
ABSTRACT
This paper proposes to use SDL block diagrams, UML class
diagrams, and UML behavior diagrams like collaboration
diagrams, activity diagrams, and statecharts as a visual
programming language. We describe a modeling approach
for flexible, autonomous production agents, which are used
for the decentralization of production control systems. In
order to generate a (Java) implementation of a production
control system from its specification, we define a precise
semantics for the diagrams and we define how different
(kinds of) diagrams are combined to a complete executable
specification. 
Generally, generating code from UML behavior diagrams is
not well understood. Frequently, the semantics of a UML
behavior diagram depends on the topic and the aspect that is
modeled and on the designer that created it. In addition,
UML behavior diagrams usually model only example
scenarios and do not describe all possible cases and possible
exceptions. 
We overcome these problems by restricting the UML
notation to a subset of the language that has a precise
semantics. In addition, we define which kind of diagram
should be used for which purpose and how the different
kinds of diagrams are integrated to a consistent overall view.

Keywords
UML, SDL, collaboration diagrams, statecharts, graph
grammars, embedded systems

1 INTRODUCTION
Current production systems e.g. within factories for cars or
any other complex industrial good face two major problems.
First, production control software needs to become (more)
dezentralized to increase their availability. It is not
acceptable, that a failure of a single central production
control computer or program causes hours of down-time for
the whole production line. Second, todays market forces
demand smaller lot sizes and a more flexible mixture of
different products manufactured in parallel on one
production line. 

These problems may be solved by flexible, autonomous
production agents. Some of these production agents might

control specific parts of the overall production system like a
single manufacturing cell or a transport robot. Other
production agents may take the responsibility for
manufacturing certain kinds of goods. Such flexible,
autonomous production agents need knowledge of
manufacturing plans for different goods and of their
surrounding world, e.g. the layout of the factory or the
availability of manufacturing cells. In addition, such
production agents have to coordinate their access to
assembly lines with other competing agents. 

Common specification languages for embedded systems,
like SDL [ITU96] and statecharts [HG96], focus on the
specification of (re)active components of production control
systems like control units, actors (e.g. motors, valves), and
sensors (e.g. switches, lightborders, pressure, and
temperature sensors), and on the interaction of such reactive
components via events and signals. They provide no
appropriate means for the specification of complex
application specific object-structures as required by the
described autonomous production agents. 

Common object-oriented modeling languages, like UML,
support the modeling of complex application specific object-
structures. However, UML focuses on early phases of the

Figure 1 Snapshot of a production system
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sofware life-cycle like object-oriented analysis and object-
oriented design, cf. [BRJ99]. Thus, UML behavior diagrams,
like collaboration and sequence diagrams, usually model
typical scenarios describing the desired functionality, only. 

Our work focuses on the design and implementation phase.
We are looking for executable specifications and code
generators. We use SDL block diagrams for the specification
of the agents of a production control system and their
communication channels (signal routes). We use statecharts
for the specification of the reactive behavior of the
production agents. Instead of pseudo-code, we use a well
defined subset of collaboration diagrams as a visual
programming language for the specification of do, entry,
exit, and transition actions within statecharts. In our use,
collaboration diagrams gain a precise operational semantics
taken from graph grammar theory. This precise semantics
allow the automatic translation of such collaboration
diagrams to object-oriented programming languages like
Java or C++. Thus, this paper integrates SDL block
diagrams, statecharts and collaboration diagrams to form an
executable specification language that allows to specify
reactive behavior as well as complex application specific
object-structures. We use the simulation of a production
control system as a running example within this paper.
However, we are confident that our modeling approach suits
well for other application areas that deal with collaborating
reactive objects and that employ complex application
specific object-structures. 

The next chapter discusses related work in more detail.
Chapter 3 introduces our modeling approach and our
integrated specification language. Chapter 4 describes the
simulation of a simple production process as a running
example for this paper. Chapter 5 discusses the translation of
class-diagrams to Java code as a basis for the translation of
behavior diagrams. Chapter 6 describes our concepts for
statecharts. This enables us to discuss our use of
collaboration diagrams and their combination with
statecharts in chapter 7. Our debugging and testing facility is
introduced in chapter 8. Chapter 9 summarizes our work and
outlines current and future perspectives.

