
Handling Large Search Space in Pattern-based Reverse Engineering
∗

Jörg Niere, J̈org P. Wadsack, Lothar Wendehals
Software Engineering Group

Department of Computer Science, University of Paderborn
Warburger Straße 100, 33098 Paderborn, Germany

[nierej|maroc|lowende]@upb.de

Abstract
Large industrial legacy systems are challenges of reverse-
engineering activities. Reverse-engineering approaches use
text-search tools based on regular expressions or work on
graph representations of programs, such as abstract syntax
graphs. Analyzing large legacy systems often fail because of
the large search space. Our approach to handle large search
space in pattern-based reverse engineering is to allow impre-
cise results in means of false positives. We use the theory of
fuzzy sets to express impreciseness and present our approach
on the example of recovering associations.

1. Introduction
Industrial relevant systems often consist of several million

lines of code, written in different languages. The variety of
the used languages makes reverse engineering of those legacy
systems hard to perform. Even in cases where the system has
been implemented in only one language, the huge size of the
system prevents a complete reverse engineering task.

Reverse engineering is often done using simple text-search
tools such as grep, sed or awk. Especially in design-recovery
regular expression based tools has been turned out to be
inappropriate, because regular expressions are not sufficient
to cover a large variety of implementation variants. More
sophisticated approaches, e.g. control flow or data flow ana-
lyses, require compiler techniques, where the source code is
usually represented as an enriched abstract syntax graph.

For analyzing and manipulating graphs, graph-grammars
[13] are well-suited. To use graph-grammars for tool-suppor-
ted design-recovery, so called graph-rewrite-systems apply
graph-rewrite-rules on a host-graph (e.g. the abstract syn-
tax tree representation of source code). Unfortunately, app-
lying a graph-rewrite-rule means to solve the subgraph iso-
morphism problem, which is NP-complete, cf. [9]. Therefore,
most approaches are only able to handle some thousand li-
nes of code, cf. [17]. A solution is to reduce the number of
rules and/or reduce the host-graph by omitting informati-
on, cf. [8]. The first case does not solve the problem because
actual legacy systems consist of million lines of code and
also split parts consist of several hundred thousand lines of
source code. The second case does not solve the problem
either because the results are mostly unreliable and contain
many false-positives. In addition, filtering the results has to
be done manually.

To illustrate our approach, we use a simple design-recovery

∗This work is part of theFinite project funded by the German
Research Foundation (DFG), project-no. SCHA 745/2-1.

example, which means recovering associations from Java
source code. Recovering associations is a need for further
design-recovery activities and therefore an ideal analysis star-
ting point. Since Java is an object-oriented language, it ex-
plicitly consists of language constructs for classes, attributes
and methods, which correspond directly to classes, attribu-
tes and methods in the class diagram. Therefore, parsing the
Java source code is sufficient to extract such information.

To illustrate our approach we choose the recovery of asso-
ciations in Java code. Java has no explicit language construct
for associations. Thus associations could be implemented in
many different ways. We assume that associations are bidi-
rectional and such composed of two references. Therefore,
Figure 1 shows 3 variants of reference implementations.

public class House {
// variant 1:

public Elevator myElevator;

// variant 2:

private Level curLevel;

public Level getCurLevel() {
return curLevel; }

public void setLevel(Level l) {
if (curLevel != l)

curLevel = l; }
// variant 3:

private TreeSet levels;

public void addToLevels(Level l) {
if (!levels.contains (l)) {

levels.add (l);

l.setHouse (this); }
}
public Iterator iterLevels() {

return levels.iter(); }
}

Figure 1: Reference source code variants

The first two variants of Figure 1 show so called ToOne-
references, which refer to the multiplicity of the references,
i.e. an object instance of one class could have only one rela-
ted object instance of the other class during runtime. Ano-
ther multiplicity is ToMany (cf. variant 3 in Figure 1). Ad-
ditionally consider qualified, sorted and n-ary references.

Variant 1 of the reference implementations in Figure 1
is just a public reference to the associated class, whereas
variant 2 implements a private attribute of the type of the

associated class including public read/write access methods.
These two variants indicate that they are implementations
of references from class House to class Elevator and class
Level, respectively.

