
ABSTRACT
This abstract presents an approach to semi-automatically detect

pattern instances and their implementations in a software system.
Design patterns are currently best practice in software development
and provide solutions for nearly all granularity of software design
and makes them suitable for representing design knowledge. The
proposed approach overcomes a number of scalability problems as
they exist in other approaches by using fuzzy logic, user interaction
and a learning component.

1. MOTIVATION
“Never touch a running system” is one of the most famous

idioms in computer science and best practice for many software
systems. This results from the experience that changing those
software systems often has side-effects usually in parts that have
not been adjusted to the change. The side-effects usually result
from an awful documentation of the software system dependencies,
because time-to-market has often a higher priority compared to an
expensive good documentation of the system. Large and older
systems, so-called legacy systems, often contain even no or only
fragments of documentation. A re-documentation of those systems
is usually very expensive, because it is mostly done manually.

Today, the Unified Modelling Language (UML) has become a
standard for describing software systems. The UML consists of
several different diagram types used for different purposes in a
software development process. It is therefore naturally to use the
UML diagrams also for re-documenting existing system, because
they are common knowledge for nearly all developers and enable a
seamless integration later in a redesign process.

In addition to the different diagram types in UML, design
patterns [GHJV95] are best practice in software development.
Design patterns introduced by Gamma et al., former known as
Gang-of-Four (GoF) patterns, provide solutions for recurring
problems. Today patterns of all granularity of software design exist

in literature, e.g. implementation patterns, distribution patterns,
architecture patterns and design patterns. If a pattern is used in an
actual software system’s design, it is called a pattern instance.
Typically, there exist many different pattern instances for one
pattern and even the actual implementation of a pattern instance
can differ from one instance to another.

GoF-patterns provided by Gamma et al. are the result of an
intensive (more or less manual) reengineering process of existing
software systems at Big Blue. Consequently, GoF-patterns can be
seen as a comprised collection of recurring successfully employed
implementations made by independent developers in different
software systems. This makes them highly suitable as a mean for
legacy system understanding and as a representation of design
knowledge. In addition, patterns connect several parts of a system
which makes them ideal to document dependencies.

Precise Pattern Definition
A GoF-pattern provides a solution for a problem in terms of a

definition of the static and dynamic behaviour including usually
one example and one implementation possibility. Thereby most
parts of a GoF-pattern’s description are informal which offers many
interpretation opportunities. Typically, the static structure of a GoF-
pattern is given as an OMT [RBP+91] diagram, which is
comparable with an UML class diagram, while the behaviour is
mostly described in prose and thereby not formally defined. To
support an automated recognition of GoF-pattern and other pattern
instances in existing software systems a formal definition of a
pattern is indispensable.

Applicability to Large Software Systems
In addition to a formal definition of a pattern the success of an

automated recognition process of pattern instances highly depends
on its scalability. Tools supporting an automated recognition of
pattern instances must be able to analyse thousands or millions
lines of code (LOC). The scalability is often strongly depending on
the number of pattern definitions. Raising the scalability often
means a reduction of the number of pattern definitions or relaxing
the definitions in such a way that one pattern definition covers
more than one pattern instance or implementation. Both, reducing
the number of pattern definitions and relaxing the definitions,
reduces the preciseness of the analysis where in the first case not all
pattern instances are found and in the second case false-positives
occur (erroneously recognized instances and implementations).

Adapting Patterns to a Specific Domain
In practice it is impossible to run a fully automated analysis

with a catalogue consisting of all pattern instance and
implementation definitions for all patterns. Fortunately, for the

This research is part of the FINITE project funded by the
German Research Foundation (DFG)
http://www.upb.de/cs/ag-schaefer/Forschung/Projekte

Fuzzy Logic based Interactive Recovery of Software Design
(Research Abstract)

Jörg Niere1

Software Engineering Group
Department of Mathematics and Computer Science

University of Paderborn
Warburger Straße 100, D-33098 Paderborn

Germany
nierej@uni-paderborn.de

analysis of a software system, it is usually sufficient to take only
those patterns into account, which are relevant for the software
system’s domain. Focusing on a specific domain reduces the
number patterns dramatically but does not solve the problem of a
complete enumeration of all pattern instances and implementations
of one pattern in one domain. Thus, a reengineering process has to
be interactive where the engineer must be able to adapt a pattern
instance or implementation definition to the actual system in a
certain domain during the analysis. In addition, such an interaction
allows the engineer to infer personal hypothesises and
presumptions and to integrate results from other analyses, e.g.
original documentation or interviews with the developers of the
system.

