
ABSTRACT
The Java programming language has gained increasing
importance for the development of embedded systems. To be
cost efficient, such systems have to cope with significant
hardware restrictions which result in certain software
programming restrictions. Recently, companies have started
to apply Java component technology also in the area of
embedded systems. Components are pieces of software with
a defined interface which can be reused in different
applications. Typically, components are not developed under
programming restrictions for specific embedded systems,
because those restrictions depend highly on the underlying
hardware. Executing such software on a micro controller
with very limited resources often results in unforseen
problems, e.g., in a memory overflow. Failure to detect such
problems in an early stage might lead to significant costs,
e.g., for replacing software on thousands of produced
controllers. In this paper we present a semi-automatic
approach to inspect Java source code in order to check for
predefined hardware dependent restrictions. As an
application domain we have choosen Java Smart Cards,
which are very popular today, introduce their specific
restrictions, and present how to inspect Java code to ensure
that all restrictions are considered.
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1 INTRODUCTION
The Java programming language conquers more and more
areas of information technology. Platform independence is
one of Java’s main features and lets developers abstract from
different operating systems or window managers. Nowadays,
Java virtual machines are available for nearly each personal
computer, workstation, or network server. Net-centric

computing has become a new dimension in application
software. Companies have started to develop net-centric
computers as a consequence of this emerging technology. A
main characteristic of net-centric computers is that major
parts of their operating system and application software
resides on the internet. Applications can be downloaded on
demand and executed directly on the local machine.

Recently, companies have started to use Java for developing
software for embedded systems. Coffeemakers, refrigerators,
or hearths are programmed with Java and may communicate
with one another over a global network. Several prototypes
for such applications already exist, e.g., refrigerators which
keep track of their contents and are able to place orders
automatically. New operating systems like JINI [BH99]
support these kinds of net-centric embedded systems.

Application software for embedded systems is typically
executed by micro controllers. New controller generations
include a Java Virtual Machine placed as a chip on the
controller. Controller software can be programmed in Java
and updated easily using component technologies like Java
Beans [Pra97].

Programming micro controllers leads to problems like 10
years ago in the ’traditional’ computer world. Micro
controllers respectively embedded systems are typically very
much resource bounded. Memory is often limited to a size
under 1MB. Embedded system software underlies several
programming restrictions, e.g., memory usage of a program
must be fixed after an initialization phase. Otherwise, the
program may produce a memory overflow and the controller
crashes. If the controller is sold million times, and such an
error forces the replacement of the controller, the resulting
costs are very high. To avoid such a replacement and to
reduce the resulting costs, the software for embedded
systems undergoes rigid testing before the controller goes in
mass production.

Recently, companies have started to employ component
programming technology for applications in embedded
systems. Java beans can be plugged in a running application
or applet [HC98a, HC98b]. Java beans are functional
components with an interface that documents all provided
methods. In case of embedded systems, this documentation
is typically insufficient to assess whether a given component
fulfills the special restrictions for micro controllers. Hence,

Automated Quality Analysis of Component Software for
Embedded Systems

Jens H. Jahnke
University of Victoria

Department of Computer Science
P.O. Box 3055

V8W3P6 Victoria, B.C.
Canada

jens@acm.org

Jörg Niere, Jörg Wadsack
Department of Mathematics and Computer Science

University of Paderborn
Warburger Str. 100
33098 Paderborn

Germany
[nierej|maroc]@uni-paderborn.de



additional information must be extracted from the Java bean
itself by investigating its source code. In this paper, we apply
our approach techniques to the source code of a sample
component for readability. Still, our approach is not limited
to source code analysis but can also be applied to Java Byte
code. This is important since many commercial beans are
available in Byte code only.

