Automated Quality Analysis of Component Softwae for
Embedded Systems

Jens H. Ahnke Jorg Niere, Jorg Wadsack
University of Mctoria Department of Mathematics and Computer Science
Department of Computer Science University of Raderborn

P.O. Box 3055 Warhkurger Str 100

V8W3P6 \ictoria, B.C. 33098 Rderborn

Canada Germary
jens@acm.ay [nierej|maroc]@uni-paderborn.de
ABSTRACT computing has become awedimension in application

The Jaa programming language hasimmed increasing software. Companies ke started to deslop net-centric
importance for the delopment of embedded systeme.be computers as a consequence of this gingrtechnologyA

cost eficient, such systems ¥ to cope with significant main characteristic of net-centric computers is that major
hardware restrictions which result in certain saite parts of their operating system and application soiw
programming restrictions. Recentompanies hea started resides on the internet. Applications can bemloaded on

to apply Jea component technology also in the area ofdemand andx@cuted directly on the local machine.
embedded systems. Components are pieces ofaseftwith

a defined intedce which can be reused in feient Recently companies hee started to use \Jafor dereloping

software for embedded systems. {éeimalers, refrigerators,

applications. ypically, components are notwigloped under r hearths are programmed wittvdand may communicate
programming restrictions for specific embedded system?. prog y
ith one anotherver a global netark. Several prototypes

because those restrictions depend highly on the underIyirs}%r such applications alreadyist, e.g., refrigerators which

hardvare. Eecuting such softare on a micro controller r}<eep track of their contents and are able to place orders

with very limited resources often results in unforsee . X X
problems, e.g., in a memoryexrflow. Failure to detect such automatically New operating systems ek JINI [BHO9]
ort these kinds of net-centric embedded systems.

problems in an early stage might lead to significant costSUPP
e.g., for replacing softare on thousands of produced Application softvare for embedded systems is typically
controllers. In this paper we present a semi-automatiexecuted by micro controllers. Mecontroller generations
approach to inspect vk source code in order to check for include a Jea Mrtual Machine placed as a chip on the
predefined hardare dependent restrictions. As ancontroller Controller softvare can be programmed invda
application domain we ka choosen Ja Smart Cards, and updated easily using component technologiesJia
which are ‘ery popular today introduce their specific Beans [Pra97].

restrictions, and present\Wwdo inspect Jaa code to ensure

that all restrictions are considered Programming micro controllers leads to probleme IO

years ago in the traditional’ computer wrld. Micro

Keywords . controllers respeately embedded systems are typicakyw
Jasa, embedded systems, quality assurance, smart cardsuch resource bounded. Memory is often limited to a size
pattern detection, graphwate rules under IMB. Embedded system sofane underlies seral
1 INTRODUCTION programming restrictions, e.g., memory usage of a program

must be fied after an initialization phase. Otherwise, the
program may produce a memonyeoflov and the controller
crashes. If the controller is sold million times, and such an
error forces the replacement of the controltbe resulting
costs are ery high. D avoid such a replacement and to
reduce the resulting costs, the safter for embedded
systems undgpes rigid testing before the controller goes in
mass production.

The Jaa programming language conquers more and mor
areas of information technologilatform independence is
one of Jga’s main features and letsvédopers abstract from
different operating systems or windoanagers. Neadays,
Java virtual machines arevailable for nearly each personal
computer workstation, or netark sener. Net-centric

Recently companies hee started to empjo component
programming technology for applications in embedded
systems. Ja beans can be plugged in a running application
or applet [HC98a, HC98b]. va beans are functional
components with an intexfe that documents all pided
methods. In case of embedded systems, this documentation
is typically insuficient to assess whether agh component
fulfills the special restrictions for micro controllers. Hence,

additional information must bexeacted from the 3a bean

itself by investicating its source code. In this pape&e apply F’/ CPU \
our approach techniques to the source code of a sample . 8 bit

component for readabilitystill, our approach is not limited e 5 MHz

to source code analysisitbcan also be applied tovdaByte | opt. crypto- EEPFOM

code. This is important since macommercial beans are y o Ei

available in Byte code only BJ) | _L cop;ocessor . E2§;¥§:§ r::]” es
In a student research project callearYar!, we hae started) (,—f * Keys

to develop a technique and tool support to partially automate Passvords

this actvity. In this approach, a tool searches the source code |ROM (16K) RAM (4K) ||* Applications

of a component for recurringatterns which indicate « Operating Systen

problems for its application in the corteof embedded « Communication | temporary

systems. W usefuzzy easoning teltniquesto overcome the kSecurity date /
intrinsic problem of diersity of diferent implementation

variants of the same conceptual pattern. This paper discusses
primarily results of this ongoing research initiati We
consider theJava Smart Cat [HNS99] as an application only memory (EEPRM).