2. RELATED WORK
There exist several approaches in the field of program analysis

and program understanding in the literature, but this section
focuses on approaches which also try to detect pattern instances
and which are related to the used techniques in this approach.

Comparable work on reengineering source code stems from
Harandi and Ning [HN90] who present program analysis based on
an Event Base and a Plan Base. A parser constructs rudimentary
events from the source code to be analysed. Plans define the
relationship between (incoming) event(s) and they fire a new event
corresponding to the plans intention. Each plan corresponds to
exactly one pattern variant instance or implementation, which lets
the approach fail for large systems, because of the large number of
different pattern instances or implementations for even one pattern.
The same holds for the approach of Paul and Prakash [PP94]. Both
approaches use a deductive execution semantics where in each
deduction step pattern matching techniques are used. Thus, both
approaches can be seen as a basis for other approaches.

Wills [Wil96] presents an approach to identify common
computational structure such as searching or sorting algorithms.
Wills uses also pattern matching techniques where patterns are
encoded as rules stemming from a special graph grammar. The
graph grammar combines control flow and data flow and is thereby
comparable to Harandi and Ning’s plans. Unfortunately, an
evaluation shows that her approach is only able to analyse a few
thousand lines of code, because the subgraph isomorphism
problem is NP-complete and her pattern matching algorithm is a

rudimentary implementation.
Jahnke [Jah99] presents a successful result analysing large

relational database systems. He integrates the re-engineer in his
analysis process and is able to handle the large search space. In
addition, possibilistic logic integrated in his Generic Fuzzy
Reasoning Nets (GFRNs) handles uncertainty. GFRNs use so-
called clichés as irrevocable facts, which are detected in the
database’s code using a classical pattern matching approach. This
is sufficient for the analysis of relational database systems but fails
for the recovery of pattern instances or implementations. Applying
the process as well as the GFRNs to the recovery of some easy
implementation pattern instances fail, because there exist only a
few number of cliché instances of one cliché in comparison to the
large number of pattern instances and implementations, cf.
[JNW00].

Concerning the detection of design patterns, Kraemer and
Prechelt [KP96] present an approach of analysing C/C++ source
code to extract design patterns. Hence, they analyse the header
files (structural parts) only, they get many false-positive, because
many design patterns are structural identical but behavioural
different.

Analysing behaviour as well as structure using patterns is
presented by Keller et al. in [KSRP99]. A common abstract syntax
graph model for UML is used to represent source code as well as
patterns. Matching the syntax graph of a pattern on the syntax
graph of the source code is done using scripts. The scripts have to
be implemented manually. The definitions in such a script
language become difficult to maintain and to reuse. It is also not
possible to modify a script, which means an adaptation of a pattern
to a certain domain, during the analysis run-time. Thus, the
approach fails for the analysis of unknown software systems.

Tonella and Antoniol’s [TA99] approach of detecting patterns
is orthogonal to the other ones. They do not use pre-defined
patterns but try to find a pattern instance in source code but analyse
the code for recurring constructs. Statistic evaluation summarizes
the analysis result and present which construct occurs how many
times in the program. This approach seams to be more useful for
the detection of (new) patterns than for pattern instances but could
be used to identify unknown pattern instances or implementations
in unknown systems. Categorizing the found results and
comparing them to existing patterns has to be done manually.

b:Bridge
80/50

«create»

operation:UMLMethod n:NeighborCall

abstraction implementor

field

references

subClass superClass

calleecaller

methods methods

«create» «create»

abstraction:UMLClass

r:Reference

operationImpl:UMLMethod
Boolean abstract = true

implementor:UMLClass
Boolean abstract = true

refField:UMLAttr

attrs

g2:Generalization

g1:Generalization

superClass

Figure 1. Bridge-GoF-pattern definition

3. MY APPROACH
This research presents a reengineering system including a

process and techniques to extract pattern instances from a software
system’s implementation semi-automatically. Although the focus
lies on GoF-patterns the approach can also be used to detect other
kinds of pattern instances such as architectural, implementation or
distribution patterns. The approach uses layered graph grammars
and graph parsing techniques [RS95] combined with fuzzy logic
[ZK92] to provide an interactive pattern matching algorithm.

