
Tool Support for Developing Advanced Mechatronic Systems:
Integrating the Fujaba Real-Time Tool Suite with CAMeL-View∗

Sven Burmester, Holger Giese†,
Stefan Henkler, Martin Hirsch‡, Matthias Tichy

Software Engineering Group
University of Paderborn, Germany

{burmi,hg,shenkler,mahirsch,mtt}@uni-paderborn.de

Vadim Boiko, Alfonso Gambuzza, Eckehard Münch, Henner V̈ocking
Control Engineering Group

University of Paderborn, Germany
{boiko,gamba,muench,hevoe}@rtm.uni-padernorn.de

Abstract

The next generation of advanced mechatronic systems is ex-
pected to use its software to exploit local and global net-
working capabilities to enhance their functionality and to
adapt their local behavior when beneficial. Such systems
will therefore include complex hard real-time coordination
at the network level. This coordination is further reflected
locally by complex reconfiguration in form of mode man-
agement and control algorithms. We present in this paper
the integration of two tools which allow the integrated spec-
ification of real-time coordination and traditional control
engineering specifically targeting the required complex re-
configuration of the local behavior.

1 Introduction

For mechatronic systems [2], which have to be developed
in a joint effort by teams of mechanical engineers, elec-
trical engineers, and software engineers, the advances in
networking and processing power provide many opportu-
nities. It is therefore expected that the next generation of
advanced mechatronic systems will exploit these advances
to realize more intelligent solutions where software is em-
ployed to exploit local and global networking capabilities to

∗This work was developed in the course of the Special Research Ini-
tiative 614 – Self-optimizing Concepts and Structures in Mechanical En-
gineering – University of Paderborn, and was published on its behalf and
funded by the Deutsche Forschungsgemeinschaft.

†Currently a visiting professor at the Hasso-Plattner-Institut of the Uni-
versity of Potsdam.

‡Supported by the University of Paderborn

optimize and enhance their functionality by operating coop-
eratively. The cooperation in turn permits these systems to
decide when to adapt their local behavior taking the infor-
mation of cooperating subsystems into account.

The development of such advanced mechatronic systems
will therefore at first require means to develop software for
the complex hard real-time coordination of its subsystems
at the network level. Secondly, software for the complex
reconfiguration of the local behavior in form of mode man-
agement and control algorithms is required, which has to
proper coordinate the local reconfiguration with the coordi-
nation at the network level.

The envisioned approach is complicated by the fact that
classical engineers and software engineers employ different
paradigms to describe their aspect of these systems. In soft-
ware engineering discrete models such as state charts are
frequently used to describe the required interaction, while
the classical engineers employ continuous models to de-
scribe and analyze their control algorithms.

To enable the model-based development of the outlined
advanced mechatronic system, an integration between these
two paradigms is required which fulfills the outlined re-
quirements. To provide an economically feasible solu-
tion, the required integration must further reuse the con-
cepts, analysis techniques, and even tools of both involved
paradigms where possible.

In [3], we demonstrated how to use the FUJABA REAL-
TIME TOOL SUITE1 to develop safety-critical real-time sys-
tems conform to the model-driven engineering (MDE) ap-
proach. We present in this paper the integration of two
tools to bridge the development of software engineering for

1http://www.fujaba.de



real-time systems with control engineering: the open source
UML CASE tool FUJABA REAL-TIME TOOL SUITE and
the CAE tool CAMeL-View. The employed concepts for
the real-time coordination [9] and tool support for it have
been presented in earlier work. For the the local reconfig-
uration only the concepts have been presented [6], while in
this paper the developed tool support is described.

In the remainder of this paper, we first introduce the
modeling concepts for the integrated description of discrete
and continuous models in Section 2. Then, we outline in
Section 3 how this conceptual integration has to be paral-
leled at the execution level. Afterward, we discuss the ben-
efits of our approach with respect to analysis capabilities in
Section 4 and compare our approach with the related work
in Section 5. We finally provide our conclusions and an
outlook on planned future work.

