
1

1 OVERVIEW
The Fujaba environment aims to provide roundtrip-
engineering support for UML and Java. The main distinction
to other UML tools is its tight integration of UML class and
behavior diagrams to a visual programming language. Our
use of UML allows to model operations on graph-like object
structures on a high-level of abstraction and leverages the
user from programming with plain references at code level.

Code generation from class diagrams is widely known and
supported by most modern case tools. However, code
generation from class diagrams creates class frames and
method declarations without bodies, where the actual work
starts. Only a few case tools provide code generation for
statecharts, e.g. [RR-RT, Rhap] and Fujaba. Statecharts
specify the reactions of active objects on events in terms of
state changes and in terms of actions annotated to states and
transitions. These actions are usually pseudo code or
program code, only.

Fujaba extends these capabilities by generating code from
collaboration diagrams. Generating code from collaboration
diagrams is easy if one restricts the employed collaboration
messages to a single method body and if one uses only these
messages for code generation. However, such collaboration
diagrams require a lot of detailed collaboration messages. To
overcome this problem, Fujaba leverages the user from
providing a lot of detailed messages by assigning a standard
semantics to the graphical elements of collaboration
diagrams, cf. [KNNZ00]. This standard semantics covers a
lot of navigational operations, that identify the collaboration
participants, and a lot of operations for structural changes.
Thus, our standard semantics simplifies the use of
collaboration diagrams for programming purposes,
significantly, and it turns collaboration diagrams in a
powerfull and easy-to-read visual programming construct.

However, a single collaboration diagram is usually not
expressive enough to model complex operations performing
several modifications at different parts of the overall object
structure. Such series of modifications need several
collaboration diagrams to be modeled. In addition, there may
be different situations where certain collaboration diagrams

� � � � � � � � �

� � � � � 	
 � � � �

Figure 1 The Fujaba Environment Concepts

� � � � 	 � � � � �
 �

� � � � � 	 � � � �
 � 	 � � � � � �
 � � � � �

� � � � � � � � 	 � � � � � � � �

� � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � �

! � � � " � # �

� � �
 � � � � �
 �
$ � � �
 � � % � � � � # � & � � 	 � � �
 � '

	 � � � � # � 	 � � � � � � �
 �
� � � � � � � � � # � 	 � � � � � � �
 �
� 	 	 � � � (� �
 � # �

(� �
 � # # � 	 � � � � � � �
 �

� � �
 � � (� �
 � # �

� � � � � �
 	 � � �
	 � � � � 	 � � �
 � � � � � � � � �
 	 � �

� 	 	 � � � (� �
 � # �

(� �
 � # � � # � � �

� � � � 	 � # � � � �) �

� � � � 	 �
 � � � � � � � � 	 � � � � �

� � � � � � � � � � �

� � � � � � � � � � �
 � � � � �
� � �
 � * � � � � �
� � �
 �
 �
 # � �
 � �
 � � � #

� 	 � � �
 (� �
 � # �

� � � � � � � � � � � � �
 � � � � �
 �
� � � � # (� �
 � # �
� 	 � � �
 (� �
 � # �

	 � � � � � �

� � � � � � � � � �

(� �
 � # �

� � �
 � � �

� 	 � � � � � � # � � � � � (�

� � � � � 	 � � � �
 � (� �
 � # � �
 � � � � �

� 	 � � � � � � � �

� � � � � � � � � � � � �
� � � � � � � �

! � � � " � # �

� � �
 � � � � �
 �
$ % � � � � # � & '

	 � � � � # � � � � � (�

+ � � �
 # , - . / . 0 1 2 . 30 . 4 5 6 . 0 3

The FUJABA Environment

Ulr ich Nickel
Computer Science Dep.
University of Paderborn

Warburger Str. 100
33098 Paderborn

Germany
+49 5251 603308

duke@upb.de

Jörg Niere
Computer Science Dep.
University of Paderborn

Warburger Str. 100
33098 Paderborn

Germany
+49 5251 603308

nierej@upb.de

Alber t Zündorf
Computer Science Dep.
University of Paderborn

Warburger Str. 100
33098 Paderborn

Germany
+49 5251 603310
zuendorf@upb.de

2

should be executed and others not. Thus, we need additional
control structures to control the execution of collaboration
diagrams. In our approach we combine collaboration
diagrams with statecharts and activity diagrams for this
purpose. This means, instead of just pseudo code, any state
or activity may contain a collaboration diagram modeling the
do-action of this step.