Variant 3 differs from the first two by using a container
class from the Java Foundation Classes (JFC), namely a
TreeSet. The use of a container class indicates that this is a
ToMany-reference and the container type indicates that this
is a ’normal’ reference, e.g. qualified references use container
classes which store elements in hash tables for direct access.

The kind of objects that are stored in the container can
only be derived by analyzing the addToLevels access method.
The parameter is a Level and this object is stored in the
container by the add method of the container. Therefore, the
implementation is a ToMany-reference between class House
and class Level.

In general, the flexibility provided by programming lan-
guages leads to the problem that different programmers use
different syntax to describe the same semantics. However,
on design-level only the semantics is relevant. Therefore,
each implementation variant has to be defined, in order to
make them detectable by a tool. Consequently, using graph-
rewrite-rules, each variant is represented by at least one rule,
which means a large number of rules precisely describing ex-
act one implementation variant. The large number of rules in
addition to the large host-graph intensifies the performance
problem of design-recovery in a large search space. Reducing
the large host-graph or the rules does not solve the problem
as stated before.

A possibility is to identify common parts in a number of
rules and exchange those rules each precisely describing one
variant by at least one common rule describing a number
of variants. Using classical graph-rewrite-systems to apply
such imprecise rules lead to many false positives and the
reengineer is not able to distinguish between false positives
and correct results. Our approach is to allow reducing the
number but to express the degree of impreciseness by as-
signing fuzzy beliefs to rules. In combination with filtering
the results with fuzzy values higher than a certain threshold,
this approach allows a reengineer to profit from a thorough
analysis of the source code in an appropriate time-limit and
valuing about the found matches for a rule.

2. Related Work
Since recovering associations is a part of design recovery,

the related work presented mostly describes design recovery
approaches. Recovering associations is thereby included in
all approaches.

Harandi and Ning [4] present program analysis based on
an Event and Plan Base. The analysis process starts by firing
rudimentary events constructed from source code. Plans de-
fine the correlation between one or more (incoming) events
and they fire a new event corresponding to the intention
of the plan. Each plan definition corresponds to exactly one
implementation variant, which leads to a high number of de-
finitions. This applies also to the approach of Paul and Pra-
kash [11], where a matching algorithm for syntactic patterns
based on a non-deterministic finite automaton is introduced.

An approach to recognize clichés, i.e. commonly used com-
putational structures, is presented by Wills [17]. The ap-
proach is part of the Graspr system, which examines lega-
cy code. Wills uses attributed flow graph grammars, which
combine control-flow and data-flow aspects in one graph-

rewrite-rule. Since the sub-graph isomorphism problem is
NP-complete [9] this approach allows analyzing only some
thousand lines of code, which was sufficient to detect data-
structures or search and sorting algorithms. Applying the
approach to larger programs had failed.

Krämer and Prechelt [8] use Prolog in order to detect de-
sign patterns [3] in C++ source code. The source code is par-
sed into facts and rules describing the relations. Prolog’s
execution mechanism applies the rules in arbitrary sequence
and uses back-tracking where necessary. The approach is ab-
le to analyze larger programs, but its preciseness is very low,
because the approach uses information of header files only.
An analysis of method bodies is not supported. An approach
producing more precise results is presented by Antoniol et
al. [1, 14]. They use metrics, such as the number of me-
thod calls within a method body, to include a method body
analysis without time-intensive graph-rewrite-rules. Unfor-
tunately, the used metrics are inadequate to express detailed
information, e.g. method calls within loops. Therefore a lot
of false positives remain.

Analyzing behavior as well as structure using patterns is
presented by Keller et al. [7]. They use a common abstract
syntax graph model for UML to represent the source code
as well as the patterns. Matching the patterns on the pro-
gram’s syntax graph is done by scripts. These scripts are
not generated automatically out of the pattern definitions
but have to be implemented by the reverse engineer ma-
nually. Such scripts very quickly become large, awkward to
read and difficult to maintain. Therefore, scripts used in a
certain reverse engineering task are usually not sufficient for
other reverse engineering processes.

