
1

Keywords
reengineering, soft computing, user interaction, learning,
fuzzy logic, fuzzy reasoning

1 INTRODUCTION
Reengineering is a big challenge in computer science
[MJS+00]. The Y2K problem was one of the major reengi-
neering projects preponderant successfully resolved and the
Euro conversion problem is still running until the end of this
year. Automatic reengineering and analysis approaches have
been developed and have resolved approx. 80%. Many of the
rest has been done by hand, but there are still some percent-
ages left unresolved. Typically, the developed analysis solu-
tions are rather problem specific and can not be used for
other problems.

Although the original application to reengineer is in a con-
sistent state, inconsistency must be handled by non-monot-
onic reasoning during the reengineering process. Typically
large software systems must be analysed partly by different
tools which includes imperfect knowledge. Furthermore,
imperfect knowledge results from non-available documenta-
tion and design of a system.

However, two major problems have to be solved: (1) handlin
of the number of different implementation variants to ensure
reliable results and (2) the applicability of the approach for
large software systems. Handling the number of different
implementation variants is well understood and solved by
more or less complex algorithms. Usually, many approaches
fail for large systems, e.g. [Wil96] and [KSRP99]. Thus
there is a trade-off between both problems.

One possibility to raise the software system’s size to analyse
is to involve the reengineer particularly in those cases where
the automatic analysis can not compute further results. Such
an approach to analyse relational databases to (re)construct
an object-oriented model is presented in [Jah99]. The
approach allows to analyse a database, e.g. schema, applica-
tions, and dat step by step to handle the complexity. User
interaction during the reengineering process fixes fuzzy
intermediate results. Inconsistencies during the analysis
process can be discarded by the reengineer or retained,
expecting that further analysis discards the inconsistency.
However, the approach is semi-automatic and results in
many user input (interaction) when applying the approach to
other domains, e.g. [JNW00, NWZ01].

The idea presented in this position paper is to combine a pat-
tern matching approach to handle problem (1), with semi-
automatic analysis to solve problem (2), and some kind of
easy learning strategies to raise the automation of a reengi-
neering process.

2 INCONSISTENCY AND USER INTERACTION
Jahnke and Walenstein classify in [JW00] reverse engineer-
ing as media for imperfect knowledge. They state, handling
inconsistency and imperfect knowledge combined with user
interaction is one solution to obtain better results concerning
the applicability of a reengineering approach for large soft-
ware systems.

The presented database reverse engineering process iterates
an automatic analysis part followed by user interaction until
there are no further information to extract from the underly-
ing system and the result is consistent. Inconsistencies have
to be resolved by the user.

Formal basis are Generic Fuzzy Reasoning Nets (GFRN)
which allow a graphical notation of the analysis including
uncertainty and inconsistency. Starting points for the analy-
sis are so called clichés handled as axioms in the inference
process. For database reverse engineering purposes there
exists a number of well-known common clichés to analyse
SQL-l fragments which occur in several database systems.

During the process, the user is able to fix intermediate results
and to control and navigate the automatic analysis. Thereby,
the user operates on incomplete knowledge and this may
lead to wrong user decisions, i.e. to inconsistencies in further
analysis. These ‘new’ inconsistencies have to be resolved
again by the user.

Experiences have shown that the user involvement decreases
within the reverse engineering progress. This results mainly
from the fact that the analysis process is conducted by the
user in a certain direction and this reduces the opportunities
for further analysis. However, the user has to fix all fuzzy
results in order to get a consistent analysis result. Also the
reuse of common clichés produces good results applying to
other database reverse engineering projects.

Applying the approach to other software reengineering
projects, e.g. for recovering design patterns from Java source
code have shown that common clichés can also be identified
but on a lower level of abstraction, see [JNW00, NWZ01].
Employing the approaches to some example projects has
shown that the user interaction increases dramatically in
comparison to experiences in the database reverse engineer-
ing process. The reason for this phenomenon lies in the high
number of implementation variants for one cliché. Typically
there exist many syntactically different implementations
with the same semantics in comparison to clichés in database
reverse engineering. Using abstract representations of cli-
chés known from classical compiler techniques, e.g. abstract
syntax graphs, or code normalization solve the problem, only
partly.

Using Learning Towards Automatic Reengineering
(Position Paper)

Jörg Niere
Software Engineering Group, Department of Mathematics and Computer Science

University of Paderborn
Warburger Str. 100, D-33098 Paderborn

Germany
nierej@uni-paderborn.de



2

3 USING LEARNING T O INCREASE AUTOMATION
Our solution to improve the approaches in order to decrease
user interaction is to learn from the interaction and adapt the
GFRN to raise the automation degree of the process.

The idea is to take advantage of preferences and affectations
of software developers, e.g. some developer prefer ‘for’-
loops other ‘while’-loops. So, in a software system there can
be found many comparable pattern like implementation vari-
ants of the same developer.

During the original reengineering process, the reengineer has
to fix all fuzzy results by hand. Learning from user interac-
tion in this case means that the underlying GFRN will be
adapted when the reengineer fixes several times the same
implementation variant. Next time a comparable implemen-
tation variant is analysed, the process fixes the situation auto-
matically.