example and she how to extract information about memory L . -
usage from the source code. The application of EEPBMs impose seeral restrictions,

e.g., with respect to memory allocation. Highitage @er a
The rest of this paper is structured as foHo Section 2 relatively long period of time is necessary to allocate or free
introduces Jam Smart Cards and the restrictions Comingmemory Therefore, smart cards do notvlaa memory
along with such cards. In Section 3 solutions ¥ercome mangmenton the card itself. In particulathe virtual
the memory problem are presented. Section 4vshile machine on a Ja smart card misses arpage collector
specification of patterns via graphwrée rules and Other limitations are that no security manageists, no

introduces the need for fuzzyness. The feity Section 5 multiple threads are alleed, and objects cannot be cloned.
introduces thexecution semantics of the graplwrée rules i L
enhanced with fuzzyness. Relatedriv is presented in 10 &oid memory eerflows, application softare (cardlets)

Section 6 and Section 7 summarizes oarkvand gves has to be tested carefully before the card goes in mass

Figurel Smart card and components

some future perspecss. production. Current practice is to test the application in a
simulation emironment and check if a memoryerflow is
2 JAVA SMART CARDS produced. If this test succeeds, the application is certified as

Smart Cards are often used in our daily life, e.g., in form ofnemory werflow safe and the card is produced. In practice,

phone cards, cards carrying health insurance information, @is black box test arks well for cards that operate for short
‘digital’ money. Smart cards in comparision to magnetic periods only

stripe cards do not store data grilyt are able toecute

commands on the card. The heart of a smart card is a singl&€nting memory eerflovs can also be done in the design
chip microprocessor with a defined size and iateflayout and implementation phaseoFexample, all objects needed
for the connection points. The chip is included in a plastié®’ an application will be created in the constructor of a
card of the size of standard credit cards (cf. Figire class. Instantiation of the first class .resylts in constructing
the entire object structure of the application during runtime.

The technology applied in plastic cards has changedonsequently the memory usage of an application
dramatically since their uention 1950 by Diners Club programmed with the abe paradigm, can be calculated
Currently magnetic stripe cards areery popular and after the initialization of all objects. ofowing this

rewritable thermo stripes can be placed on the plastic card implementation stratg results in a short testing phase. Still,

display further human readable information withoutihga most Jea components lva not been desloped according to
terminal or card readeiThe first smart card used as anthis stratgy.

identification card has beenwdoped in 1968. In general, a -

smart card is a small portable computdbday this Anal_og_ously to hardare restrictions, seral softvare
computer consists of a central processing (@#U) running ~ festrictions gist for Jaa Smart Cards. &f example, the
at 5MHz and mostly a cryptographic co-processorlava-lang package is gomple_telyfd_rfent. A String _class is
Operating systems are stored in a read only mem@y(R not supported and aimt variable is aA/_ays 32-bit long.
of sizes about 16K. &inporary data can be stored in aComp(_Jnents desloped for PG, workstations, or other less
random access memory (RAM), which has typically a size dfnresticted hardare platforms could not run on the ada
4K. Applications, file systems, or yother data, which has Smart card, because the virtual machine could ret.ge
to be stored eer the connection time of the card to a readefhe byte code.

must be stored in an electrical eraseable programmable repgywever, developing components for Ja smart cards lead
to mary programming restrictions andveato be deeloped

1. Fuzz Pattern based Qualt Assurance for 3@ Snart explicite for Java cards and typically for a definedsdacard
' Cards from one manufcturer But components are produced from

different deelopers all ger the vorld and thg do not knav

all restrictions for all Ja cards in the arld. Consequently
components, which should run on a specighJanart card
has to be assessed for a specieh Inart card. Assessing in
this case means, that the component fulfills all restrictions ¢
the smard card, the component should run on.

: class Profile {

private List transactions;

private List shops;

private static Listlterator listlterator = null;

public Profile () {
transactions = createTransactions ();
shops = createShops ();

} /I constructor

The following section describes a semi-automatic approac
to assessing such components according to their applicabili
for Java Smart Cards.

3 APPLICATION EXAMPLE: MEMOR Y MAN AGE-
MENT ON JAVA CARDS

Due to the restrictions of the u#avirtual machine, card
applets hee to manage memory on theiwi. The easiest
way to do this is to ensure that all objects needed for th
cardlet are created in constructors or static initializatior
methods (see Section 2). This programming siyate
imposes seere restrictions on the deloper lut the resulting
software is easy to test.

private List createTransactions () {
List tmpTransactions = new List (10);
... Il default values
return tmpTransactions;

} /I create Transactions

private List createShops () {. . . }

Off-the-shelf components deloped all @er the vorld public Listlterator iteratorOfTransactions () {
typically do not fulfill all restrictions of a certainvdaSmart return new Listlterator (transactions);
Card. This results from theaxiations of Jea Smart Cards | 21: }// iteratorOfTransactions

and their diferent restrictions. In general, vda software 22:

components are deloped with less restrictions. Therefore, | 23: public Listlterator iteratorOfShops () {

