
ABSTRACT
This abstract presents an approach to semi-automatically detect

pattern instances and their implementations in a software system.
Design patterns are currently best practice in software development
and provide solutions for nearly all granularity of software design
and makes them suitable for representing design knowledge. The
proposed approach overcomes a number of scalability problems as
they exist in other approaches by using fuzzy logic, user interaction
and a learning component.

1. MOTIVATION
“Never touch a running system” is one of the most famous

idioms in computer science and best practice for many software
systems. This results from the experience that changing those
software systems often has side-effects usually in parts that have
not been adjusted to the change. The side-effects usually result
from an awful documentation of the software system dependencies,
because time-to-market has often a higher priority compared to an
expensive good documentation of the system. Large and older
systems, so-called legacy systems, often contain even no or only
fragments of documentation. A re-documentation of those systems
is usually very expensive, because it is mostly done manually.

Today, the Unified Modelling Language (UML) has become a
standard for describing software systems. The UML consists of
several different diagram types used for different purposes in a
software development process. It is therefore naturally to use the
UML diagrams also for re-documenting existing system, because
they are common knowledge for nearly all developers and enable a
seamless integration later in a redesign process.

In addition to the different diagram types in UML, design
patterns [GHJV95] are best practice in software development.
Design patterns introduced by Gamma et al., former known as
Gang-of-Four (GoF) patterns, provide solutions for recurring
problems. Today patterns of all granularity of software design exist
in literature, e.g. implementation patterns, distribution patterns,
architecture patterns and design patterns. If a pattern is used in an
actual software system’s design, it is called a pattern instance.

Typically, there exist many different pattern instances for one
pattern and even the actual implementation of a pattern instance
can differ from one instance to another.

GoF-patterns provided by Gamma et al. are the result of an
intensive (more or less manual) reengineering process of existing
software systems at Big Blue. Consequently, GoF-patterns can be
seen as a comprised collection of recurring successfully employed
implementations made by independent developers in different
software systems. This makes them highly suitable as a mean for
legacy system understanding and as a representation of design
knowledge. In addition, patterns connect several parts of a system
which makes them ideal to document dependencies.

A GoF-pattern provides a solution for a problem in terms of a
definition of the static and dynamic behaviour including usually
one example and one implementation possibility. Thereby most
parts of a GoF-pattern’s description are informal which offers
many interpretation opportunities. Typically, the static structure of
a GoF-pattern is given as class diagram, while the behaviour is
mostly described in prose and thereby not formally defined. To
support an automated recognition of GoF-pattern and other pattern
instances in existing software systems a formal definition of a
pattern is indispensable.

In addition to a formal definition of a pattern the success of an
automated recognition process of pattern instances highly depends
on its scalability. Tools supporting an automated recognition of
pattern instances must be able to analyse thousands or millions
lines of code (LOC). The scalability is often strongly depending on
the number of pattern definitions. Raising the scalability often
means a reduction of the number of pattern definitions or relaxing
the definitions in such a way that one pattern definition covers
more than one pattern instance or implementation. Both, reducing
the number of pattern definitions and relaxing the definitions,
reduces the preciseness of the analysis where in the first case not all
pattern instances are found and in the second case false-positives
occur (erroneously recognized instances and implementations).

In practice it is impossible to run a fully automated analysis
with a catalogue consisting of all pattern instance and
implementation definitions for all patterns. Fortunately, for the
analysis of a software system, it is usually sufficient to take only
those patterns into account, which are relevant for the software
system’s domain. Focusing on a specific domain reduces the
number patterns dramatically but does not solve the problem of a
complete enumeration of all pattern instances and implementations
of one pattern in one domain. Thus, a reengineering process has to
be interactive where the engineer must be able to adapt a pattern
instance or implementation definition to the actual system in a
certain domain during the analysis. In addition, such an interaction

Fuzzy Logic based Interactive Recovery of Software Design
(Extended Abstract)

Jörg Niere1

Software Engineering Group
Department of Mathematics and Computer Science

University of Paderborn
Warburger Straße 100, D-33098 Paderborn

Germany
nierej@uni-paderborn.de

maroc
*

maroc

maroc
 *This work is part of the Finite project funded by the German Research
 Foundation (DFG), project-no. SCHA 745/2-1.

allows the engineer to infer personal hypothesises and
presumptions and to integrate results from other analyses, e.g.
original documentation or interviews with the developers of the
system.

2. RELATED WORK
Other approaches related to the recovery of design patterns

from a software system’s implementation have failed for several
reasons.

Approaches using only parts of an implementation, such as
header files in C/C++ produce many false-positives, because
several design patterns are structural identical but behavioural
different.

Many approaches use deductive (bottom-up) execution
mechanisms. This forces scalability problems, because they
provide interesting results only after a complete analysis, which
can be a long running process. In the worst case the analysis
provides no or wrong results and it has to be performed once again.