2 RELATED WORK
Current approaches for the specification of production
agents use SDL [ITU96] or statecharts [HG96]. SDL is very
popular in the electrical and mechanical engineering
community. SDL block diagrams are used to specify
processes and channels between such processes as well as
messages passed via these channels. The behavior of
embedded system processes is specified either using SDL
process diagrams or using statecharts. Both notations
basically model finite state automatas which react on signals
by executing some actions, sending signals, and changing to
new states. Both languages have a well defined formal
semantics and tool support for analysis and simulation and
code generation is available [GK97, Doug98, H+88,
SGW94, AT98, Rhap, RR-RT]. 

Compared to SDL process diagrams, statecharts provide
more expressive language features like nested states, and-
states, and history states. In addition, the modeling of the

internal process behavior becomes the domain of software
developers (instead of mechanical or electrical engineers)
which are more used to statecharts than to SDL process
diagrams. Thus, we decided to adopt statecharts for this
purpose. 

However, statecharts (as well as SDL process diagrams) lack
appropriate means for the specification of the actual actions
triggered by the received signals. Usually, one has to use
pseudo code for this purpose and in case of code generation
one actually deals with the nasty details of current textual
programming languages. Statecharts provide sophisticated
means for the specification of (concurrent) control flows for
reactive objects. However, by purpose statecharts abstract
from the complex application specific object structures that
build up the concrete states of a system. Statecharts do not
explicitly deal with values of attributes or with links to other
objects nor with the evolution and changes of these object-
structures caused by the execution of usual methods. 

The specification of application specific object-structures is
a well known application area for graph grammars, cf.
[Roz97, SWZ95]. Basically, a graph rewrite rule allows the
specification of changes to complex object-structures by a
pair of before and after snapshots. The before snapshot
specifies which part of the object-structure should be
changed and the after snapshot specifies how it should look
like afterwards, without caring how these changes are
achieved. While graph grammars are appropriate for the
specification of object-structure modifications, they lack
appropriate means for the specification of control flows.
Even the well known graph rewrite system Progres [SWZ95]
provides only textual control structures. 

To overcome this problem, in previous work, we introduced
UML activity diagrams as high-level control flow notation
for graph rewrite rules, cf. [JZ98, FNTZ98]. In order to
facilitate the use of graph rewrite rules for object-oriented
designers and programmers, we additionally adapted UML
collaboration diagrams as a notation for object-structure
rewrite rules. For this combination of activity diagrams and
collaboration diagrams we use the name story-diagrams, cf.
[JZ98, FNTZ98]. Story-diagrams are a powerful visual
progamming language that provides ideal means for the
specification of complex application specific object-
structures. Story-diagrams are well suited for providing our
production agents with an appropriate model of their
surrounding world and for modeling complex manufacturing
plans, cf. [NZ99]. However, story-diagrams still lack means
for the specification of the reactive behavior of
communicating and collaborating production agents. Thus,
this paper proposes to extend story-diagrams by statecharts
to so-called story-charts. Story-charts use statecharts (and
activity diagrams) to specify complex control flows and
collaboration diagrams to specify the entry, exit, do, and
transition actions that deal with complex object-structures. 

3 MODELING APPROACH
Once the general requirements engineering and analysis
work is done, we propose the following steps for the
specification of flexible production control systems, cf.
Figure 2:



1. Analysis Consolidation Phase: Based on the results from
the general analysis phases, in this phase the topology of the
planned production control system is modeled. This includes
the identification of the number and types of participating
processes as well as the definition of communication chan-
nels and of all kinds of interchanged signals. 
Within our projects we use SDL block diagrams for this pur-
pose, since SDL block diagrams are very popular in enginee-
ring disciplines and this work is done in close collaboration
with mechanical and electrical engineers. However, in other
application areas one might use UML deployment diagrams
or ROOM [SGW94] capsules and ports for the same pur-
pose. 