NRPRRPREPRPRRRRR
QOVXNDPTRWNREROOXINDITAR®LN R

they have to be carefully inspected before using them on § 24: if (listiterator == null) {

card. Such an inspection aims to support thesldper in 25 listiterator = new Listiterator (shops);
selecting suitable components and detecting potentii 26: }

problems in an early stage. A semi-automatic inspection to¢ 27: return listiterator;

should highlight all fragments in the source code that contai 28: }// iteratorOfShops
(possible) violations of platform-dependent programming 29: }// class Profile

restrictions. After inspecting a component and testing i
afterwards thoroughlycertificates could be assigned to the

component with respect to the same controllmponents ¢ jyenification of what we caleverMindcliché is related
already assigned with certificates need not be analyze[the application conte A NeverMind cliché can annul

agun. more or less (relax) a poor cliché, for this purpose we
In the following, we present aatility to inspect components employ fuzzyness.
based on the source code. The main idea stems from t ure2 shavs the Jea source code for clagsofile. The

design pattern community [GHJV95, JZ97] and aims %lass can be used to store profile information of a person

detectclichés in the source code anaig kngrvledge about using a card. fansactions and the corresponding shops can

e stored in attriltestransactions and shops (line 2-3). A
MSandard containgiist is used to store the data. Both lists are
limited, e.qg., listtransaction can contain 10 entries (see line
12). The limitation ensures that both lists do not allocate
memory after their initializationut fix it to a defined size.

Figure2 Sample code of class Profile

that their gistence in the code may cause possible proble
in the applet during runtime. Supbor clichésidentify parts
of the source code and do notaak account further control
or data flov analysis. As anxample we use the property of
limited memory in cardlets and shdow to inspect them.
We will start with poor clichésxtractable directly from the Following the programming paradigm, thaveey object
source code and reduce their number by further control anteeded must be created in the constructor or static initializer
data flav analysis. classProfile has to be declared as a possible sourcailofé.
Th | id f hois i first st thPlacing the_ bodies of methoatreate'l.'ransitions' and
€ general idea of our approach 1S in-a first Step g e5hops into the constructothe resulting code is closer
detection of poor clichés in a restnaiway. Namely by 4, "o haradigm, because objects are created in the
parsing the source code we mark as poor occurance of one O ictar But this lets the code become less readable and
an accumulation of dgwords. The identification of such w0 ™ reation of a Listiterator object in method
keywords fpr cliché detection de_pends on the appl'Cat'O'ﬂeratorOfTransactions anditeratorOfShops are still possible
contxt. This paper presents a first approach for memoryi re points. This xample shais that one of the main
allocation. In a second step we try to annul or at Ieast rel allenges wi:[h deeloping an automated approactstaice
the parts of the source code metlkas poorFor this agin code inspectior(i.e. pattern detectionis to cope with the
L)) large dversity of possible implementatiorawants of the
1. We useclichéas a syngym of ‘implementation pattern’, same pattern. Wwill cover this issue later in this paper by
anddesign pattermefers, to [GHJIV95]. employing fuzzy patterrmatching techniques.

Our approach is called semi-automatic, because a towlith instances of subclasses of classverMind. Two
searches the source code for instances of poor cliché aedamples for such classes arealledOnce and
generates an annotated representation of the code thatGalledFromConstructor. CalledFromConstructor refers
presented to the deloper for further manual vestigations. directly to the programming paradigm mentionedvaband
Internally the source code is represented as an abstraCtlledOnce implies that there is only one object during
syntax tree (AST). Hence, the domain model for the clichéuntime. In case of relaxing clichés, the inspector could
annotation represents amxtension of this data structure. define a alue, up there the corresponding annotation is
This extension is represented in FiglBeas a UML class- shavn. An eample of a subclass dfileverMind which
diagram (cf. [BRJ99]). relaxes a poor cliché i<alledFixedTimes. To stress real
failure points, classUunsave is used. ClasComponent
models additional information used fotaenple to identify a
cliché’s contat (see classesMethod, Constructor and
StaticAttribute in Figure3). Our method starts with so called

We start with a modifiedComposite design pattern
(cf.[GHJIV9I5)), where classes Annotation and
SyntaxTreeNode inherits from clasdlode. The central class
Annotation is derved from the notion otollaboration in fragments (instances of subclasses of clasishé in