In a student research project called YarYar1, we have started
to develop a technique and tool support to partially automate
this activity. In this approach, a tool searches the source code
of a component for recurringpatterns which indicate
problems for its application in the context of embedded
systems. We usefuzzy reasoning techniques to overcome the
intrinsic problem of diversity of different implementation
variants of the same conceptual pattern. This paper discusses
primarily results of this ongoing research initiative. We
consider theJava Smart Card [HNS99] as an application
example and show how to extract information about memory
usage from the source code.

The rest of this paper is structured as follows: Section 2
introduces Java Smart Cards and the restrictions coming
along with such cards. In Section 3 solutions to overcome
the memory problem are presented. Section 4 shows the
specification of patterns via graph rewrite rules and
introduces the need for fuzzyness. The following Section 5
introduces the execution semantics of the graph rewrite rules
enhanced with fuzzyness. Related work is presented in
Section 6 and Section 7 summarizes our work and gives
some future perspectives.

2 JAVA SMART CARDS
Smart Cards are often used in our daily life, e.g., in form of
phone cards, cards carrying health insurance information, or
‘digital’ money. Smart cards in comparision to magnetic
stripe cards do not store data only, but are able to execute
commands on the card. The heart of a smart card is a single
chip microprocessor with a defined size and interface layout
for the connection points. The chip is included in a plastic
card of the size of standard credit cards (cf. Figure1).

The technology applied in plastic cards has changed
dramatically since their invention 1950 by Diners Club.
Currently, magnetic stripe cards are very popular and
rewritable thermo stripes can be placed on the plastic card to
display further human readable information without having a
terminal or card reader. The first smart card used as an
identification card has been developed in 1968. In general, a
smart card is a small portable computer. Today, this
computer consists of a central processing unit(CPU) running
at 5MHz and mostly a cryptographic co-processor.
Operating systems are stored in a read only memory (ROM)
of sizes about 16K. Temporary data can be stored in a
random access memory (RAM), which has typically a size of
4K. Applications, file systems, or any other data, which has
to be stored over the connection time of the card to a reader
must be stored in an electrical eraseable programmable read
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only memory (EEPROM).

The application of EEPROMs impose several restrictions,
e.g., with respect to memory allocation. High voltage over a
relatively long period of time is necessary to allocate or free
memory. Therefore, smart cards do not have a memory
mangement on the card itself. In particular, the virtual
machine on a Java smart card misses a garbage collector.
Other limitations are that no security manager exists, no
multiple threads are allowed, and objects cannot be cloned.

To avoid memory overflows, application software (cardlets)
has to be tested carefully before the card goes in mass
production. Current practice is to test the application in a
simulation environment and check if a memory overflow is
produced. If this test succeeds, the application is certified as
memory overflow safe and the card is produced. In practice,
this black box test works well for cards that operate for short
periods only.

Preventing memory overflows can also be done in the design
and implementation phase. For example, all objects needed
for an application will be created in the constructor of a
class. Instantiation of the first class results in constructing
the entire object structure of the application during runtime.
Consequently, the memory usage of an application
programmed with the above paradigm, can be calculated
after the initialization of all objects. Following this
implementation strategy results in a short testing phase. Still,
most Java components have not been developed according to
this strategy.

Analogously to hardware restrictions, several software
restrictions exist for Java Smart Cards. For example, the
java.lang package is completely different. A String class is
not supported and anint variable is always 32-bit long.
Components developed for PC’s, workstations, or other less
unresticted hardware platforms could not run on the a Java
smart card, because the virtual machine could not execute
the byte code.

However, developing components for Java smart cards lead
to many programming restrictions and have to be developed
explicite for Java cards and typically for a defined Java card
from one manufacturer. But components are produced from
different developers all over the world and they do not know
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all restrictions for all Java cards in the world. Consequently,
components, which should run on a special Java smart card
has to be assessed for a special Java smart card. Assessing in
this case means, that the component fulfills all restrictions of
the smard card, the component should run on.

The following section describes a semi-automatic approach
to assessing such components according to their applicability
for Java Smart Cards.