Graph grammars [Roz97] build the formal basis of the
approach. Patterns are encoded as graph transformation rules and
the to be analysed source code is parsed in its abstract syntax graph
representation. The graph transformation rules are notated as UML
collaboration diagrams, which are common knowledge and reduce
the learn effort for other engineers. For example, Figure 1 shows
the definition of a Bridge pattern. Oval shaped objects represent
other pattern instances and rectangle shaped objects represent
abstract syntax graph objects. The objects in the rule must form a
connected graph and all links are an instance of an association in
an corresponding class diagram. The links have a certain read
direction notated as an arrow at the link’s name but are traversable
in both directions. Crossed-out elements represent negative
application conditions.

Common parts in different patterns can be defined in separate
rules and can be (re)used in the rules for the original patterns. Such
common parts are called sub-patterns or sub-rules. The Bridge
pattern uses the Generalization, Reference and NeighborCall
pattern. In addition to the composition of patterns the approach
supports also (structural) inheritance in object-oriented terms. Both
raises the reuse and reduces the number of rule definitions. To
handle the large number of implementation variants of a pattern
instance, rules defining patterns and sub-patterns are enhanced
with fuzzy values to describe a degree of uncertainty, cf. [ZK92].
Uncertainty allows one rule to match for several implementations
with a certain degree. This reduces the number of required rule
definitions dramatically.

The detection algorithm uses a certain graph parsing technique,
cf. [RS95], which annotates the abstract syntax graph of the source
code for any found pattern. In case of the Bridge pattern, a new
b:Bridge object is created. The algorithm uses a forward/backward
chaining (combined bottom-up, top-down) strategy.

The bottom-up strategy is similar to deductive approaches and
brute-force algorithms, e.g. used by Wills, but my algorithm tries
to apply patterns with a high partial order number. Usually,
applying those patterns fails, because other sub-pattern are needed.
In this case the algorithm switches into top-down strategy, which
uses information annotated by the patterns to establish or revert

Figure 2. Part of the AWT library analysis result

sub-patterns. Such an interleaved strategy accelerates providing
first interesting analysis results. This is the major advantage in
comparison to pure deductive approaches, which are usually able
to provide interesting results only after a complete analysis.

Typically, the found analysis results are uncertain
corresponding to the fuzzy values defined in the rules. The fuzzy
value of a found Bridge pattern is the minimum of the rules fuzzy
value (80) and all depending pattern instances. Uncertain results
are accepted or rejected automatically when the uncertainty is
higher or lower a certain threshold (50 in case of the Bridge pattern
in Figure 1) or the engineer can accept and reject results manually.
A learning component logs the interactions and recalculates the
fuzzy values of the rules, and the acceptance and rejection
thresholds based on statistic analyses. This automates further
analysis. In addition to the acceptance or rejection of uncertain
results, the engineer is also able to adapt the rules to a certain
domain during the analysis process. This becomes very efficient in
combination with the early delivery of interesting results by the
detection algorithm, because actions taken by the engineer always
influence further analysis. For example, in case of an emergency,
i.e. all instances are false-positives or no instance is found, the
engineer can stop the analysis, investigate the current results and
adapt the rules adequately in a very early analysis state.

The reengineering system is specified using UML and the
Fujaba environment, cf. [FNTZ98, KNNZ00]. Fujaba provides
editors for UML class and activity diagrams and a code generation
algorithm and is used to specify the reengineering system as well
as its results. The effectiveness of my approach and the tools is
shown analysing large systems. For example Java’s Abstract
Window Toolkit (AWT), the SWING library with about 200k LOC
and Fujaba itself with more than one million LOC.

Figure 2 shows a cut-out of the AWT library class diagram
consisting of the kernel classes and annotated by the patterns
Composite, Strategy and Bridge including their preciseness. Note,
the class diagram contains only rudimentary directed references
extracted from the source code. Associations are a part of the
pattern catalogue and thus represented as annotations.

All examples have been built using design patterns, though the
evaluation is used to show the preciseness of my approach,
extracting GoF-pattern instances and comparing them with the
documentation of the systems. Using the reengineering system
analysing a legacy system shows the application of my approach
on foreign implementations. Thereby the advantages of integrating
the engineer in the process are also investigated and discussed.