UML (cf. [BRJ99]). We use the qualified association g, e3) Fragments are information that cannot be refuted
annotations to represent relationships between annotauon%fl‘ﬂfCh as & words used in the source code or other
and bet\f[veaenb a_mntotanons f alnd tan$otalt\lecii m_(l:_rhemenl ormation @ined from data fle or control flav analysis of
(represented by instances of clagstaxTreeNode). The oo "o e code. definesly. For example, we tak the
annotations are qualifiedver a name and denoted asance of the dyword new as a fragment, because it
<<name>>' at the corresponding edges (cf. Figd)e Wo o105 that there might be a possible memamrfow
g(lj‘dlzt!onagnc(:jlassgs mherl;c frog ﬁl,amncoéﬁ'gg’ orrl?jmelilo constructed. &1 classProfile there are four occurances of the
~liche ! omponent. Iches pond keyword new, one in line 12, line 20, and one in line 25. The
implementation patterns in contrast@emponents, which ¢ "o e rance is not sa in Figure2, kut both methods,
represent parts in the AST or control or datafamalysis. createShops and createTransitions, construct a ne List

ﬂ:‘;sng'g; cTaaljsotmar?r?gg?essifroglzcr?gsirl:lz\(/)irrl\gg%o Je Obiect. A second fragment resulting from the source code is
i.e., possible violati(z)rns of im opsed restrictions in the code':the edstence of methods. Claserofile consists of fie
€., p P methods, including the constructor which occurance is the

'(I:'Igzrstln;fore, g*afhiemoé?’;‘]% d's 'ggrogllijccﬁ éds ?nsasubbggr?rfuﬁfe (g:ird fragment we use. DataWaand control flav analysis of
oor. ' P Y e class results in twmore fragments. First, method

or rela)ed. If a poor CI.|Che is annulled, t_he Ins_pector Can, eateTransition and createShops are called from the
ignore it and accordingly the annotation will not be

A . L onstructor method onlyConcerning thenew keyword in
highlighted. Spots which annul poor clichés are annotate, e 25, control fl analysis had detected that the

assignment is done in an if-statemenbody which is
executed only one time, because the aitghbistiterator is
assigned with the meinterator and is nehere else modified

in the class. Fragment ‘ungd annotates the dyword nev’
fragment and indicates the only real problem point in the
source code.

annotations

0..1
Annotation

| SyntaxTeeNode | With these fragments we are able to construct a graph, where
fragments are the nodes and associations are edges.
(Figured). Annotations of the code are made via

| associations of typennotations in the AST Figure4 shavs

—— the annotation gaph as an werlay This is only for
Cliché Component readability reasons. Users will see only the critical (uesa
AN spots in the code highlighted. The annotation graph contains
three diferent kind of nodes and four féifent occurances of

- o associationannotations. Nodes represented with a white
StaticAttribute background and black font are so called informational

NeverMind Poor fragments (instances of cla8smponent). Those fragments
Constructor are used for conclusions andvhano efect on the ealuation
of possible problems in the source code. Possible problems,

we call them poor nodes are displayed with black
| CaIIedOnce| | KeywordNew | Method background and white font. Here such nodes aegwird
I@ new’ nodes, because thare representing possible memory
_‘CalledFromConstructor| overflov fragments (instances of clasBoor). Grey
background and black font nodes represents instances of

classNeverMind. Such a node annuls connected poor nodes.
For example, in Figurel the ‘called from constructor’ node
annuls the poor &word nev' node, which means that there
is no possible memoryverflov caused by this statement.

| CalledFixedTimes |

Figure3 Domain model

This retains also for the second ‘called from constructor’ angopular in the last years. The Progres system [Zn95] and
the ‘called once’ node. @vall, there is only one poor the AGG System [&c] follow a classical approach, where
‘keyword nev’' node left, which can not be annuled and isthe host graph as well as thevrige rules has to be specified
annotated via ‘uns&’ nodes connected via ‘<<stress>>' in the system itself and the rules could only modify the host
links. Only the creation of a wmelist iterator in method graph internallyControl structures aWto bring the revrite
iteratorOfTransitions is a possibledilure point and should be rules in a defined ordeBoth systems prade an interéice to
highlighted in the code. access the graph angkeeute rules from outside the system.

Now, we are able to analyze cardlets based on there sourEajaba [FNT98, FNTZ98] follws the approach of a
code and dract problems in the implementatiorfiedéntly ~ seamless inggation of graph rarite rules and traditional
by reducing general poor fragments ameping track only object-oriented programming languages. Fujaba uses UML
on those, which are really problematic. The failny [Rat] for the specification of soffwe systems. The node
section introduces a specification opportunity of clichés ant/pes of the host graph could be specified via an UML class
the need for fuzzyness. diagram and instances of classes called objects represent the
host graph during>@cution time. UML actiity diagrams
are used to specify control structures and eachitgathight
contain a graph verite rule specified by an UML
@ collaboration diagram (cf. Figuf. The combination
between control fle and graph erite rules are called
methods. Fujaba pvales also a Ja code generator to get
an ecutable implementation out of the specification.