3 APPLICATION EXAMPLE: MEMOR Y MAN AGE-
MENT ON JAVA CARDS
Due to the restrictions of the Java virtual machine, card
applets have to manage memory on their own. The easiest
way to do this is to ensure that all objects needed for the
cardlet are created in constructors or static initialization
methods (see Section 2). This programming strategy
imposes severe restrictions on the developer but the resulting
software is easy to test.

Off-the-shelf components developed all over the world
typically do not fulfill all restrictions of a certain Java Smart
Card. This results from the variations of Java Smart Cards
and their different restrictions. In general, Java software
components are developed with less restrictions. Therefore,
they have to be carefully inspected before using them on a
card. Such an inspection aims to support the developer in
selecting suitable components and detecting potential
problems in an early stage. A semi-automatic inspection tool
should highlight all fragments in the source code that contain
(possible) violations of platform-dependent programming
restrictions. After inspecting a component and testing it
afterwards thoroughly, certificates could be assigned to the
component with respect to the same controller. Components
already assigned with certificates need not be analyzed
again.

In the following, we present a facility to inspect components
based on the source code. The main idea stems from the
design pattern community [GHJV95, JZ97] and aims to
detectclichés1 in the source code and gain knowledge about
the design of a problem. Declaring clichés as poor means
that their existence in the code may cause possible problems
in the applet during runtime. Suchpoor clichés identify parts
of the source code and do not take in account further control
or data flow analysis. As an example we use the property of
limited memory in cardlets and show how to inspect them.
We will start with poor clichés extractable directly from the
source code and reduce their number by further control and
data flow analysis.

The general idea of our approach is in a first step the
detection of poor clichés in a restrictive way. Namely by
parsing the source code we mark as poor occurance of one or
an accumulation of keywords. The identification of such
keywords for cliché detection depends on the application
context. This paper presents a first approach for memory
allocation. In a second step we try to annul or at least relax
the parts of the source code marked as poor. For this again

1. We usecliché as a synonym of ‘implementation pattern’,
anddesign pattern refers, to [GHJV95].

the identification of what we callNeverMind cliché is related
to the application context. A NeverMind cliché can annul
more or less (relax) a poor cliché, for this purpose we
employ fuzzyness.

Figure2 shows the Java source code for classProfile. The
class can be used to store profile information of a person
using a card. Transactions and the corresponding shops can
be stored in attributes transactions andshops (line 2-3). A
standard containerList is used to store the data. Both lists are
limited, e.g., listtransaction can contain 10 entries (see line
12). The limitation ensures that both lists do not allocate
memory after their initialization but fix it to a defined size.

Following the programming paradigm, that every object
needed must be created in the constructor or static initializer,
classProfile has to be declared as a possible source of failure.
Placing the bodies of methodcreateTransitions and
createShops into the constructor, the resulting code is closer
to the paradigm, because objects are created in the
constructor. But this lets the code become less readable and
the creation of a ListIterator object in method
iteratorOfTransactions and iteratorOfShops are still possible
failure points. This example shows that one of the main
challenges with developing an automated approach tosource
code inspection (i.e. pattern detection) is to cope with the
large diversity of possible implementation variants of the
same pattern. We will cover this issue later in this paper by
employing fuzzy pattern matching techniques.

1: class Profile {
2: private List transactions;
3: private List shops;
4: private static ListIterator listIterator = null;
5:
6: public Profile () {
7: transactions = createTransactions ();
8: shops = createShops ();
9: } // constructor

10:
11: private List createTransactions () {
12: List tmpTransactions = new List (10);
13: ... // default values
14: return tmpTransactions;
15: } // create Transactions
16: ...
17: private List createShops () {...}
18:
19: public ListIterator iteratorOfTransactions () {
20: return new ListIterator (transactions);
21: } // iteratorOfTransactions
22:
23: public ListIterator iteratorOfShops () {
24: if (listIterator == null) {
25: listIterator = new ListIterator (shops);
26: }
27: return listIterator;
28: } // iteratorOfShops
29: } // class Profile

Figure2 Sample code of class Profile



Our approach is called semi-automatic, because a tool
searches the source code for instances of poor cliché and
generates an annotated representation of the code that is
presented to the developer for further manual investigations.
Internally, the source code is represented as an abstract
syntax tree (AST). Hence, the domain model for the cliché
annotation represents an extension of this data structure.
This extension is represented in Figure3 as a UML class-
diagram (cf. [BRJ99]).