Promising approaches use pattern matching approaches based
on graph theory. Unfortunately, the sub-graph isomorphism
problem, which occurs in those approaches, is NP-complete and
more sophisticated algorithms have to be implemented manually,
which is error-prone and hard to maintain.

Other approaches try to identify patterns by analysing code for
recurring constructs. Those approaches are better suited for the
detection of new design patterns, because they are not able to
handle implementation results appropriately.

3. MY APPROACH
My approach presents a reengineering system including a

process and techniques to extract pattern instances from a software
system’s implementation semi-automatically. Although the focus
lies on GoF-patterns the approach can also be used to detect other
kinds of pattern instances such as architectural, implementation or
distribution patterns.

Graph grammars [Roz97] build the formal basis of the
approach. Patterns are encoded as graph transformation rules and
the to be analysed source code is parsed in its abstract syntax graph
representation. The graph transformation rules are notated as UML
collaboration diagrams, which are common knowledge and reduce
the learn effort for other engineers.

Common parts in different patterns can be defined in separate
rules and can be (re)used in the rules for the original patterns. Such
common parts are called sub-patterns or sub-rules. In addition to
the composition of patterns the approach supports also (structural)
inheritance in object-oriented terms. Both raises the reuse and
reduces the number of rule definitions. To handle the large number
of implementation variants of a pattern instance, rules defining
patterns and sub-patterns are enhanced with fuzzy values to
describe a degree of uncertainty, cf. [ZK92]. With this uncertainty
one rule can match for several implementations with a certain
degree. This reduces the number of required rule definitions
dramatically.

The detection algorithm uses a certain graph parsing technique,
cf. [RS95], which annotates the abstract syntax graph of the source
code for any found pattern. The algorithm uses a forward/
backward chaining (combined bottom-up, top-down) strategy.
Such a combination accelerates providing first interesting analysis
results. This is the major advantage in comparison to pure
deductive approaches, which are usually able to provide interesting

results only after a complete analysis.
Typically the found analysis results are uncertain

corresponding to the fuzzy values defined in the rules. Uncertain
results are accepted or rejected automatically when the uncertainty
is higher or lower a certain bound or the engineer can accept and
reject results manually. A learning component logs the interactions
and recalculates the fuzzy values of the rules, and the acceptance
and rejection bounds based on statistic analyses. This automates
further analysis. In addition to the acceptance or rejection of
uncertain results, the engineer is also able to adapt the rules to a
certain domain during the analysis process. This becomes very
efficient in combination with the early delivery of interesting
results by the detection algorithm, because actions taken by the
engineer always influence further analysis. For example, in case of
an emergency, i.e. all instances are false-positives or no instance is
found, the engineer can stop the analysis, investigate the current
results and adapt the rules adequately in a very early analysis state.

The reengineering system is specified using UML and the
Fujaba environment, cf. [FNTZ98]. Fujaba provides editors for
UML class and activity diagrams and a code generation algorithm
and is used to specify the reengineering system as well as its
results. The effectiveness of my approach and the tools is shown
analysing large systems. For example Java’s Abstract Window
Toolkit (AWT), the SWING library with about 200k LOC and
Fujaba itself with more than one million LOC. All examples have
been built using design patterns, though the evaluation is used to
show the preciseness of my approach, extracting GoF-pattern
instances and comparing them with the documentation of the
systems. Using the reengineering system analysing a legacy
system shows the application of my approach on foreign
implementations. Thereby the advantages of integrating the
engineer in the process are also investigated and discussed.

The current Fujaba analysis prototype is downloadable via
http://www.upb.de/cs/fujaba and for more details on the algorithm
and the evaluation see [NSW+02].

REFERENCES
[FNTZ98] T. Fischer, J. Niere, L. Torunski, and A. Zündorf. Story

Diagrams: A new Graph Rewrite Language based on the Unified
Modeling Language. In G. Engels and G.Rozenberg, editors,
Proc. of the 6th International Workshop on Theory and Applica-
tion of Graph Transformation (TAGT), Paderborn, Germany,
LNCS 1764. Springer Verlag, 1998.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns: Elements of Reusable Object Oriented Software.
Addison-Wesley, Reading, MA, 1995.

[NSW+02] J. Niere, W. Schäfer, J.P. Wadsack, L. Wendehals, and
J. Welsh. Towards Pattern-Based Design Recovery. In Proc. of
the 24th International Conference on Software Engineering
(ICSE), Orlando, Florida, USA, May 2002. (to appear).

[Roz97] G. Rozenberg, editor. Handbook of Graph Grammars and
Computing by Graph Transformation. World Scientific, Singa-
pore, 1997.

[RS95] J. Rekers and A. Schürr. A Graph Grammar Approach to
Graphical Parsing. In Proc. of the IEEE Symposium on Visual
Languages, Darmstadt, Germany. IEEE Computer Society Press,
1995.

[ZK92] L.A. Zadeh and J. Kacprzyk. Fuzzy Logic for the Manage-
ment of Uncertainty. John Wiley and Sons, Inc., 1992.