Figure 1 illustrates the main concepts of Fujaba. Fujaba uses
a combination of statecharts and collaboration diagrams to
model the behavior of active classes. A combination of
activity diagrams and collaboration diagrams models the
bodies of complex methods. This integration of class
diagrams and UML behavior diagrams enables Fujaba to
perform a lot of static analysis work facilitating the creation
of a consistent overall specification. In addition, it turns
these UML diagrams into a powerful visual programming
language and allows to cover the generation of complete
application code.

During testing and maintenance the code of an application
may be changed on the fly, e.g. to fix small problems. Some
application parts like the graphical user interface or complex
mathematical computations may be developed with other
tools. In cooperative (distributed) software development
projects some developers may want to use Fujaba others may
not. Code of different developers may be merged by a
version management tool. There might already exist a large
application and one wants to use Fujaba only for new parts.
One may want to do a global-search-and-replace to change
some text phrases. One may temporarily violate syntactic
code structures while she or he restructures some code. For
all these reasons, Fujaba aims to provide not just code
generation but also the recovery of UML diagrams from Java
code. One may analyse (parts of) the application code,
recover the corresponding UML diagram(part)s, modify
these diagram(part)s, and generate new code (into the
remaining application code). So far, this works reasonable
for class diagrams and to some extend for the combination of
activity and collaboration diagrams. For statecharts this is
under development.

The next chapters outline the (forward engineering)
capabilities of Fujaba with the help of an example session.

2 AN EXAM PLE SESSION
As running example for a short demonstration of the Fujaba
environment we use the simulation of an automatic material
transportation system in a manufacturing process. This
example stems from the case-study of our ISILEIT project
funded by the German National Science Foundation (DFG).
This example employs autonomous transportation shuttles
that travel on a track system.

Class Diagrams
Figure 2 shows the Fujaba environment editing a cut-out of
the example class diagram. The shown association-dialog
allows to create and modify all kinds of associations and to
annotate the relevant detail information. Overall, the class
diagram editor offers what one expects.

Figure 3 shows some details of the Java code generated for
class Track and association fork. By default, associations are

Figure 2 Fujaba showing the example class diagram

1: public class Track {
2: private TreeSet forkSrc;
3: public void addToForkSrc (Gate elem) {
4: if ((elem != null) && !this.hasInForkSrc (elem)) {
5: if (this.forkSrc == null) {
6: this.forkSrc = new TreeSet (...);
7: } // if
8: this.forkSrc.add (elem);
9: elem.setForkTgt (this);

10: } // if
11: }
12: ...
13: } // class Track

Figure 3 Java code details for class Track and association fork

3

implemented using pairs of pointers in both directions. To-
many associations are implemented as collections of
references, to-one associations employ usual references. We
encapsulate the access to these (collections of) references,
properly. Client programmers may establish links by just
calling aTrack.addToForkSrc (aGate). The write access
methods call each other, mutually (cf. Figure 3, line 9), this
guarantees referential consistency. This reliefs the client
programmer from taking care of the consistency of the pair
of pointers that implement the desired association.

Statechar ts combined with collaboration diagrams
Figure 3 shows some details of the statechart of class Gate.
A gate is either in state straight or in state fork. When a
shuttle arrives at a gate, it signals its desired direction via a
wantsToStraight or wantsToFork event, respectively.
Depending on its current state, the gate may have to swap its
current direction first, cf. activity swapToFork. Finally, the
gate sends a goOn event to the shuttle, signaling that it may
proceed.

The body of activity swapToFork shows a collaboration

diagram modeling the swap operation. This collaboration
diagram shows a cut-out of the object structure surrounding
the current gate (the this object). The crossed-out shuttle
object s1 models that the gate must not operate while it
carries a shuttle. If this condition holds, the next link from
this to track t2 is destroyed and a new next link from this to t1
is created, as indicated by the the {destroyed} and {new}
constraints, respectively.

Figure 4 shows the Java code generated from activity
swapToFork. Note, JavaSDM.ensure is a small library
method, throwing an exception iff its argument is false. It is
used to replace chains of nested if-statements with a single
try-catch block. Note the use of association encapsulating
methods for neighbor look-up and testing, e.g. in lines 8 and
9, and for modifications, cf. 23 and 24.