We start with a modifiedComposite design pattern
(cf.[GHJV95]), where classes Annotation and
SyntaxTreeNode inherits from class Node. The central class
Annotation is derived from the notion ofcollaboration in
UML (cf. [BRJ99]). We use the qualified association
annotations to represent relationships between annotations
and between annotations and annotated increments
(represented by instances of classSyntaxTreeNode). The
annotations are qualified over a name and denoted as
‘<<name>>’ at the corresponding edges (cf. Figure4). Two
additional classes inherit from classAnnotation, namely
Cliché and Component. Clichés correspond to
implementation patterns in contrast toComponents, which
represent parts in the AST or control or data flow analysis.
Class Cliché has two subclassesPoor and NeverMind.
Instances of classPoor annotate poor clichés in source code,
i.e., possible violations of imposed restrictions in the code.
Therefore, classKeywordNew is introduced as subclass of
classPoor. On the other hand, poor clichés may be annulled
or relaxed. If a poor cliché is annulled, the inspector can
ignore it and accordingly the annotation will not be
highlighted. Spots which annul poor clichés are annotated

with instances of subclasses of classNeverMind. Two
examples for such classes areCalledOnce and
CalledFromConstructor. CalledFromConstructor refers
directly to the programming paradigm mentioned above and
CalledOnce implies that there is only one object during
runtime. In case of relaxing clichés, the inspector could
define a value, up there the corresponding annotation is
shown. An example of a subclass ofNeverMind which
relaxes a poor cliché isCalledFixedTimes. To stress real
failure points, classUnsave is used. ClassComponent
models additional information used for example to identify a
cliché’s context (see classesMethod, Constructor and
StaticAttribute in Figure3). Our method starts with so called
fragments (instances of subclasses of classCliché in
Figure3). Fragments are information that cannot be refuted
such as key words used in the source code or other
information gained from data flow or control flow analysis of
the same code, definetively. For example, we take the
occurance of the keyword new as a fragment, because it
indicates that there might be a possible memory overflow
constructed. For classProfile there are four occurances of the
keyword new, one in line 12, line 20, and one in line 25. The
fourth occurance is not shown in Figure2, but both methods,
createShops and createTransitions, construct a new List
object. A second fragment resulting from the source code is
the existence of methods. ClassProfile consists of five
methods, including the constructor which occurance is the
third fragment we use. Data flow and control flow analysis of
the class results in two more fragments. First, method
createTransition and createShops are called from the
constructor method only. Concerning thenew keyword in
line 25, control flow analysis had detected that the
assignment is done in an if-statement’s body, which is
executed only one time, because the attribute listIterator is
assigned with the new interator and is nowhere else modified
in the class. Fragment ‘unsave’ annotates the ‘keyword new’
fragment and indicates the only real problem point in the
source code.

With these fragments we are able to construct a graph, where
fragments are the nodes and associations are edges.
(Figure4). Annotations of the code are made via
associations of typeannotations in the AST. Figure4 shows
the annotation graph as an overlay. This is only for
readability reasons. Users will see only the critical (unsave)
spots in the code highlighted. The annotation graph contains
three different kind of nodes and four different occurances of
associationannotations. Nodes represented with a white
background and black font are so called informational
fragments (instances of classComponent). Those fragments
are used for conclusions and have no effect on the evaluation
of possible problems in the source code. Possible problems,
we call them poor nodes are displayed with black
background and white font. Here such nodes are ‘keyword
new’ nodes, because they are representing possible memory
overflow fragments (instances of classPoor). Grey
background and black font nodes represents instances of
class NeverMind. Such a node annuls connected poor nodes.
For example, in Figure4 the ‘called from constructor’ node
annuls the poor ‘keyword new’ node, which means that there
is no possible memory overflow caused by this statement.Figure3 Domain model
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This retains also for the second ‘called from constructor’ and
the ‘called once’ node. Overall, there is only one poor
‘keyword new’ node left, which can not be annuled and is
annotated via ‘unsave’ nodes connected via ‘<<stress>>’
links. Only the creation of a new list iterator in method
iteratorOfTransitions is a possible failure point and should be
highlighted in the code.

