.algorithms.SevenZip.Compression.RangeCoder.BitTreeEncoder

– de.uka.ipd.palladiofileshare.legacy.algorithms.SevenZip.Compression.RangeCoder.BitTreeDecoder

– de.uka.ipd.palladiofileshare.legacy.algorithms.SevenZip.Compression.RangeCoder.Decoder

– de.uka.ipd.palladiofileshare.legacy.algorithms.SevenZip.Compression.RangeCoder.Encoder

• PC No. 90

– de.uka.ipd.palladiofileshare.legacy.algorithms.SevenZip.Compression.LZ.OutWindow

– de.uka.ipd.palladiofileshare.legacy.algorithms.SevenZip.Compression.LZ.InWindow

– de.uka.ipd.palladiofileshare.legacy.algorithms.SevenZip.Compression.LZ.BinTree

• PC No. 92

– de.uka.ipd.palladiofileshare.businesslogic.BusinessFacade

– de.uka.ipd.palladiofileshare.businesslogic.BusinessCore

– de.uka.ipd.palladiofileshare.businesslogic.BusinessRunner

• PC No. 94

– de.uka.ipd.palladiofileshare.businesslogic.util.Util

– de.uka.ipd.palladiofileshare.businesslogic.storage.Storage

• PC No. 96

– de.uka.ipd.palladiofileshare.businesslogic.copyrightedmaterialsdb.CopyrightedMaterialDatabase

– de.uka.ipd.palladiofileshare.businesslogic.copyrightedmaterialsdb.DbAccess

• PC No. 98

– de.uka.ipd.palladiofileshare.businesslogic.existingfilesdb.ExistingFilesDatabase

– de.uka.ipd.palladiofileshare.businesslogic.existingfilesdb.DbAccess

• PC No. 100
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B.3 Palladio FileShare, initial Clustering

– de.uka.ipd.palladiofileshare.legacy.algorithms.PrimitiveOrderedHasher

– de.uka.ipd.palladiofileshare.legacy.algorithms.ByteArrayVector

– de.uka.ipd.palladiofileshare.legacy.algorithms.SimpleLZW

• PC No. 102

– de.uka.ipd.palladiofileshare.legacy.algorithms.SevenZip.CRC

– de.uka.ipd.palladiofileshare.legacy.algorithms.SevenZip.LzmaBench$CRandomGenerator

– de.uka.ipd.palladiofileshare.legacy.algorithms.SevenZip.LzmaBench$CBitRandomGenerator

– de.uka.ipd.palladiofileshare.legacy.algorithms.SevenZip.LzmaBench$CBenchRandomGenerator

– de.uka.ipd.palladiofileshare.legacy.algorithms.SevenZip.LzmaBench$MyInputStream

– de.uka.ipd.palladiofileshare.legacy.algorithms.SevenZip.LzmaBench$CrcOutStream

– de.uka.ipd.palladiofileshare.legacy.algorithms.SevenZip.LzmaBench$MyOutputStream

– de.uka.ipd.palladiofileshare.legacy.algorithms.SevenZip.LzmaBench$CProgressInfo

– de.uka.ipd.palladiofileshare.legacy.algorithms.SevenZip.LzmaBench

– de.uka.ipd.palladiofileshare.legacy.algorithms.SevenZip.LzmaAlone$CommandLine

– de.uka.ipd.palladiofileshare.legacy.algorithms.SevenZip.LzmaAlone

• PC No. 104

– de.uka.ipd.palladiofileshare.legacy.algorithms.Compressor$HashTable

– de.uka.ipd.palladiofileshare.legacy.algorithms.Compressor

– de.uka.ipd.palladiofileshare.legacy.algorithms.OutputBuffer

– de.uka.ipd.palladiofileshare.legacy.algorithms.InputBuffer

– de.uka.ipd.palladiofileshare.legacy.algorithms.Decompressor$SuffixTable

– de.uka.ipd.palladiofileshare.legacy.algorithms.Decompressor$DeStack

– de.uka.ipd.palladiofileshare.legacy.algorithms.CodeTable

– de.uka.ipd.palladiofileshare.legacy.algorithms.CompressionRunner

– de.uka.ipd.palladiofileshare.legacy.algorithms.Compress

• PC No. 106

– de.uka.ipd.palladiofileshare.legacy.algorithms.compress refactored.Decompressor

– de.uka.ipd.palladiofileshare.legacy.algorithms.compress refactored.CompressionRunner

– de.uka.ipd.palladiofileshare.legacy.algorithms.compress refactored.OutputBuffer

– de.uka.ipd.palladiofileshare.legacy.algorithms.compress refactored.Compressor

– de.uka.ipd.palladiofileshare.legacy.algorithms.compress refactored.Compress

– de.uka.ipd.palladiofileshare.legacy.algorithms.compress refactored.SuffixTable

– de.uka.ipd.palladiofileshare.legacy.algorithms.compress refactored.CodeTable

– de.uka.ipd.palladiofileshare.legacy.algorithms.compress refactored.HashTable

– de.uka.ipd.palladiofileshare.legacy.algorithms.compress refactored.InputBuffer

– de.uka.ipd.palladiofileshare.legacy.algorithms.compress refactored.DeStack

• CC No. 1

– PC No. 86

– PC No. 88

– PC No. 90

• CC No. 3

– PC No. 92
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– PC No. 94

– PC No. 96

– PC No. 98

– PC No. 38

• CC No. 5

– PC No. 100

– PC No. 102

– PC No. 104

– PC No. 106
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Appendix C

Eclipse Plug-Ins

In the following sections, the Eclipse plug-ins that have been realized in the scope
of this thesis as well as the plug-ins that are required to execute the realized
plug-ins are listed.