‘%}notate_unsave_parts()
called from / \

m:Method
constructor m.hethod
keyword nev
. <<annuls>> <<uses>>
<<uses>>dl<annuls>>
called from kw:KeywordNew | <<annuls>> ' cq-CaliedOnce
@ keyword nav constructor
<<annuls>>
<<stress>>
unsae
keyword nev cc:CalledFromeEonstructor

<<uses>> \ /
@ called oncey <<annuls>> g@

keyword nav Figure5 Example rule looking for unsave parts
<<uses>>

In general, we use the Fujaba system for the specification of
clichés and the domain model. The domain model is

specified via a class diagram and the clichés through
methods including graphweite rules. Each cliché results in

a search of a subgraph byeeuting a graph verite rule. If

s the subgraph could be matched to the host graphwa ne
4 CLICHES SPECIFICATION annotation is created.

Graphs lile the annotation graph and graph transformations
are ofen defined bygraph gammas [Roz97]. Graph The methodannotate_unsave_parts specified in Figur®
grammars alle a manipulation of graphs viawdte rules, starts at the start aeily, executes the graphweite rule and
specified in a high el specification language without after successful or non-successfubeution it ends at the
caring about thex@cution. Figuré is an @ample of a graph stop actity. The method specifies the cliché for annotating
rewrite rule. In general, thexecution of a graph verite rule unsae parts in the source code. Therefore, the graptitee
consists of tw parts. In the first partwviables in the rule are rule searches for a node in the graph of tyeehod and
matched to nodes in theovking graph (host graph) of the binds it to \ariablem:Method in the rulé. Next, a node of
system. Ypically, this is done via an isomorphic embeddingtype KeywordNew is bound to &riablekw. Those tw nodes

of the subgraph of the rule into the host graph. The secortive to be connected via<auses>> link. The two crossed
part xecutes the modifications of the host graph specified in

the rule. 1. Variable notation corresponds to object notation in UML
Graph transformation systems become more and more collaboration diagrams (i.eame:type)

Figure4 Fragments and relations

out \ariables co of type CalledOnce and cc of type
CalledFromConstructor specify that there must not be a node
in the graph reachable from the node boundatdable kw
via an<<annuls>> link. If such a subgraph has been found
and nodes are bound to thariables, a ng node of type
Unsave is created in the graph and letkvia a<<stress>>
link to the node bound toaviablekw. The creation of the
node and the link is specified through (greernygptusses at
the correspondingariable and link.

called fixed
times

<<relax>>

keyword nev
In this case graph weite rules are sfitient for the
specification of clichés, because the nodes of the graf
represent non-refutable fragments in the source cogle. F
example, the ‘methddnode occures in the graph if there is a
underlying method declaration in the source codenBhe

Figure7 Example for a CalledFixedTimes instance

and manages its usage within the class. In line 150 the
occurance of constructors and static atitéls could be tan keyword new occurs which indicates a possible memory
from the syntax graph of the source code, eaBifta flav ~ overflow, cf. Section 3. Agin the occurance okword new

and control flav analysis results in the occurance of theiS encapsulate in ahstatement (see line 24 in Figute But
‘called once’ and ‘called from constructor’ nodes. All thesethe \ector is used in the part baland eplicitely may be
nodes eal in a boolean answeiThe pattern matching modified. Ensuring that the number of itertaors in tbetar
semantics of graph weite rules support these kinds of does not ceed its capacity or double entries may result in
boolean answers. aviants of a cliché result in anwn memory leaks needs hga further analysis. Each
definition for each ariant and the number of rules canimplementation a&riant results in an ven cliché

explode. specification. This results from thact, that the limitation of
number of iterators and the handling can be implemented in
142:Vector transactionListlterator = new Vector (5); multiple ways. Een using diferent container classes may
143:int countlterators = 0; result in a complete dérent implementation. Therefore, we
144: provide fuzzyness to model relaxation of possible memory
145:public Listlterator iteratorOfTransactions () overflows. The abee scenario is shn in Figure7 with the
146:{ already introduced annotation graph. Note, the edge between
147: Listlterator tmplterator; node ‘called fied times’ and ‘kyword nev' corresponds to
148: if (countlterators < 6) the annotations association in the domain model in FigGre
149: { and is named ‘<<relax>>" and not ‘<<annuls>>’. Relaxing
150: tmplterator = new Listlterator (transactions); means that this is not a 100% fragmeut may be a 80%
151: transactionListlterator.add (tmplterator); one, because we left out hga further automatic
152: countlterators++, investigations on the source codetlet infer the reengineers
153: }else knowledge to see time.
154: {
155: for (inti=0; i< countlterators; i++) As mentioned before, catching/ezy possible ariant of
156: { annotate_unsave_parts()
157: tmplterator = transactionListlterator (i);
158: if (!tmplterator.isUsed ())
159: { / \
160: i= cquntlterators; m:Method
161: } /I endif -
162: } /I for <<uses>>
163: }// endif
164: if (tmplterator.isUsed
165 { (tmp 0) kw:KeywordNew | <<annuls>> @wﬂ@ce
166: throw new RuntimeExeption(...// Error message); N
167: } 2 80
12593} return tmplterator; <<annuls>> QQA cf-CalledEixedTime
170:...
Figure6 Complex code for method iteratorOfTransaction
cc:CalledFromeonstructor