Now, we are able to analyze cardlets based on there source
code and extract problems in the implementation efficently
by reducing general poor fragments and keeping track only
on those, which are really problematic. The following
section introduces a specification opportunity of clichés and
the need for fuzzyness.

4 CLICHÉS SPECIFICA TION
Graphs like the annotation graph and graph transformations
are offen defined bygraph grammars [Roz97]. Graph
grammars allow a manipulation of graphs via rewrite rules,
specified in a high level specification language without
caring about the execution. Figure5 is an example of a graph
rewrite rule. In general, the execution of a graph rewrite rule
consists of two parts. In the first part variables in the rule are
matched to nodes in the working graph (host graph) of the
system. Typically, this is done via an isomorphic embedding
of the subgraph of the rule into the host graph. The second
part executes the modifications of the host graph specified in
the rule.

Graph transformation systems become more and more

popular in the last years. The Progres system [Zün95] and
the AGG System [Tec] follow a classical approach, where
the host graph as well as the rewrite rules has to be specified
in the system itself and the rules could only modify the host
graph internally. Control structures allow to bring the rewrite
rules in a defined order. Both systems provide an interface to
access the graph and execute rules from outside the system.

Fujaba [FNT98, FNTZ98] follows the approach of a
seamless integration of graph rewrite rules and traditional
object-oriented programming languages. Fujaba uses UML
[Rat] for the specification of software systems. The node
types of the host graph could be specified via an UML class
diagram and instances of classes called objects represent the
host graph during execution time. UML activity diagrams
are used to specify control structures and each activity might
contain a graph rewrite rule specified by an UML
collaboration diagram (cf. Figure5). The combination
between control flow and graph rewrite rules are called
methods. Fujaba provides also a Java code generator to get
an executable implementation out of the specification.

In general, we use the Fujaba system for the specification of
clichés and the domain model. The domain model is
specified via a class diagram and the clichés through
methods including graph rewrite rules. Each cliché results in
a search of a subgraph by executing a graph rewrite rule. If
the subgraph could be matched to the host graph, a new
annotation is created.

The methodannotate_unsave_parts specified in Figure5
starts at the start activity, executes the graph rewrite rule and
after successful or non-successful execution it ends at the
stop activity. The method specifies the cliché for annotating
unsave parts in the source code. Therefore, the graph rewrite
rule searches for a node in the graph of typeMethod and
binds it to variablem:Method in the rule1. Next, a node of
typeKeywordNew is bound to variablekw. Those two nodes
have to be connected via a<<uses>> link. The two crossed

1. Variable notation corresponds to object notation in UML
collaboration diagrams (i.e. name:type)

1: class Profile {
2: private List transactions;
3: private List shops;
4: private static ListIterator listIterator = null;
5:
6: public Profile () {
7: transactions = createTransactions ();
8: shops = createShops ();
9: } // constructor

10:
11: private List createTransactions() {
12: List tmpTransactions = new List(10);
13: ... // default values
14: return tmpTransactions;
15: } // create Transactions
16: ...
17: private List createShops () {...}
18:
19: public ListIterator iteratorOfTransactions () {
20: return new ListIterator (transactions);
21: } // iteratorOfTransactions
22:
23: public ListIterator iteratorOfShops () {
24: if (listIterator == null) {
25: listIterator = new ListIterator (shops);
26: }
27: return listIterator;
28: } // iteratorOfShops
29: } // class Profile