None of the above approaches allow expressing impreci-
seness. Jahnke [5] uses possibilistic logic to handle uncertain-
ty in a database reverse engineering process. Graph-rewrite-
rules applied by the Progres system, developed at Aachen
University, extract clichés from SQL statements stored in the
database. The following inference process combines the ex-
tracted clichés according to a specified Fuzzy Reasoning Net.
We [6] used this approach to detect possible memory leaks in
applications for Java Smart Cards. Jahnke’s approach was
successful for the database reverse engineering but the ap-
proach has failed for the detection of memory leaks. This
results from the fact, that only a small number of rules are
needed to extract cliché variants from SQL statements but
a huge number of rules is needed to extract implementation
variants from Java Smart Card source code.

3. Rule Definition
In our approach to pattern-based design-recovery, we de-

fine graph-rewrite-rules with respect to the abstract syntax
graph (ASG) representation of a program. The rule defini-
tion is graph based, means the approach needs only a graph
representation of the code or any other graph representing
information of a system, e.g. data-flow or control-flow gra-
phs. Therefore the presented approach is not bound to any
particular program language or any particular programming
paradigm. For our example, we use a simplified ASG model
for readability reasons.

Before defining graph-rewrite-rules for implementation va-
riants, Figure 2 shows an excerpt of the type graph model
underlying the rules as an UML class diagram. We omit the
complete graph model and just present two classes namely
Node and Annotation. Each construct in the code (abstract

0..1

kind:String

«abstract»

Annotation

+ fuzzyBelief:Float

+ threshold:Float

«abstract»

Node

Figure 2: Type Graph Model

syntax graph) is represented by a corresponding subclass of
class Node. Each annotation used in a rule is a subclass of
class Annotation. The Annotation nodes are associated to the
Node nodes in the graph by a qualified association. The qua-
lifying attribute kind is represented in the rules as the name
of the corresponding link, e.g. field and references in Figure
3.

attrType

references

field

«create»

«create»

:Reference

«create»

referredClass:Class

referencingField:Attribute

String visibility = "public"

Figure 3: Reference Rule, variant 1

A graph-rewrite-rule is composed of two parts. The pat-
tern part, i.e. the subgraph specifying the application place
of the rule in the host-graph and the part describing modi-
fications. Here, only new nodes (annotations) and links are
created. In the notation used, the subgraph to be matched in
the host graph is defined by the black nodes and edges. The
subgraph to be added is defined by the gray node(s) and
edges annotated with the stereotype �create�. Note that
the Annotation nodes can also be used by other rules. The
instances of the Node and Annotation class are represented
by rectangle- and oval-shapes respectively.

As a first example of such a rule definition, Figure 3 shows
the graph-rewrite-rule defining a public reference between
two classes. In the ASG we find a referencingField to a class,
i.e. we recognize an attribute that is a public reference to a
class. The oval-shaped node is the annotation which identi-
fies the subgraph of the ASG as match of a reference. During
rule application this node including the edges are created
and thus, enrich the ASG semantically.

readOp:Method
writeOp:Method
 referencingClass:Class

attrType

method

methods
methods

method

field

attrs

references

field

field

«create»

«create»

:Reference

«create»

referredClass:Class

:WriteOperation
 :ReadOperation

referencingField:Attribute

String visibility = "private"

Figure 4: Reference Rule, variant 2

Variant 2 of Figure 1 also shows a reference, the corre-
sponding rule is depicted in Figure 4. In addition to a re-
ferencing attribute we require the existence of a read and
write operation. These two operations are supposed alrea-
dy to be recovered by other graph-rewrite-rules. Note, that
we use the annotations as part of the ASG. This facilitates
the definition of our recovery rules by defining rules that are
build on the results of other rules.

references

field

«create»

«create»

:Reference

«create»

referredClass:Class

referencingField:Attribute

String visibility = "private"

:Parameter

paramType

param

:AddToContainer

field

readOp:Method
writeOp:Method
 referencingClass:Class

method

methods
methods

method

:WriteOperation
 :ReadOperation
field
 field

attrs

Figure 5: Reference Rule, variant 3

Figure 5 shows the graph-rewrite-rule for variant 3. The
higher complexity results from the referencing container in-
stead of the ToOne-reference. In order to detect such a To-
Many-reference we have to look into the method body.