2. Design Phase: In the next step, one derives the initial
(UML) class diagram of the desired system. At this, each
process(type) identified in the SDL block diagram generates
a class in the class diagram. In addition, each signal received
by a process in an SDL block diagram creates a signal
method in the corresponding class. 

3. Reactive Behavior  Modeling: SDL block diagrams (and
the derived class diagrams) specifiy the number of signals
which are understood by the different processes. Now, we
have to define how each process will react on these signals.
Thus, for each process class, one has to provide a statechart
modeling the general process behavior. These statecharts
should at least cover all signals that are understood by /
declared in the corresponding process class. 
In the engineering field, usually SDL process diagrams are
used for this purpose. However, we prefer statecharts here,
due to the additional expressive power of nested states and
and-states. 

4. Actions Modeling: First, statecharts specify at which
states a certain process reacts on which signal. In response to
a signal a process might change its state and execute some
additional activities. For a flexible production agent, these
activities might again include complex computations. These
complex computations might employ or modify complex
object-oriented data structures in order to reflect the surroun-
ding world or the execution of manufacturing plans for cer-
tain products. For the specification of such complex
computations we propose to use UML collaboration dia-
grams. Thus, we propose collaboration diagrams to specify
complex control flows of methods employed as actions

within statecharts. For operations on complex object- struc-
tures, we propose to use collaboration diagrams as a specifi-
cation means. 
Frequently, one will need more than a single collaboration
diagram to model a number of object structure modificati-
ons. Therefore, we combine statecharts (and activity dia-
grams) with collaboration diagrams to a powerful visual
specification language. Basically, we allow to use collabora-
tion diagrams as the specification of activities instead of just
pseudo code statements. 

5. Code Generation: Once all aspects of the system are spe-
cified, the Fujaba environment is able to generate a com-
plete, executable Java implementation from the class and
behavior diagrams. Well, to be honest, process distribution
and communication aspects defined in the SDL block dia-
grams are not yet covered by our code generator and need
manual coding. This is current work. However, the currently
generated code suffices for the following simulation phase.

6. Simulation: One of the main problems in todays manu-
facturing industry are long down times of assembly lines due
to long testing phases on the installation of new software.
Thus, we propose to simulate the production process before-
hand in order to shorten software reconfiguration down-
times of physical assembly lines. 

Note, during the specification of the process behaviors one
usually will extend the class diagrams e.g. by attributes and
associations and auxiliary classes modeling the object
structures employed by the production control system. In
addition, one will add auxiliary methods that encapsulate
complex computations employed by statecharts in response
to received signals. Actually, any item used in a behavior
diagram has to be declared within the class diagram(s). 

In our approach, the different diagrams are logically and
mutually dependend on each other. The SDL block diagrams
specify the minimal number of (process) classes to be
contained in the class diagram and for each such class all its
signal methods. In addition, each process class is equiped
with one main statechart. This statechart has to define the
response to all signals of the corresponding class. In addition
to state changes, this response might include actions. Each of
these actions is specified using one behavior diagram (which
in turn may apply additional diagrams for subactivities).
Thus, within the resulting overall specification each aspect
of the system is specified by exactly one diagram and it is
absolutely clear how these different diagrams are related to
each other and how they form the whole specification. In
addition, a specification is complete only if all aspects
identified in the SDL block diagram are covered by class
diagrams and statecharts and if in turn all auxilliary aspects
introduced in these diagrams are covered by additional
behavior diagrams (until transitive closure is reached). 

Note, the described nesting of specification diagrams is
enforced for the final system specification, only. One might
use additional UML behavior diagrams in order to analyze
certain scenarios. Such diagrams need not to be complete
and there may be multiple diagrams that overlap in several
aspects. One may study such scenarios at any time during the
specification process and one should keep such diagrams for

SDL block diagrams

class diagrams

collaboration diagrams
(with graph grammar semantics)

state charts

Figure 2 Diagram combination for the modeling approach

activity
diagrams



documentation purpose. Actually, this is very important
modeling work, too. However, in our approach, such
additional diagrams are not part of the final, overall,
executable system specification and they do not contribute to
the code generation. 