<<others>>

Figure4 Fragments and relations
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out variables co of type CalledOnce and cc of type
CalledFromConstructor specify that there must not be a node
in the graph reachable from the node bound to variablekw
via an<<annuls>> link. If such a subgraph has been found
and nodes are bound to the variables, a new node of type
Unsave is created in the graph and linked via a<<stress>>
link to the node bound to variablekw. The creation of the
node and the link is specified through (green/grey) plusses at
the corresponding variable and link.

In this case graph rewrite rules are sufficient for the
specification of clichés, because the nodes of the graph
represent non-refutable fragments in the source code. For
example, the ‘method’  node occures in the graph if there is a
underlying method declaration in the source code. Even the
occurance of constructors and static attributes could be taken
from the syntax graph of the source code, easily. Data flow
and control flow analysis results in the occurance of the
‘called once’ and ‘called from constructor’ nodes. All these
nodes eval in a boolean answer. The pattern matching
semantics of graph rewrite rules support these kinds of
boolean answers. Variants of a cliché result in an own
definition for each variant and the number of rules can
explode.

In general, using uncertainty reduces the number of rules and
allows to deal with miner than 100% clearity. Figure6 shows
a sample code fragment of a personal management of
ListIterators. The extension of methoditeratorOfTransactions
uses a vector which can contain five iterators (cf. line 142)

and manages its usage within the class. In line 150 the
keyword new occurs which indicates a possible memory
overflow, cf. Section 3. Again the occurance of keywordnew
is encapsulate in anif statement (see line 24 in Figure2). But
the vector is used in the part below and explicitely may be
modified. Ensuring that the number of itertaors in the vector
does not exceed its capacity or double entries may result in
memory leaks needs heavy further analysis. Each
implementation variant results in an own cliché
specification. This results from the fact, that the limitation of
number of iterators and the handling can be implemented in
multiple ways. Even using different container classes may
result in a complete different implementation. Therefore, we
provide fuzzyness to model relaxation of possible memory
overflows. The above scenario is shown in Figure7 with the
already introduced annotation graph. Note, the edge between
node ‘called fixed times’ and ‘keyword new’ corresponds to
theannotations association in the domain model in Figure3
and is named ‘<<relax>>’ and not ‘<<annuls>>’. Relaxing
means that this is not a 100% fragment but may be a 80%
one, because we left out heavy further automatic
investigations on the source code but let infer the reengineers
knowledge to save time.

As mentioned before, catching every possible variant of

142:Vector transactionListIterator = new Vector (5);
143:int countIterators = 0;
144:
145:public ListIterator iteratorOfTransactions ()
146:{
147: ListIterator tmpIterator;
148: if ( countIterators < 6 )
149: {
150: tmpIterator = new ListIterator ( transactions );
151: transactionListIterator.add ( tmpIterator );
152: countIterators++;
153: } else
154: {
155: for ( int i = 0; i < countIterators; i++ )
156: {
157: tmpIterator = transactionListIterator ( i );
158: if ( !tmpIterator.isUsed () )
159: {
160: i = countIterators;
161: } // endif
162: } // for
163: } // endif
164: if ( tmpIterator.isUsed () )
165: {
166: throw new RuntimeExeption( ...// Error message );
167: }
168: return tmpIterator;
169:}
170:...

Figure6 Complex code for method iteratorOfTransactions

142:Vector transactionListIterator = new Vector(5);
143:int countiterators = 0;
144:
145:public ListIterator iterationOfTransactions ()
146:{
147: ListIterator tmpiterator;
148: if ( countiterators < 6 )
149: {
150: tmpIterator = new ListIterator ( transactions );
151: transactionListIterator.add ( tmpIterator );
152: ...