:Class

field
 param
method

parseTree

attrs
 methods
 param

left:Identifier

String name = a.getName ()

param:Identifier

String name = p.getName ()

add:Identifier

String name = "add"

:AddToContainer

«create»

«create»
 «create»

«create»

:Method
 p:Parameter
a:Attribute

Path
 Path

Path

:Block

Path

methodCall:Expression

Figure 6: AddToContainer Rule

An AddToContainer requires the existence of an attribute
definition in one class, that must be defined as a collection
which contains objects of the type of the other class. The
definition of the AddToContainer rule is depicted in Figure
6. The method body of that class must contain a method
call of an add operation, which is the method for adding
elements to the container. Each edge labeled Path in the
rule indicates that an arbitrarily path must exist between
the source and target node of that edge, i.e. the call can
appear in an arbitrarily deep nesting of statements within a
method body.

Recognizing an association in the ASG during analysis re-
sults in the addition of the corresponding annotation. We

:Reference

:Association

0.7/0.5

«create»

:Reference
:Attribute

:Attribute
field

references

attrs

field

references

attrs

class
class

«create»
 «create»

:Class
:Class

Figure 7: Association Rule

presume that associations are bidirectional implemented,
otherwise we call them references. Thus, an association is
composed of two references. Figure 7 shows the rule definiti-
on. It is sufficient to have a couple of attributes referencing
mutually the class they belong to. The association rule is
simple because we use the Reference annotations to express
the mutual referencing. Note, in cases where multiple refe-
rences between classes exist, we will detect an association
for each possible reference pair. To avoid such ambiguous
detections further analysis is required.

4. Managing Impreciseness
An exact graph-rewrite-rule for each implementation va-

riant has the benefit of few false positives in the analysis re-
sults, but this leads to performance problems in large search
space because of the high number of rules. We introduce fur-
ther abstraction into the rule definitions so that one or only
few rules cover a large variety of implementations. This re-
duces the number of rules and improves the performance.

To define a new graph-rewrite-rule with further abstrac-
tion the reengineer, first, chooses a set of implementation
variants that should be covered by the new rule. Common
parts of these implementation variants has to be identified.
The common parts, then, form the new graph-rewrite-rule.
All implementation variants from the set are at least covered
by this new rule. In addition, there will be implementation
variants that were not intended to be found by the rule. So-
me of these are not instances of the searched pattern (false
positives). Others are correct matches that were not consi-
dered when defining the graph-rewrite-rule. This is a kind
of impreciseness that has to be managed.

attrType

references

field

«create»

«create»

:Reference

0.8/0.5

«create»

referredClass:Class

referencingField:Attribute

Figure 8: Imprecise Reference rule with fuzzy belief

Figure 8 depicts a new graph-rewrite-rule that is designed
to replace all three rules from Figures 3 to 5. It covers all re-
ferences without any constraints to the visibility. Therefore,
it is evident that variant 1 depicted in Figure 1 is covered
by the new rule. The only difference between the old rule
for variant 1 and the new rule is the missing constraint of
the Attribute node.

Variant 2 of Figure 1 - a private reference - is also covered
by the new rule, because the visibility of the attribute is

ignored by the new rule. The read and write access methods
are not required any more.

The new rule finds a different match for variant 3 of Figu-
re 1 than the original rule in Figure 5. A ToOne-reference
between classes House and TreeSet is found instead of a To-
Many-reference between House and Level.

The purpose of an attribute of a container type is to im-
plement a ToMany-reference to another class. In this case a
ToMany-reference is implemented between House and Level.
This reference could not be detected by the rule in Figure 8.
The reference found is a false positive in the way that a re-
verse engineer would ignore a reference to a container class.
The more relevant information is the ToMany-reference to
class Level. Note, this false positive is not found by the first
three precise Reference rule definitions.