2 Integration at the model level

Modeling advanced mechatronic systems require the in-
tegration of modeling approaches used in software engi-
neering and traditional engineering disciplines. To describe
our approach for modeling these systems, we first introduce
MECHATRONICUML for specifying discrete parts of a sys-
tem in Section 2.1. As mechatronic systems have continu-
ous parts too, we introduce in Section 2.2 block diagrams.
We finally provide our approach for modeling the required
integration of the different modeling paradigms in Section
2.3.

2.1 Discrete Specification

The software architecture of the considered mechatronic
systems is specified in MECHATRONIC UML [5] with com-
ponents which are based on UML [11] components. The
components are self-contained units, with ports as the in-
terface for communication. A component can contain other
components and events can be delegated from the top-level
component to its subcomponents. The internals of a com-
ponent are modeled with an extended version of UML State
Machines. Ports are the only external access point for com-
ponents and their provided and required interfaces specify
all interactions which occur at the port. The interaction be-
tween the ports of the components takes place via connec-
tors, which describe the communication channels.

As UML state machines are not sufficient to describe
complex time-dependent behavior (cf. [10]), we introduced
Real-Time Statecharts (RTSC) [4] as an appropriate model-
ing language for the discrete real-time behavior of a compo-
nent and for the event-based real-time communication be-
tween components. Real-Time Statecharts contain various
Timed Automata [1] related constructs. In contrast to Timed
Automata, firing a transition in a RTSC consumes time.

2.2 Continuous Specification

Mechatronic systems contain software to continually con-
trol the mechanic behavior. The standard notation for con-
trol engineering is a block diagram which is used to specify
feedback-controllers as well as the controlled plant. Conse-
quently, our approach uses block diagrams for the structural
and behavioral specification of continuous components.

Block diagrams generally consist of basic blocks, spec-
ifying behavior and hierarchy blocks that group basic and
other hierarchy blocks. Each block has input and output
signals. The unidirectional interconnections between the
blocks describe the transfer of information. The behavior
of basic blocks is usually specified by differential equations,
specifying the relationship between the block’s inputs and
outputs.

2.3 Hybrid Specification: Integration of
Feedback-Controller Configurations

As mentioned in Section 1, for mechatronic systems, it is
not sufficient to specify how discrete states of a component
change: Dependent on the current state, the components
have to apply different feedback-controllers. In [5], we in-
troduced a new approach for the specification of hybrid be-
havior, which integrates discrete and continuous behavior,
and even supports reconfiguration.

The idea is to associate to each discrete state of a com-
ponent a configuration of subordinated components. Such a
configuration consists of the subordinated components and
their current connection. These components are either pure
continuous components (feeback-controllers) or discrete or
hybrid components. If the subordinated components are
discrete or hybrid components, the configuration of these
subordinated components consists also of the current state
of the subordinated discrete or hybrid component. As hy-
brid components have a dynamic interface and shows just
the ports required in their current state, also a configuration
of components show just the in- and out-ports which are
really required or used in the current state of the superordi-
nated component.

This kind of modeling leads to implied state changes:
When the superordinated component changes its state, this
implies reconfiguration of the subordinated components.
The subordinated components reconfigure their communi-
cation connections and –if specified– their discrete state.
Such implied state changes can imply further state changes,
if the subordinated components embed further components.
This kind of modeling leads to reconfiguration across mul-
tiple hierarchical levels.

Compared to state of the art approaches, this approach
has the advantage that models are of reduced size and that
analyses require reduced effort (see Section 4).



3 Integration at runtime

Our approach for developing reconfigurable mechatronic
systems applies the model-driven development approach to
develop software systems at a high level of abstractions to
enable analysis approaches like model checking. Therefore,
ideally, we start with platform independent models to en-
able the compositional formal verification (cf. [9]). After-
ward, the platform independent model must be enhanced
with platform specific information to enable code genera-
tion. The required platform specific information is based
on a platform model, which specifies the platform specific
worst case execution times. After providing the platform
specific information, we generate code from the models.
In the remainder of this section, the generated code is de-
scribed. Therefore, we introduce the evaluation of the sys-
tem’s components. Due to continuous and discrete parts
of the considered mechatronic systems we have to consider
data flow and event based evaluation. Complex reconfig-
urations lead to a lot of possible evaluation configurations
and requires synchronization between the discrete and con-
tinuous parts. Our approach assures reconfigurations by
the evaluation of the data flow and further we assure the
data flow despite of reconfiguration. In the next subsections
(Section 3.1, Section 3.2, and Section 3.3), we introduce
our approach by considering first the discrete evaluation,
then the continuous evaluation, and finally the hybrid eval-
uation.