Figure7 Example for a CalledFixedTimes instance
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managing list iterators, results in traditional graph
transformation systems into one rule for each variant. A
possible solution to overcome this problem is to soften the
exact match semantics of graph rewrite rules. Therefore,
Fujaba and the other systems allows to specify a variable in
the rule as optional, which means that a corresponding node
will be bound to the variable if there exists one. Otherwise
the variable will be left unbound. Optional variables are not
sufficient enough in this case, because they do not support
fuzzyness. We define fuzzyness in a graph rewrite rule with a
circle in the upper right corner of a variable and call them
fuzzy pattern. Figure8 shows the extended rule of Figure5
with variablecf of typeCalledFixedtimes and fuzzy value 80.
The notation of fuzzy values does not correspond to a
notation in UML, but the values correspond to attributes of
the class and showing them in the upper right corner of the
variable instead as attributes in the attribute compartment is
just display option.

The fuzzy value of variable cf is taken into account when
calculating the fuzzy value of the created ‘unsave’ node.
Variables without special fuzzy value refer implicite to a
value of 100. We do not show them in the rule refering to the
readability. The fuzzy value of the new node created when
the rules could be matched is calculated from the values of
the other variables in the rule.

Remember, a reengineer will only see ‘unsave’ nodes
highlighted in the source code. The fuzzy value of an
‘unsave’ node represents a kind of trustability of the result.
Typically, the reengineer has to look for nodes with a fuzzy
value minor than a defined limit and could overwrite the

value to zero or 100. The changes effect a reevaluation of the
fuzzy values of the depending nodes. Therefore, our
approach is semi-automatic. Experiences have shown that
such a semi-automatic approach causes better results,
because a user or reengineer could interact with the tool and
infer her/his knowledge.

5 DETECTING CLICHÉS
The detection mechanism for specified clichés is based on
the formalism ofGeneric Fuzzy Reasoning Nets (GFRN)
[JSZ97, Jah99]. This formalism which has initially applied
in the domain of data reverse engineering facilitates the
specification and execution of analysis rules and processes
and incorporates a notion of uncertainty. In principle, a
GFRN is a graphical network of predicates (with oval shape)
andimplications (represented as boxes) which are connected
by arcs (cf. Figure9). Each implication has an associated
confidence value (CV). Based on the theory of possibilistic
logic [DLP94], the semantics of a CV is a lower bound of the
necessity that the corresponding implication is valid. Arcs
are labeled with formal parameters that can be used to
specify constraints for implications. Negations in
implications are represented by arcs with black arrow heads.

For each fuzzy pattern, we create a GFRN by using a
canonical translation procedure. Figure9 shows the GFRN
representation of the the sample fuzzy pattern shown in
Figure8. Nodes that are searched in the fragment graph are
represented by predicates rendered in grey color while the
annotation which represents the goal of the analysis is
represented as a so-calleddependent predicate ‘Unsave’
rendered in black.

Figure9 Generic Fuzzy Reasoning Net



For efficient fuzzy pattern analysis, we propose a two-step
process: firstly, the fragment graph is searched for a
subgraph that matches all positive nodes in the
corresponding graph rewrite rule (cf. Figure8).
Subsequently, our detection strategy aims to extend each
such match by a match for the negative (canceled) nodes in
the rewrite rule. The GFRN formalism facilitates the
specification of such a strategy by distinguishing between
so-calleddata-driven and goal-driven predicates. Matches
for data-driven predicates (represented with solid grey
outline) are searched at the beginning of the analysis process
(cf. ‘KeywordNew’ and ‘Method’ in Figure9). If such
matches can be found and all implication constraints hold the
GFRN execution mechanisms creates instances of the
corresponding dependent predicate (‘Unsave’ in Figure9).
Subsequently, the fragment graph is searched for matching
instances of goal-driven predicates (with dashed grey
outline). Since, these goal-driven predicates have been
created for negative nodes in the corresponding graph
rewrite rule, their existence annuls or relaxes the existence of
the concluded poor clichés (cf. arcs with black arrow heads
in Figure9). The CV associated to each implication specifies
a measure for the degree of this relaxation. Note that CV of
80 for implication ‘i4’ corresponds to the fuzzy value of
CalledFixedTimes in Figure5. According to typical fuzzy
inference operators, an overall valuation for each tentative
poor cliché is based on the difference between the maximum
positive CV and the maximum negative CV. We refer to
[JH98] for details on the GFRN inference engine.