The impreciseness of a graph-rewrite-rule that stems from
reducing the number of rules has to be valued to be useful to
the reengineer. The value should describe the ratio between
correct matches and all matches of a certain rule including
false positives, i.e. the preciseness of a rule. After all appli-
cations of a rule, this ratio can be calculated. At the time
of the rule definition the number of false positives produced
by the rule can only be estimated.

In our approach we introduce a so called fuzzy-belief for
each graph-rewrite-rule that expresses its preciseness. The
fuzzy-belief of a rule is a value between 0 and 1. By this
value, the reengineer expresses his estimation that 30% of
all matches are false positives. Thus, 70% of all matches
would be correct and the ratio would be 0.7. In Figure 8 the
fuzzy belief is defined in the gray annotation node that is
created when the rule is applied. It is the first value in the
pair of numbers; the second is explained in the next section.

5. Inference
Pattern-based reverse engineering is a deductive analy-

sis problem where rules are repeatedly applied to a graph
representation of the source code. Pure deductive analysis
algorithms typically apply the rules involved level by level,
bottom-up, according to their natural hierarchy, and produ-
ce useful results only when analysis is complete. Results from
other researchers, such as [17] and [12], suggest that a rever-
se engineering tool providing pure bottom-up pattern-based
analysis cannot scale for larger software systems. Therefo-
re, we have adopted an analysis algorithm which combines
a bottom-up strategy and a top-down strategy. The overall
analysis finishes when all possible annotations are created.
In the following we only sketch a part of the algorithm to
show how the fuzzy values of the results are calculated. The
entire algorithm is described in detail in [10].

Rules create annotations with a certain fuzzy value. The
fuzzy value is calculated during rule application for each
match of the graph-rewrite-rule. They are stored in the fuz-
zyValue attribute of the annotation nodes (cf. Figure 2). The
basis for the fuzzy value calculation are the fuzzy beliefs of
the graph-rewrite-rules. The fuzzy value of a match is com-
puted as the minimum of the fuzzy values of all annotation
nodes occurring in the match and the fuzzy belief of the ru-
le. Thus, calculation of the fuzzy values is similar to fuzzy
grammars, cf. [18].

To apply the Association rule of Figure 7 two annotations
(both of type Reference) are needed. The fuzzy belief of the
Association rule is 0.7. In Figure 9 a cut-out of the graph
during an inference is shown. The Reference rule has created

references
 field

r2:Reference

0.6

r3:Reference

0.5

c1:Class

assoc1:Association

0.6

< attrs
 < attrType

attrs >

Abstract Syntax Graph

< attrType

field

references
>
>
 >

>

>

a2:Attribute
 a1:Attribute

references

>

c2:Class

field

r1:Reference

0.8

class

class

>

>

Figure 9: Inference of Association

an annotation r2 with value 0.6 on attribute a1. Upon this
r2 annotation the Association rule has created annotation
assoc1. Since an association needs two references a top-down
analysis is performed to detect the second reference r1 with
value 0.8. A fuzzy value of 0.6 is assigned to the assoc1
annotation node, i.e. the minimum of 0.8, 0.6 and 0.7. Later
the annotation r3 with value 0.5 is detected. This annotation
is not considered furthermore because it has a fuzzy value
of 0.5 which is lower than the fuzzy value 0.6 of annotation
r2 used in the match of the association.

Assume that the fuzzy values of the Reference annotati-
ons are both 0.8, the fuzzy belief of 0.7 of the Associati-
on rule would be the minimum. So the fuzzy belief of the
graph-rewrite-rule is an upper bound for the fuzzy values
computed.

A node in the graph-rewrite-rule may have multiple valid
matching annotation nodes in the host graph that have dif-
ferent fuzzy values. In that case the annotation node with
the maximum fuzzy value is chosen as match such that the
new annotation created by the rule application uses the most
reliable source of information. Therefore, the fuzzy value of
an annotation corresponds to the maximum fuzzy value of
all derivations of the annotation, cf. [18].