3.1 Discrete Evaluation

When a component is evaluated, it triggers periodically the
evaluation of its embedded components. As not every em-
bedded component belongs to every configuration, it de-
pends on the current discrete state of the component which
of the embedded components are evaluated. Then the trig-
gered components will themselves trigger their embedded
components (in dependency of their discrete states) and so
forth. Further, the association of configurations to discrete
states leads to reconfiguration when a component changes
its discrete state (e.g. when receiving an event). Due to the
implied state changes (see Section 2.3), this leads to recon-
figuration of the embedded components which are pure dis-
crete, pure continuous or hybrid components.

3.2 Continuous Evaluation

The continuous parts of a configuration describe the data
flow between the continuous inputs and the continuous out-
puts of the system. To ensure stability of the continuous part
of the system, the data flow may not be interrupted within a
computation step. Consequential, reconfiguration may only

occur between two computation steps. Therefore, we sepa-
rate execution of the continuous, data flow-orientated, and
the discrete, event-based, parts: At the beginning of a pe-
riod, the continuous system parts are evaluated. This is fol-
lowed by the evaluation of the discrete system parts. Thus,
we ensure that the reconfiguration –which takes place in the
discrete part– occurs after the computation of the continu-
ous system part is finished.

3.3 Hybrid Evaluation

Besides separating the continuous system parts from the
discrete ones, it has to be managed which components need
to be evaluated in which discrete state. Enhancing the top-
level component with this information is usually not fea-
sible as the number of global states grows exponentially
with the number of components. Therefore, we compose
the whole system as a tree structure consisting of single
Hybrid Components to obtain an efficient implementation.
Each Hybrid Component contains the information about its
discrete and continuous parts –which may consist of sys-
tem parts of the embedded components– itself. By the pre-
sented integration at runtime, we ensure consistent, correct
data flow and an efficient implementation in spite of com-
plex reconfiguration. Our seamless approach is realized by
the Fujaba Real-Time Tool Suite in combination with the
CASE Tool CAMeL. Both tools export hybrid components
for the integration on the modeling level (see Section 2.3)
and they export C++ code which is integrated to realize the
hybrid, reconfiguration behavior.

4 Analysis capabilities

For the outlined MECHATRONIC UML approach, two spe-
cific verification tasks for the resulting systems are sup-
ported.

First, the MECHATRONIC UML approach supports
model checking techniques for real-time processing at the
network level. It addresses the scalability problem by sup-
porting a compositional proceeding for modeling and verifi-
cation exploiting the component model and the correspond-
ing definition of ports and connectors as well as patterns
[9].

Secondly, a restricted subset of the outlined hierarchical
component structures for modeling of discrete and contin-
uous control behavior can be checked for the consistent re-
configuration and real-time synchronization w.r.t reconfigu-
ration taking proactive behavior into account [6, 8].

As the second approach can be embedded into the first
one, a combination of both approaches cover the whole real-
time coordination issues from the network level down to the
reconfiguration of the lowest level components.



5 Related Work

Related tools and techniques to MECHATRONIC UML
are CHARON, Hybrid UML with HL3, Hy-
ROOM/HyCharts/Hybrid Sequence Charts, Massacio
and Giotto, Matlab/Simulink/Stateflow, Ptolemy II, and
UMLh [7].

All presented tools and techniques support the specifi-
cation of a system’s architecture or structure by a notion
of classes or component diagrams. All approaches support
modular architecture and interface descriptions of the mod-
ules. Nevertheless, they do not respect that a module can
change its interface due to reconfiguration which can lead
to incorrect configurations.