The next chapters discuss the phases of our approach in more
detail. 

4 RUNNING EXAMPLE
This paper uses the simulation of a simple production
process as running example. This production process models
a factory with various manufacturing places and with
shuttles transporting goods from one manufacturing place to
another. The example stems from the ISILEIT project
funded by the German National Science Foundation (DFG).
The goal of the project is the development of a formal and
analyzable specification language for manufacturing
processes. This specification language shall allow to verify
important system properties like lifeness and the absence of
deadlocks, e.g. via model checking. In addition, a code
generator shall provide automatic code generation for the
building blocks of a manufacturing process, namely shuttles,
gates, storages, assembly lines, etc. 

After the requirements engineering and analysis work, our
approach proposes an analysis consolidation phase, where
the topology and the block diagrams have to be specified. 

Figure 3 shows the topology of the sample factory used as a
running example. The production line consists of a track-
based transport system, where shuttles are moving. In our
example there are one main track circle and transfer gates to
reach two assembly lines. We call either the assembly lines
on the right as well as the storages on the left stations.
Stations and their related robots build an operating unit, e.g.

at storages steel can be loaded on shuttles or manufactured
goods can be taken from shuttles. Assembly lines are able to
manufacture different kinds of goods, e.g. keys or locks, out
of a peace of iron.

Seven shuttles are currently working on the track system.
Each shuttle executes a defined working task. This task
starts, when a shuttle is assigned to produce a certain good,
e.g. locks. The first step in the working task is to collect a
piece of iron from the upper left storage, then it has to move
to an assembly line and to order the wanted good. At each
transfer gate the shuttle has to decide where it wants to go
according to the choice of the assembly line and the shortest
path to get there1. Once the shuttle has reached an assembly
line, it orders its assigned good. The related robot takes the
piece of iron from the shuttle (e.g. upper right assembly
line), and manufactures the good, using different tools (e.g.
lower right assembly line). The produced good is put on the
shuttle and has to be brought to a storage (lower left storage).
After the shuttle has moved to the storage and the good is
stored, the working task has reached the end and the shuttle
starts again from the beginning. The shuttle will execute this
tasks until it gets a new assignment or it "dies".

From this example topology and overall behavior one may
derive an SDL block diagram by identifying participating
processes and communications between them.

For our sample factory, the processes are shuttles, gates,
assembly lines, and storages. These processes can be derived
from the description above, where shuttles are the central
parts communicating with other parts in the factory in order
to fulfill their working tasks. Figure 4 shows a screen-shot of
the Fujaba environment [FNTZ98] with the SDL block

1. The decision depends on the current tool, and on the number of 
waiting shuttles at the assembly line.Figure 3 Topology of our sample factory example
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diagram for the factory example. It contains the four
processes Gate, Shuttle, Storage, AssemblyLine and
communication channels (ch1...ch5). Channels connecting
two processes model a communication between the
processes, and channels going from a process to the border
of the diagram model a communication with an outer block,
here the user. Communication signals are specified in square
brackets at the end of an arrow head. For example, the
AssemblyLine process can either receive a produce signal
from the Shuttle process as well as a restart or stop signal
from the user. The Storage process models both types of
storages, one to get a piece of iron and one to store the
manufactured good. Therefore, a Storage can receive a load
and a store signal. As the signals at the channels are only
named, their declaration including parameters must be
specified in a so-called comment frame titled signal as
shown in the upper right corner. For example, an assign
signal is declared with a string parameter for the good a
shuttle shall ’produce’ .

Note, in this work we use SDL block diagrams as a kind of
use-case diagrams that model the services provided by the
different processes. Alternatively, one could use UML
deployment diagrams for the same purpose. 

From such SDL block diagrams the Fujaba environment
[FNTZ98] derives an initial class diagram with process
classes for each identified process (kind) and signal methods
for each signal understood by these process classes [San99].
In addition, we would like to generate code that initializes
the production control system at boot time and creates the
employed production agents and establishes the
communication channels. This is current work. 