As a way to limit the rule applications to reasonable cases
we introduced thresholds to graph-rewrite-rules. In Figure 7
the threshold is defined in the gray annotation node that is
created when the rule is applied. It is the second value (0.5)
in the pair. If any annotation that is part of the subgraph to
match has a fuzzy value lower than 0.5, the rule would not
be applied. This helps to minimize computation time and
memory resources, that would otherwise be used for inve-
stigation of unreliable and imprecise information. Thus, the
thresholds improve the scalability of our approach. They are
chosen by the rule developer based on personal experience
and/or historical data.

6. Feasibility Test
This section presents the result of our approach integra-

ted in the Fujaba environment. The graph-rewrite-rules, in
Fujaba so called story-patterns, are automatically transla-
ted into Java source code, which could be compiled with a
conventional Java compiler. The rule dependencies are ex-
ported into an XML file, which the inference engine is able
to execute. The inference engine itself has been implemen-
ted using Fujaba. The test has been performed on a Linux

PC, 1.7 GHz, 1GB RAM, and JDK 1.4.1.
In the scenario of this feasibility test we run two analyses

on the same source code, i.e. Java’s AWT window toolkit
library comprising 140.000 LOC in 345 classes. In the first
run we have used a catalog with rules describing exact im-
plementation variants of references. The catalog includes 8
rules where some are described in this paper. The second
catalog we used in the second run includes only 2 ’fuzzy’ ru-
les. These are the Reference and Association rules of Figures
8 and 7, respectively.

Catalog #Rules #References #Assocs Duration

1 8 1122 6 9:12 min.
2 2 1511 5 0:34 min.

Table 1: Results from evaluation

Table 1 shows the results of the test. The first row shows
the numbers for the run with the exact rules and the second
one the run with the ’fuzzy’ rules. According to the above
described reduction of rule numbers by identifying common
parts in a set of rules and replacing them with at least one
other rule, the number of found references in the second
run is higher than in the first run. In contrast to this, the
number of detected associations in the second run is lower
than in the first. An interesting fact is the time spend for
each analysis, means an 18 times faster analysis by reducing
the catalog by 6 rules, only.

Figure 10: Association recognition in Java AWT

This speed-up, in context of a reference detection, is not
very useful, because the reengineer has to filter the false
positive references manually. In the context of association
detection this speed-up is remarkable, because in both runs
all OneToOne-associations have been detected. Figure 10
depicts screenshots of Fujaba analyzing the AWT library.
The rear screenshot shows the class diagram of the AWT li-
brary, the front screenshot shows a view to the class diagram
with some of the association annotations detected during the
second run. The one association not detected in the second
run is the OneToMany-association between class Component
and class Container.

The reason for not detecting the OneToMany-association
is the effect, that all rules responsible for the detection of
references, even the ones for detecting ToMany-references,

have been replaced by the rule shown in Figure 8. There-
fore, all original ToMany-references using containers have
been detected as ToOne-references to the container, which
prevents detecting of OneToMany-associations. In addition,
the 300 false positive references found are originally attribu-
tes, which store data such as sizes and positions of elements
on the screen.

7. Conclusions
Reverse engineering based on pattern-based techniques in-

corporate the problem that they could not be applied on
analysis of large systems, because they inherit the NP-com-
plete problem of subgraph isomorphism. Our approach pre-
sented in this paper handles large search space in pattern-
based reverse-engineering activities by reducing the number
of graph-rewrite-rules used for the analysis. We handle the
resulting impreciseness, by assigning fuzzy beliefs to each
rule, expressing its preciseness.

The example given, recovering associations from Java pro-
grams, is a base for further design-recovery or architectural
recovery [2] activities and has successfully been applied to
recover design patterns in the AWT window library of Java
[10]. In addition, we are using this approach to recover Web
information systems, where the connection between different
data bases are manifested in the source code of applications
[15].

However, the question of good choices for fuzzy beliefs still
remains. The fuzzy beliefs assigned to rules should express
the ratio of the correct matches to all matches of the rule
including false positives. Since this question could only be
answered during the analysis of a system, we are currently
working on an automated adjustment of the fuzzy beliefs
during runtime. First results have shown that the adjust-
ment rules are simple, which means only a small overhead
but a large improvement of the results.