CHARON, Masaccio, HybridUML with HL3, UMLh,
HyROOM, and HyCharts have a formally defined seman-
tics, but due to the assumption of zero-execution times or
zero-reaction times, most of them are not implementable, as
it is not realizable to perform a state change infinitely fast
on real physical machines. CHARON is the only approach
providing an implementable semantics. HyCharts are im-
plementable after defining relaxations to the temporal spec-
ifications. They respect that idealized continuous behavior
is not implementable on discrete computer systems. Fur-
ther, CHARON provides a semantic definition of refinement
which enables model checking in principle. Ptolemy II even
provides multiple semantics and supports their integration.

Although most of these approaches enable ruling the
complexity by a modular, component-based architecture
and by behavioral models that support history and hierarchi-
cal and orthogonal states, reconfiguration across multiple
hierarchical levels as required for the advanced mechatronic
systems envisioned and provided by the presented approach
is supported by none of them.

6 Conclusion

The tool integration of the CAE Tool CAMeL-View and the
CASE Tool Fujaba Real-Time Tool Suite enables the appli-
cation of our approach by continuing using well-approved
tools. It does not only integrate models, but also the synthe-
sized source code.

Acknowledgments

We thank all students who helped building the FUJABA REAL-TIME

TOOL SUITE within student research projects, master, and bachelor the-
ses, namely Vadim Boiko, Margarete Kudak, Wladimir Pauls, Matthias
Schwarz, Bj̈orn Schwerdtfeger, and Andreas Seibel.

References

[1] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for
Real-Time Systems. InProc. of Logic in Computer Science,
pages 414–425. IEEE Computer Press, June 1990.

[2] D. Bradley, D. Seward, D. Dawson, and S. Burge.Mecha-
tronics. Stanley Thornes, 2000.

[3] S. Burmester, H. Giese, M. Hirsch, D. Schilling, and
M. Tichy. The Fujaba Real-Time Tool Suite: Model-Driven
Development of Safety-Critical, Real-Time Systems. In
Proc. of the 27th International Conference on Software En-
gineering (ICSE), St. Louis, Missouri, USA, pages 670–671,
May 2005.

[4] S. Burmester, H. Giese, and W. Schäfer. Model-Driven Ar-
chitecture for Hard Real-Time Systems: From Platform In-
dependent Models to Code. InProc. of the European Con-
ference on Model Driven Architecture - Foundations and Ap-
plications (ECMDA-FA’05), N̈urnberg, Germany, Lecture
Notes in Computer Science, pages 25–40. Springer Verlag,
November 2005.

[5] S. Burmester, H. Giese, and M. Tichy. Model-Driven
Development of Reconfigurable Mechatronic Systems with
Mechatronic UML. InModel Driven Architecture: Founda-
tions and Applications, LNCS 3599, pages 47–61. Springer-
Verlag, August 2005.

[6] H. Giese, S. Burmester, W. Schäfer, and O. Oberschelp.
Modular Design and Verification of Component-Based
Mechatronic Systems with Online-Reconfiguration. InProc.
of 12th ACM SIGSOFT Foundations of Software Engineer-
ing 2004 (FSE 2004), Newport Beach, USA, pages 179–188.
ACM, November 2004.

[7] H. Giese and S. Henkler. A survey of approaches for the vi-
sual model-driven development of next generation software-
intensive systems. InJournal of Visual Languages and Com-
puting, volume 17, pages 528–550, December 2006.

[8] H. Giese and M. Hirsch. Modular Verificaton of
Safe Online-Reconfiguration for Proactive Components in
Mechatronic UML. In J.-M. Bruel, editor,Satellite Events
at the MoDELS 2005 Conference, Montego Bay, Jamaica,
October 2-7, 2005, Revised Selected Papers, LNCS 3844,
pages 67–78. Springer Verlag, January 2006.

[9] H. Giese, M. Tichy, S. Burmester, W. Schäfer, and S. Flake.
Towards the Compositional Verification of Real-Time UML
Designs. InProc. of the European Software Engineering
Conference (ESEC), Helsinki, Finland, pages 38–47. ACM
Press, September 2003.

[10] S. Graf and I. Ober. A Real-Time profile for UML and how
to adapt it to SDL. InProceedings of the SDL Forum’03,
2003.

[11] Object Management Group.UML 2.0 Superstructure Spec-
ification, October 2004. Document: ptc/04-10-02 (conve-
nience document).