C.1 Required Plug-Ins

As described in Chapter 7, the parser SISSy and the GAST meta model are re-
quired. Furthermore, some plug-ins of the Palladio Component Model (PCM)

are required. All these plug-ins are available via the update site of the Q-Impress

release: http://q-impress.ow2.org/release.
Additionally, for the clustering with SoMoX some plug-ins from the Q-Impress

repository (svn://svn.forge.objectweb.org/svnroot/) are needed:

• eu.qimpress.reverseengineering.gast2seff

• eu.qimpress.samm

• eu.qimpress.seff

• eu.qimpress.sourcecodedecorator

• org.jgrapht

• org.somox.analyzer.sissymodelanalyzer

• org.somox.analyzer.sissymodelanalyzer.ui

• org.somox.core

• org.somox.filter

• org.somox.metrics

• org.somox.metrics.dsl

• org.somox.metricValuesPersistency
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• org.somox.ProvidedRequiredIds

• org.somox.resource.defaultmodels

• org.somox.ui

• uk.ac.shef.dcs.simmetrics

For the story diagrams, the story diagram meta model is required. The reposi-
tory is available under http://svn.codespot.com/a/eclipselabs.org/sdm-com-
mons/ and the required plug-in is org.storydriven.modeling. From this repos-
itory also the plug-in org.storydriven.modeling.interpreter.adapter is re-
quired because it contains the classes that are used by the story diagram inter-
preter to interpret the story diagrams created with the meta model named above.

The story diagram interpreter itself is located in the repository of the HPI in
Potsdam: https://www.hpi.uni-potsdam.de/giese/gforge/svn/storyeditor/.
The required plug-ins are:

• de.mdelab.sdm

• de.mdelab.sdm.interpreter.common

• de.mdelab.sdm.interpreter.common.eclipse

• de.mdelab.sdm.interpreter.ocl

Reclipse can be downloaded via the update site:
http://dsd-serv.uni-paderborn.de/svn/updatesites/trunk/reclipse/.

C.2 Realized Plug-Ins

Within the scope of this thesis, several plug-ins have been realized:

org.archimetrix.relevanceanalysis: This plug-in realizes the relevance anal-
ysis.

org.archimetrix.relevanceanalysis.ui: This plug-in provides the user inter-
face of the relevance analysis.

org.archimetrix.architectureprognosis: This plug-in realizes the architec-
ture prognosis.

org.archimetrix.architectureprognosis.ui: This plug-in provides the user
interface of the architecture prognosis.

org.archimetrix.commons: In this plug-in some common functions and con-
stants that are used by the relevance analysis and the architecture prognosis
plug-ins are contained.
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org.somox.metricValuesPersistency: This plug-in contains the meta model
classes used to store the metric values during the clustering.

The plug-in that has been modified to store the metric values during the clus-
tering is org.somox.analyzer.sissymodelanalyzer.
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Appendix D

User Guide

This chapter briefly describes how the proposed reengineering process can be ex-
ecuted using the realized tool. For this, the user has to follow the steps described
in the following:

1. Creating a GAST model of the system under analysis:

First, a generalized abstract syntax tree (GAST) of the system under anal-
ysis has to be created. For this, the parser SISSy can be used. A documen-
tation for SISSy is available under http://www.sqools.org/sissy.

2. Initial clustering:

In the next step, SoMoX is used to cluster the system. A documentation for
SoMoX is available under http://www.sqools.org/somox.

3. Component relevance analysis:

The component relevance analysis can be started via the menu bar: Archi-
metrix → Reengineering of Design Deficiencies → Find Relevant

Components. The opened wizard requires the source code decorator model
from the clustering (*.sourcecodedecorator) and the metric values model
(*.ecore) as input. Both files were created during the initial clustering.
Using the default settings, they are both saved in a folder “model” in the
surrounding project folder.

Depending on the size of the system under analysis, the component relevance
analysis takes some time to load the required model elements. After that,
the Relevant Component View opens (see Section 7.3.1 for a description of
the view).

4. Bad smell detection:

The bad smell detection on a set of selected components can be started
via the menu bar: Reclipse EMF → Start Pattern Based Architecture

Analysis.

Another possibility to start the bad smell detection on a selected component
is via the context menu in the Relevant Components View.
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When the bad smell detection is finished, the detected bad smell occurrences
are listed in the view Annotations. This view provides buttons for loading
and saving the detection results into a file. To execute a bad smell relevance
analysis, the detected bad smells have to be saved.

5. Bad smell relevance analysis:

The bad smell relevance analysis can be started via the menu bar: Archime-
trix→ Reengineering of Design Deficiencies→ Find Relevant Bad

Smells. The opened wizard requires the file with the saved bad smell oc-
currences (*.psa) and the metric values model as input.

Here again, depending on the size of the system under analysis, the bad
smell relevance analysis takes some time to load the required model elements.
After that, the Relevant Bad Smells View opens (see Section 7.3.1 for a
description of the view).

6. Architecture prognosis:

The architecture prognosis can be started via the menu bar (Archimetrix→
Reengineering of Design Deficiencies→ View Architecture Progno-

sis) or via the context menu for a bad smell occurrence in the Relevant Bad
Smells View.

The Architecture Prognosis Wizard takes the metric values model, the de-
tected bad smell occurrences and a file with reengineering strategies as input
(*.ecore) as input. On the second wizard page, the bad smell occurrence to
be removed has to be selected and on the third page, the reengineering
strategy for which the prognosis shall be executed, has to be selected.

After having finished the wizard, the Architecture Prognosis View shows
the prognosis results (see Section 7.5.4 for a description of the view).

To perform the next iteration of the reengineering process the clustering
results achieved in the architecture prognosis can be used as input for the
bad smell detection.
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