In general, using uncertainty reduces the number of rules ar d\ /
allows to deal with miner than 100% cleariBigure6 shavs
a sample code fragment of a personal management pf g@
Listlterators. Thexension of methoderatorOfTransactions :

. e . F 8F tt tended | |
uses a &ctor which can contain fiviterators (cf. line 142) 'gure® Fuzzy patiern extended example e

managing list iterators, results in traditional graphvalue to zero or 100. The changefeetfa regaluation of the
transformation systems into one rule for eaehiant. A fuzzy values of the depending nodes. Therefore, our
possible solution tow@rcome this problem is to soften the approach is semi-automatic. Experiencegehshevn that
exact match semantics of graphwrée rules. Therefore, such a semi-automatic approach causes better results,
Fujaba and the other systems abato specify aariable in because a user or reengineer could interact with the tool and
the rule as optional, which means that a corresponding nodiafer her/his knwledge.

will be bound to the ariable if there xists one. Otherwise 5 DETECTING CLICHES

the \ariable will be left unbound. Optionahrables are not : ; . L
sufiicient enough in this case, becauseytie not support The detec'qon mecham_sm for specified <_:I|ches is based on
fuzzyness. W define fuzzyness in a graphvrie rule witha the_formalism ofGeneric Fuzzy Reasoning NEGFRN)
circle in the upper right corner of @nable and call them [J5297, Jah99]. This formalism which has initially applied
fuzzy patternFigure8 shavs the &tended rule of Figurd In th_e_ do_maln of data_l verse engmeermgatllltates the
with variablecf of typeCalledFixedtimes and fuzzy alue 80. speC|_f|cat|on andxecutlo_n of analysis W'es a’?d processes
The notation of fuzzy alues does not correspond to a@"d Incorporates a notion of uncertainty principle, a
notation in UML, hit the \alues correspond to attiites of ©F X\ IS @ graphical netwk of predicateswith oval shape)
the class and shang them in the upper right corner of the and|mpI|cat|on.s(represented. as bex) which are connec_ted
variable instead as atttites in the attribte compartment is by arcs (cf. Figur®). Each implication has an ass.oc;[atgd
just display option. cor}fldence valuéCV). Bas_ed on the t_heory of possibilistic
logic [DLP94], the semantics of a CV is aver bound of the
The fuzzy \alue of \ariablecf is talen into account when necessity that the corresponding implication asidv Arcs
calculating the fuzzy alue of the created ‘ung node. are labeled with formal parameters that can be used to
Variables without special fuzzyale refer implicite to a specify constraints for implications. Yions in
value of 100. W do not shw them in the rule refering to the implications are represented by arcs with blackvatieads.
readability The fuzzy alue of the n& node created when
the rules could be matched is calculated from tilaes of
the other ariables in the rule.

For each fuzzy pattern, we create a GFRN by using a
canonical translation procedure. Figdrshavs the GFRN
representation of the the sample fuzzy patternvehmn
Remember a reengineer will only see ‘unsd nodes Figure8. Nodes that are searched in the fragment graph are
highlighted in the source code. The fuzzglue of an represented by predicates rendered iry @@or while the
‘unsave’ node represents a kind of trustability of the resultannotation which represents the goal of the analysis is
Typically, the reengineer has to look for nodes with a fuzzyepresented as a so-calle@pendentpredicate ‘Unsee’
value minor than a defined limit and couldeowrite the rendered in black.

i1: 100
KeywardMewiml) j— ——

.Q —_— ! Methodima)
m .

equal(rm,mzj iy

[

%m

G100 | 4 : 80
i
i

| ™ *rn |rn

-_— T T e i£ 100 |
¢ CalledFraomCaonstructar(m)) e T e -

— - " CalledFixedTimes(m)

m —_—

{ Ld”HLiDHE E{rru)
e

Figure9 Generic Fuzzy Reasoning Net

For eficient fuzzy pattern analysis, we propose a-step algorithms hege to be implemented for each design pattern
process: firstly the fragment graph is searched for aby hand. Rademacher emydo graph transformations to
subgraph that matches all positi nodes in the extract design patterns automatically and tacafre poor
corresponding graph waite rule (cf. Figure8). design pattern with good design pattern [Rad99].