6 RELATED WORK
Rayside and Kontogiannis have developed tool-based
techniques to minimize the size of Java application software
for small-size electronic devices [RK99]. A similar
technique is proposed by Korn et al. for selective regression
testing of Java components [KCK99].

In [HN90] program analysis is based on anEvent Base and a
Plan Base. In a first phase events are constructed from
source code. Plans are used to consume one or more events
and fire a new event which correspond to the plans intention.

An automatic approach to extract semantics information
from source code is presented by Wills [Wil94].
Analogously to our approach, Wills uses graph rewrite rules
to specify implementation patterns in terms of so-called
program plans. Program plans are structured in a
hierarchical design library, i.e., abstract plans consist of
aggregations of several more simple plans. A specific library
stores program-plans for different domains, e.g., Wills
presents a library for sorting algorithms. Wills follows a
bottom-up strategy to detect plans according to this
hierarchy. However, the inherent complexity of this bottom-
up search limits the practical usage of the approach to source
code about 1000 lines. Quilici uses an indexing technique
and combine top-down and bottom-up detection to overcome
this problem [Qui94].

In [KSRP99], Keller et al. present a semi-automatic
approach to find design patterns [GHJV95] in source code is
introduced. These design pattern are represented in UML
notation [BRJ99], namly in CDIF format. Matching

algorithms have to be implemented for each design pattern
by hand. Rademacher employs graph transformations to
extract design patterns automatically and to refacture poor
design pattern with good design pattern [Rad99].

7 CONCLUSIONS AND FUTURE WORK
This paper presents an approach for automatic quality
analysis of components for embedded systems. Embedded
systems come along with hardware limitations and
components have to fulfill partial many programming
restrictions. As application example we use Java Smart
Cards. Those cards are memory limited and there is no
garbage collector on the card. Cardlets, applications running
on the card, have to manage their memory usage by
themselfs. We introduce a solution to inspect cardlets if they
produce no memory overflow by defining fuzzy patterns.
Fuzzy patterns are defined using graph grammars. The huge
number of implementation variants for memory management
results in a fuzzy pattern definition for each variant. To catch
many variants in one fuzzy pattern definition we introduce
fuzzyness into the definition. This fuzzyness let us deal with
uncertainty. As detection mechanism for fuzzy patterns, we
use Generic Fuzzy Reasoning Nets.

We are currently working on a first implementation of our
approach. Therefore, we enhance the Fujaba system, which
already supports the instanciation of design patterns and a
rudimentary mechanism to extract design patterns out of
Java source code. In the YarYar student research group we
plan to enhance our approach by inheritance and
polymorphism like in object-oriented languages. Fuzzy
patterns will inherit from other fuzzy patterns and during the
extraction process, polymorphism will be used. Therefore,
fuzzy patterns must provide a defined interface and
inheritance as well as polymorphism must be mapped to the
underlying Generic Fuzzy Reasoning Nets. The advantage of
using inheritance is to specify sub fuzzy patterns of a more
general super fuzzy pattern without defining a complete new
one. For example, a fuzzy pattern detecting aggregations
between classes could inherit from a general association
detecting fuzzy pattern. Because typically, the difference
between them is an explicite deletion of the aggregated
objects when using aggregations.

The current prototype of the Fujaba environment is available
as free software and comprises about 230000 lines of pure
Java code. Additional information and the current release
version of the Fujaba system can be downloaded via:

http://www.uni-paderborn.de/cs/fujaba/
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