In general, it can not be excluded that the learning process
will adapt the net in a wrong way in case of wrong ‘training’
material, e.g. the reengineer makes wrong decisions on not
representative information. Therefore the reengineer has to
revert some of his/her prior decisions and train the net again.
The opportunity to collect user interaction and adapt the net
at a certain time by the reengineer should result into better
solutions.

Such an approach allows to reuse an adapted net to analyse
software developed by persons with comparable preferences
and to benefit from previous results. Applying the approach
to other reengineering projects analysing software from dif-
ferent developers means resetting the learning values. This
should allow a high degree of reuse and may help to avoid
starting from the scratch each time.

There exist many papers and other literature about learning
procedures and algorithms, e.g. fuzzy logic, reasoning nets
and neural networks. [JS99] presents a possibility to inte-
grate a learning algorithm based on neural nets into the
reverse engineering process. In practice, this learning algo-
rithm fails because the data overhead is too large and slows
the process. To avoid such an overhead we want to use learn-
ing based on statistics evaluation of the user interaction. Col-
lecting statistic information does not produce acceptable
overhead and should adapt the weights of the underlying
GFRN.

Another opportunity to learn from the user’s interaction is to
extend the GFRN during the reengineering process. The
reengineering process can start with low basic knowledge
and is flexible enough to extend this knowledge on the fly.
This tackles the problem to provide a common cliché library
either for different kinds of software systems as well as for
software developed by different persons.

4 CURRENT AND FUTURE WORK
We want to integrate our reengineering process based on the
presented ideas into our Fujaba environment (From UML to
Java And Back Again). Fujaba is a case tool with automatic
code generation from an UML specification. The tool sup-
ports currently a round-trip engineering process, which
allows to modify generated code and to recover the specifica-
tion diagrams on basis of the code, only. Therefore Fujaba
uses some heuristics and naming conventions. The process is

fully automatic and fails in recovering specification dia-
grams if the code does not hold some implementation style
guide conventions. We are currently exchanging the hard-
coded reengineering process with a semi-automatic user
involved process to improve the applicability to larger soft-
ware systems. We use GFRN as the basis for the process and
focus on the development and integration of the learning
facilities described above. Since pattern matching is used,
we have to develop database support also with main focus on
exchanging certain pattern definitions to ensure a high reusa-
bility degree of patterns.
For more details seehttp://www.fujaba.de/

ACKNOWLEDGMENTS
The following people contributed substantially to this work
with fruitful discussions, careful proof readings, and a lot of
suggestions: Jens H. Jahnke, Holger Giese, Albert Zündorf,
and Jörg P. Wadsack. Thank you very much.

REFERENCES
[Jah99] J.H. Jahnke.Management of Uncertainty and In-
consistency in Database Reengineering Processes. PhD the-
sis, University of Paderborn, Paderborn, Germany,
September 1999.

[JNW00] J.H. Jahnke, J.Niere, and J.P. Wadsack.Automa-
ted Quality Analysis of Component Software for Embedded
Systems. In Proc. of the 8th Int. Workshop on Program Com-
prehension (IWPC), Limerick, Irland, pages 18–26. IEEE
Computer Society Press, 2000.

[JS99] J.H. Jahnke and C.Strebin.Adaptive Tool Sup-
port for Database Reverse Engineering. In Proc. of 1999
Conference of the North American Fuzzy Information Pro-
cessing Society, New York, USA, June 1999.

[JW00] J.H. Jahnke and A.Walenstein.Reverse Enginee-
ring Tools as Media for Imperfect Knowledge. In Proc. of the
7th Working Conference on Reverse Engineering (WCRE),
Brisbane, Australia. IEEE Computer Society Press, 2000.

[KSRP99]R.K. Keller, R.Schauer, S.Robitaille, and
P.Page.Pattern-Based Reverse-Engineering of Design Com-
ponents. In Proc. of the 21th Int. Conf. on Software Enginee-
ring, Los Angeles, USA, pages 226–235. IEEE Computer
Society Press, May 1999.

[MJS+00] H.A. Müller, J.H. Jahnke, D.B. Smith, M.A.
Storey, and K.Wong. Reverse Engineering: a roadmap. In
A. Finkelstein, editor, Future of Software Engineering. Int.
Conf. on Software Engineering (ICSE), Limerick, Irland.
ACM Press, June 2000.

[NWZ01] J.Niere, J.P. Wadsack, and A.Zündorf.Recover-
ing UML Diagrams from Java Code using Patterns. In Proc.
of 2nd Workshop on Soft Computing Applied to Software
Engineering, Enschede, The Netherlands, Lecture Notes in
Computer Science (LNCS). Springer Verlag, 2001.

[Wil96] L.M. Wills. Using Attributed Flow Graph Par-
sing to Recognize Programs. In Proc. of Int. Workshop on
Graph Grammars and Their Application to Computer Sci-
ence, LNCS 1073, Williamsburg, Virginia, 1994, November
1996. Springer Verlag.