Subsequentlyour detection strafy aims to gtend each
such match by a match for thegaéive (canceled) nodes in 7 CONCLUSIONS AND FUTURE WORK . .
This paper presents an approach for automatic quality

the revrite rule. The GFRN formalism atilitates the .
specification of such a strate by distinguishing between 2nalysis of components for embedded systems. Embedded
systems come along with hardwe limitations and

so-calleddata-driven and goal-driven predicates. Matches components he to fulfil partial ma roarammin

for data-drven predicates (represented with solid ygre restr?ctions As a Iicationx%m le Welyuspe ga Smar%

outline) are searched at thegb®ing of the analysis process : PP pie we ;
Cards. Those cards are memory limited and there is no

(cf. ‘KeywordNen' and ‘Method’ in Figured). If such D .
matches can be found and all implication constraints hold trga"Page collector on the card. Cardlets, applications running
n the card, he& to manage their memory usage by

GFRN e&ecution mechanisms creates instances of th . ; . 4
corresponding dependent predicate (‘Wesan Figure9) emselfs. W introduce a solution to inspect cardlets ifythe
Subsequentlythe fragment graph is searched for matching?rduceé no memoryverflow by defining fuzzy patterns.
instances of goal-drén predicates (with dashed gre uzzy patterns are defl'ned using graph grammars. The huge
outline). Since, these goal-den predicates ha been number of implementatioraviants for memory management
created. for ng;itive nodes in the corresponding graphresults in a fuzzy pattern definition for ea@rignt. © catch
rewrite rule, their istence annuls or relas the gistence of ~Mary variants in one fuzzy pattern definition we introduce

! fuzzyness into the definition. This fuzzyness let us deal with

the concluded poor clichés (cf. arcs with black warheeads neartainty As detection mechanism for f AHems. we
in Figure9). The CV associated to each implication specifies’ Inty ! : ' uzzy p W
use Generic Fuzzy Reasoning Nets.

a measure for the deee of this relaxation. Note that CV of
80 for implication ‘i4’ corresponds to the fuzzylue of We are currently wrking on a first implementation of our
CalledFixedTimes in Figure5. According to typical fuzzy approach. Therefore, we enhance the Fujaba system, which
inference operators, arverall valuation for each tenta® already supports the instanciation of design patterns and a
poor cliché is based on thefdifence between the maximum rudimentary mechanism toxteact design patterns out of
positve CV and the maximum gative CV. We refer to Java source code. In theaWYar student research group we
[JH98] for details on the GFRN inference engine. plan to enhance our approach by inheritance and
6 RELATED WORK polymorphism lik in object-oriented languages. Fuzzy

Rayside and Kntogiannis hee deeloped tool-based patterns will inherit from other fuzzy patterns and during the
techniques to minimize the size ofidapplication softare SXraction process, polymorphism will be used. Therefore,
for small-size electronic des [RK99]. A similar [UZZY Ppatterns must pvale a defined intesice and
technique is proposed byokn et al. for seleate ragression inheritance as well as polymorphism must be mapped to the

testing of Jaa components [KCK99] underlying Generic Fuzzy Reasoning Nets. Theaathge of
g P ' using inheritance is to specify sub fuzzy patterns of a more

In [HN9O] program analysis is based onkrent Basend a general super fuzzy pattern without defining a complete ne
Plan Base In a first phase vents are constructed from one. For example, a fuzzy pattern detecting aggons
source code. Plans are used to consume one or vemtse between classes could inherit from a general association
and fire a n& event which correspond to the plans intention.detecting fuzzy pattern. Because typicalllge diference
between them is anxplicite deletion of the agggated

An automatic approach toxtact semantics information objects when using agayations.

from source code is presented by ill8v [Wil94].
Analogously to our approach,il8 uses graph werite rules The current prototype of the Fujabavieanment is gailable

to specify implementation patterns in terms of so-calledis free softare and comprises about 2300 lines of pure
program plans Program plans are structured in aJava code. Additional information and the current release
hierarchical design librayyi.e., abstract plans consist of version of the Fujaba system can bedimaded via:
aggreations of seeral more simple plans. A specific library
stores program-plans for tifent domains, e.g., M¢
presents a library for sorting algorithms.illg/follows a REFERENCES

bottom-up straigy to detect plans according to this . - .
hierarcly. However, the inherent compkity of this bottom- [BH99] H.Bader and WHuber, editorsJini. Addison
up search limits the practical usage of the approach to source Wesley, 1999.

code about 1000 lines. Quilici uses an kidg technique [BRJ99] G.Booch, JRumbaugh, and Oacobson.The
and combine top-den and bottom-up detection teercome Unified Modeling Language User Guideddison Wes-

this problem [Qui94]. ley, Reading, Massachusetts, USA, 1 edition, 1999.

In [KSRP99], leller et al. present a ;emi-automaticELpgAf] D. Dubois, JLang, and HPrade. Possibilistic lo-
approach to find design patterns [GHJV95] in source code gic. In D.M. Gabbay, C.J. Hogger, and J.A. Robinson
introduced. These design pattern are represented in UML y o P o iy '
notation [BRJ99], namly in CDIF format. Matching editors,Handbook of Logic in Artificial Intelligence and

http://ww. uni - pader bor n. de/ cs/ f uj aba/

Logic Programming pages 439-503. Clarendon Press,
Oxford, 1994.