Graphical debugging and simulation
Fujaba focusses on modeling graph-like object structures. It
does not yet include a graphical user-interface builder.
(Integration with GUI builders is under development.)
However, Fujaba provides a generic standard user interface,
called Mr. Dobs, that shows a graphical view of graph-like
objects structures and allows to call methods on objects,
interactively. In Figure 5 one sees a small track system with
three shuttles running. Note, shuttle s26 is currently blocked,
since it wants to pass gate g20 straight but gate g20 had to
wait until shuttle s24 had left it and is now about to swap its

Figure 3 Details of the statechart of class Gate

Figure 4 Java code for the swapToFork activity

1: public void doAction0SwapToFork () {
2: Object sdmTmpObject = null;
3: Track t0 = null; Track t1 = null; Track t2 = null;
4: boolean sdmSuccess = false;
5: try {
6: sdmSuccess = false;
7: // check link ’at’ between this and s1
8: JavaSDM.ensure (this.getAt () == null);
9: t2 = this.getStraightTgt(); // bind t2 : Track

10: JavaSDM.ensure (t2 != null);
11: // check link ’next’ between this and t2
12: JavaSDM.ensure (this.getNext() == t2);
13: t1 = this.getForkTgt (); // bind t1 : Track
14: JavaSDM.ensure (t1 != null);
15: // check isomorphic binding
16: JavaSDM.ensure (t2 != t1);
17: t0 = this.getPrev(); // bind t0 : Track
18: JavaSDM.ensure (t0 != null);
19: // check isomorphic binding
20: JavaSDM.ensure (t2 != t0 && t1 != t0);
21: // check link ’at’ between s and t0
22: JavaSDM.ensure (s.getAt() == t0);
23: this.setNext (null); // delete link
24: this.setNext (t1); // create link
25: s.goOn(); // 1:
26: sdmSuccess = true;
27: } catch (JavaSDMException sdmInternalException) {
28: sdmSuccess = false;
29: } // try catch
30: }

4

direction.

The standard graphical user-interface Mr. Dobs works fine
as an initial aid for testing a specification. It also allows to
adapt the appearance of objects and to define more specific
which objects should be visible and which should be hidden.
In some cases, one may use this standard user interface as
starting point for the development of the final user interface.

3 CONCLUSIONS
The development of Fujaba has started in December 1997.
Since January 1999, code generation for class diagrams,
activity diagrams, and collaboration diagrams and the
generic standard user-interface are available. In 1999 we
have added code generation for statecharts and round-trip
engineering support for class diagrams. This work has
already used Fujaba in a boot-strapping approach.

For the application to embedded systems, we have added an
editor for SDL block and process diagrams and
corresponding code generations. The SDL notation is very
popular in the engineering areas. This work is close to its
release. In addition, we currently extend Fujaba by an
topology and deployment diagram editor, that will allow to
model physical structures and the distribution of hardware
devices and software agents operating these devices.

Urgent current work is round-trip engineering support for
statecharts. Other current work tries to integrate graphical
user-interface builders based on Java beans technology into
Fujaba. This will enhance (or replace) the possibilities of our
generic standard user-interface.

Fujaba already provides some round-trip engineering
support for design patterns. This support will be extended by
an PhD. thesis and several master thesis’ during the next
years. This will include the development of a new more
sophisticated reverse engineering component for Fujaba.
Another PhD aims to provide means for the integration of
relational databases into modeled applications. Other long-
term researches aims to extend Fujaba’s support for the
earlier development phases and for project managment.

The current prototype of the Fujaba environment is available
as free software and comprises about 266 000 lines of pure
Java code. The release of Fujaba is available via:

http://www.uni-paderborn.de/cs/fujaba/index.html

REFERENCES
[BRJ99] G. Booch, J. Rumbaugh, I. Jacobson: The Unified

Modeling Language User Guide; Addison Wesley, ISBN
0-201-57168-4 (1999)

[FNTZ98]T. Fischer, J. Niere, L. Torunski, A. Zündorf: Story
Diagrams: A new Graph Rewrite Language based on the
Unified Modelling Language and Java; in Proc. of the 6th
International Workshop on Theory and Application of
Graph Transformation (TAGT), Paderborn, November
1998, LNCS, Springer Verlag, to appear (1999)

[KNNZ00]H. J. Köhler, U. Nickel, J. Niere, A. Zündorf: Inte-
grating UML Diagrams for Production Control Systems;
in Proc. Int. Conf. Software Engineering ICSE 2000, Lim-
merick, to appear, 2000

[Rhap] The Rhapsody case tool reference manual; Ver-
sion 1.2.1, ILogix, http://www.ilogix.com/

[RR-RT] The Rational-Rose Realtime case-tool, http://
www.rational.com

[SWZ95] A. Schürr, A. J. Winter, A. Zündorf. Graph gram-
mar engineering with PROGRES. In W. Schäfer, Editor,
Software Engineering - ESEC ’95, LNCS 989, Springer
Verlag, 1995.

[ZSW99] A. Zündorf, A. Schürr, and A. J. Winter: Story
Driven Modeling, Technical Report, Universtiy of Pader-
born, To appear 1999.

Figure 5 Simulation of a simple production system

blo
ck

ed