Our approach is restricted to static analysis, which limits
the recognition of dynamic parts of design patterns. Method
invocations in object-oriented languages with polymorphism
and dynamic method binding can not be analyzed correct-
ly by static analyses. The concrete invoked method and the
concrete object the method is invoked on can only be analy-
zed during runtime. Therefore, dynamic information has to
be incorporated in the analysis of a system. We are current-
ly working on an approach [16] to compare UML sequence
diagrams to method traces gathered during runtime.

8. References
[1] G. Antoniol, R. Fiutem, and L. Christoforetti. Design

pattern recovery in object-oriented software. In Proc.
of the 6th International Workshop on Program
Comprehension (IWPC), Ischia, Italy, pages 153–160.
IEEE Computer Society Press, June 1998.

[2] F. Buschmann, R. Meunier, H. Rohnert, P. Somerlad,
and M. Stal. Pattern-Oriented Software Architecture -
A System of Patterns. John Wiley and Sons, Inc., 1st

edition, 1996.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable Object
Oriented Software. Addison-Wesley, Reading, MA,
1995.

[4] M. T. Harandi and J. Q. Ning. Knowledge based
program analysis. IEEE Transactions on Software

Engineering, 7(1):74–81, 1990.

[5] J. Jahnke. Management of Uncertainty and
Inconsistency in Database Reengineering Processes.
PhD thesis, University of Paderborn, Paderborn,
Germany, September 1999.

[6] J. Jahnke, J. Niere, and J. Wadsack. Automated
quality analysis of component software for embedded
systems. In Proc. of the 8th International Workshop
on Program Comprehension (IWPC), Limerick,
Irland, pages 18–26. IEEE Computer Society Press,
June 2000.

[7] R. Keller, R. Schauer, S. Robitaille, and P. Page.
Pattern-based reverse-engineering of design
components. In Proc. of the 21st International
Conference on Software Engineering, Los Angeles,
USA, pages 226–235. IEEE Computer Society Press,
May 1999.

[8] C. Krämer and L. Prechelt. Design recovery by
automated search for structural design patterns in
object-oriented software. In Proc. of the 3rd Working
Conference on Reverse Engineering (WCRE),
Monterey, CA, pages 208–215. IEEE Computer
Society Press, November 1996.

[9] K. Mehlhorn. Graph Algorithms and
NP-Completeness. Springer Verlag, 1st edition, 1984.

[10] J. Niere, W. Schäfer, J. Wadsack, L. Wendehals, and
J. Welsh. Towards pattern-based design recovery. In
Proc. of the 24th International Conference on
Software Engineering (ICSE), Orlando, Florida, USA,
pages 338–348, May 2002.

[11] S. Paul and A. Prakash. A framework for source code
search using program patterns. IEEE Transactions on
Software Engineering, 20(6):463–475, June 1994.

[12] A. Quilici. A memory-based approach to recognizing
programming plans. Communications of the ACM,
37(5):84–93, May 1994.

[13] G. Rozenberg, editor. Handbook of Graph Grammars
and Computing by Graph Transformation, volume 1.
World Scientific, Singapore, 1999.

[14] P. Tonella and G. Antoniol. Object oriented design
pattern inference. In Proc. of the 9th International
Conference on Software Maintenance (ICSM), Oxford,
UK., pages 230–238. IEEE Computer Society Press,
September 1999.

[15] J. Wadsack, J. Niere, H. Giese, and J. Jahnke.
Towards data dependency detection in web
information systems. In Proc. of the Database
Maintenance and Reengineering Workshop
(DBMR’2002), Montral, Canada. (ICSM 2002
Workshop), October 2002.

[16] L. Wendehals. Improving design pattern instance
recognition by dynamic analysis. In Proc. of the ICSE
2003 Workshop on Dynamic Analysis (WODA),
Portland, USA, May 2003. (to appear).

[17] L. Wills. Using attributed flow graph parsing to
recognize programs. In Proc. of International
Workshop on Graph Grammars and Their Application
to Computer Science, LNCS 1073, Williamsburg,
Virginia, 1994, November 1996. Springer Verlag.

[18] L. Zadeh. Fuzzy sets. Information and Control,
8:338–353, 1965.