The current Fujaba analysis prototype is available at
http://www.upb.de/cs/fujaba and for more details on
the algorithm and the evaluation see [NSW+02].

REFERENCES
[FNTZ98] T. Fischer, J. Niere, L. Torunski and A. Zündorf. Story

Diagrams: A new Graph Rewrite Language based on the Unified
Modeling Language. In G. Engels and G. Rozenberg, editors,
Proc. of the 6th International Workshop on Theory and Applica-
tion of Graph Transformation (TAGT), Paderborn, Germany,
LNCS 1764. Springer Verlag, 1998.

[GHJV95] E. Gamma, R. Helm, R. Johnson and J. Vlissides. De-
sign Patterns: Elements of Reusable Object Oriented Software.
Addison-Wesley, Reading, MA, 1995.

[HN90] M.T. Hanrandi and J.Q. Ning. Knowledge Based Program
Analysis. IEEE Transactions on Software Engineering, 7(1):74–
81, IEEE Computer Society Press, 1990.

[Jah99] J.H. Jahnke. Management of Uncertainty and Inconsisten-
cy in Database Reengineering Processes. PhD thesis, University
of Paderborn, Paderborn, Germany, September 1999.

[JNW00] J.H. Jahnke, J. Niere and J.P. Wadsack. Automated Qual-
ity Analysis of Component Software for Embedded Systems. In
Proc. of the 8th International Workshop on Program Comprehen-
sion (IWPC), Limerick, Irland, pages 18–26. IEEE Computer
Society Press, June 2000.

[KNNZ00] H.J. Köhler, U. Nickel, J. Niere and A. Zündorf. Inte-
grating UML Diagrams for Production Control Systems. In
Proc. of the 22nd International Conference on Software Engi-
neering (ICSE), Limerick, Irland, pages 241–251. ACM Press,
2000.

[KP96] C. Krämer and L. Prechelt. Design recovery by automated
search for structural design patterns in object-oriented software.
In Proc. of the 3rd Working Conference on Reverse Engineering
(WCRE), Monterey, CA, pages 208–215. IEEE Computer Soci-
ety Press, November 1996.

[KSRP99] R.K. Keller, R. Schauer, S. Robitaille and P. Page. Pat-
tern-Based Reverse-Engineering of Design Components. In
Proc. of the 21st International Conference on Software Engineer-
ing, Los Angeles, USA, pages 226–235. IEEE Computer Society
Press, May 1999.

[NSW+02] J. Niere, W. Schäfer, J.P. Wadsack, L. Wendehals and
J. Welsh. Towards Pattern-Based Design Recovery. In Proc. of
the 24th International Conference on Software Engineering
(ICSE), Orlando, Florida, USA, ACM Press, May 2002.

[PP94] S. Paul and A. Prakash. A Framework for Source Code
Search Using Program Patterns. IEEE Transactions on Software
Engineering, 20(6):463–475, IEEE Computer Society Press,
June 1994.

[RBP+91] J. Rumbaugh, M. Blaha, W. Permalani, F. Eddy and
W. Lorensen. Object-Oriented Modeling and Design. Prentice
Hall, 1991.

[Roz97] G. Rozenberg, editor. Handbook of Graph Grammars and
Computing by Graph Transformation. World Scientific, Singa-
pore, 1997.

[RS95] J. Rekers and A. Schürr. A Graph Grammar Approach to
Graphical Parsing. In Proc. of the IEEE Symposium on Visual
Languages, Darmstadt, Germany. IEEE Computer Society Press,
1995.

[TA99] P. Tonella and G. Antoniol. Object Oriented Design Pat-
tern Inference. In Proc. of the 5th Symposium on Software De-
velopment Environments (SDE5), pages 230–238. IEEE
Computer Society Press, September 1999.

[Wil96] L.M. Wills. Using Attributed Flow Graph Parsing to Rec-
ognize Programs. In Proc. of of the 5th International Workshop
on Graph Grammars and Their Application to Computer Sci-
ence, LNCS 1073, Williamsburg, Virginia, 1994, November
1996. Springer Verlag.

[ZK92] L.A. Zadeh and J. Kacprzyk. Fuzzy Logic for the Manage-
ment of Uncertainty. John Wiley and Sons, Inc., 1992.