[FNT98] T. Fischer, JNiere, and LTorunski.Konzeption
und Realisierung einer integrierten Entwicklungsumge-
bung far UML, Java und Story-Driven-Modeling (in ger-
man) Master's thesis, University of Paderborn,
Paderborn, Germany, July 1998.

[FNTZ98] T. Fischer, JNiere, L.Torunski, and AZundorf.

[KSRP99]R.K. Keller,

Distributed Systems Group, September 1997. Technical
Report TUV-1841-97-10.

[KCK99] J.Korn, Y.-F. Chen, and EKoutsofios. Chava:

Reverse Engineering and Tracking of Java Applets. In
Proc. of the 6" Working Conference on Reverse Engi-
neering, Atlanta, USAIEEE Computer Society Press,
October 1999.

R.Schauer, SRobitaille, and

Story Diagrams: A new Graph Rewrite Language based P.Page. Pattern-Based Reverse-Engineering of Design

on the Unified Modeling Language. In Engels and
G.Rozenberg, editor®roc. of the 6 Int. Workshop on
Theory and Application of Graph Transformation, Pa-
derborn, GermanySpringer Verlag, 1998.

[GHJV95] E. Gamma, RHelm, R.Johnson, and

J.Vlissides.Design PatternsAddison Wesley, Reading, [QuI94]

MA, 1995.

[HC98a] C.A. Horstmann and GCornell.Core Java 2, Vo-
lume 1: Fundamentalslava Series. Prentice Hall, first
edition, 1998.

[HC98b] C.A. Horstmann and GCornell.Core Java 2, Vo-
lume 2 Java Series. Prentice Hall, first edition, 1998.

[HN90] M. T. Hanrandi and XJ. Ning. Knowledge Based
Program Analysis. Idournal IEEE Software, volume 7,
number 1 pages 74-81, January 1990.

[HNS99] U.Hausmann, M.S. Nicklous, and $chéck.
Smart Card Application Development Using Java
Springer Verlag, 1999.

[Jah99] J.H. JahnkeManagement of Uncertainty and In-
consistency in Database Reengineering Procesdd3
thesis, University of Paderborn, Paderborn, Germany,
September 1999.

[JH98] J.H. Jahnke and MHeitbreder. Design Recovery
of Legacy Database Applications based on Possibilisti
Reasoning. InProceedings of 7th IEEE Intl. Conf. of
Fuzzy Systems (FUZZ'98). Anchorage, USIEKEE
Computer Society Press, May 1998.

[JSZ97] J.H.Jahnke, WSchéfer, and AZiindorf. Generic

Fuzzy Reasoning Nets as a basis for reverse engineering
[Wil94]
to Recognize Programs. Imt. Workshop on Graph

relational database applications. Pnoc. of European
Software Engineering Conference (ESEC/E®Ember
1302 in LNCS. Springer Verlag, September 1997.

[JZ97] J.H. Jahnke and Aundorf. Rewriting poor De-

sign Patterns by Good Design Patterns. In Serge DemefZiin95]

er and Harald Gall, editor®roc. of the ESEC/FSE
Workshop on Object-Oriented Re-engineerifgchni-
cal University of Vienna, Information Systems Institute,

[Prag7]

[Rat]

[RK99]

Components. IfProc. of the 21" Int. Conf. on Software
Engineering, Los Angeles, USpages 226-235. IEEE
Computer Society Press, May 1999.

S.Prashant.Java Beans developer’'s resource
Prentice Hall, 1997.

A. Quilici. A memory-based approach to recogni-
zing programming plan€ommunications of the ACM
37(5):84-93, May 1994.

[Rad99] A. Radermacher. Support for Design Patterns th-

rough Graph Transformation Tools. Froc. of Int.
Workshop and Symposium on Applications Of Graph
Transformations With Industrial Relevance (AGTIVE),
Kerkrade, The Netherlandd NCS. Springer Verlag,
1999.

Rational Software CorporatiodML documenta-
tion version 1.3 (1999). Online at http://www.ratio-
nal.com

D. Rayside and KKontogiannis. Extracting Java
Library Subsets for Deployment on Embedded Systems.
In P.Nesi and C.Verhoef, editorBroc. of the 3° Euro-
pean Conference on Software Maintenance and Reengi-
neering (CSMR), Amsterdam, The Nederlarmusges
102-110. IEEE Computer Society Press, March 1999.

I:R0297] G.Rozenberg, editor. Handbook of Graph

Grammars and Computing by Graph Transformation

World Scientific, Singapore, 1997.
[Tec]

Technical University of BerlinAGG, the Attri-
buted Graph Grammar system. Online at http:/

www.tfs.cs.tu-berlin/agg

L.M. Wills. Using Attributed Flow Graph Parsing

Grammars and Their Application to Computer Science

Williamsburg, Virginia, November 1994.

A. Zundorf. PROgrammierte GRaphErsetzungs-
SystemePhD thesis, RWTH Aachen, 1995.