5 FROM CLASS DIAGRAMS TO JAVA CODE
The next phase in our modeling approach is the design
phase, where each process of the SDL block diagram
generates a class in the initial class diagram. The signals in
the block diagram become signal-methods of the
corresponding classes. During further development this class
diagram is extended to model additional structures like
attributes, associations and auxiliary classes. Figure5 shows
a screen-shot of the Fujaba environment with the UML class
diagram for the production process example. It contains
classes like Shuttle, Storage, AssemblyLine, and Gate that
are derived from the SDL block diagram. The auxiliary class
Track is used to model the topology of our factory. The
classes Storage and AssemblyLine inherit from class Station,
which inherits from class Track. This inheritance associates
these components with certain tracks. In addition, class Gate
is specialized into Splits and Joins, which implement
different swap methods for switching between outgoing or
incoming tracks, respectively. 

The translation of class diagrams to an object-oriented
programming language is straight-forward and provided by
most current OO-CASE tools, [RR-RT, Rhap]. The Fujaba
generator [FNTZ98] translates UML classes to Java classes.
Methods are translated into Java method declarations. The
method bodies are usually empty (but a designer may specify
a body using UML behavior diagrams see chapter 6 and 7).
According to the Java Beans style guides, we translate

attributes to private Java attributes accessible via appropriate
get- and set-methods.

UML associations are usually bi-directional. Thus, we
implement associations by pairs of references in the
respective classes. For multi-valued associations, like the
(reverse direction of the) choices association between Path
and Shuttle, we use standard container classes provided by
the Java Foundation Classes [JFC99]. In order to guaranty
the consistency of the pairs of references that implement an
association, the respective access methods for reference
attributes call each other. Overall, the implementation of
associations is close to the strategy of the Rhapsody tool
[Rhap].

The generation of code for UML class diagrams provides the
basis for the translation of behavior diagrams within the next
phases of our modeling approach.

6 REACTIVE BEHAVIOR VIA STATE-CHARTS
For the reactive behavior modeling we use statecharts.
Statecharts can be used for many different purposes. They
can model the behavior of a whole application or just a
single method. Statecharts may model all allowed sequences
of method invocations on a certain object or they may model
state dependent reactions of certain objects on the reception

Figure 5 Fujaba showing the example class diagram



of certain events. Each of these uses leads to different
semantics of statecharts. In addition, the different usages
employ different statechart language features. In order to
generate code from a state-chart one must clearly identify
which part of an application and which behavioral aspect is
modeled by the provided statechart.

This chapter discusses the use of statecharts for the
specification of the reactions of production agents to signals
invoked by other agents in the production system. Thus, in
our approach statecharts specify the reactive behavior of
process classes that are derived from the SDL block
diagrams. Thus, depending on the object’s current state a
statechart defines which actions will be executed and which
successor state is entered. 

Figure 6 shows a very simple statechart for class Shuttle that
is used to outline the general behavior of a shuttle and that
allows some simple simulations. In this simulation, class
Shuttle models the key players in our production control
system. Shuttles fetch material from certain storages, travel
to appropriate assembly lines, initiate manufacturing steps,
and deliver the produced goods at other storages. 

Shuttles have two top level states. Initially, they are in state

waiting where they accept assign events. As declared in the
SDL block diagram and in the UML class diagram, an
assign event has one parameter wanted which describes the
good to be produced by a shuttle. Thus, the shuttle stores this
value in its task attribute and switches into state active.
While a shuttle is active, at any time a stop event will stop it
and it changes back into state waiting. State active is a
complex state that controls the manufacturing process
executed by a shuttle. Basically, a shuttle loops through the
three main production phases fetch material, produce the
desired good with the help of an assembly line, and deliver
the manufactured good at the storage. 

Each phase consists of two steps. First the shuttle travels to
an appropriate station. For example, the do method of state
goLoad calls activity go(„Load“). The go activity itself is a
complex operation specified by a sub-statechart. This sub-
statechart employs methods to compute the shortest path to
the target station and it deals with gates that need to be
switched and it operates the physical sensors and actors of
the shuttle. Its details are omitted due to the lack of space.
Once the go activity reaches the target station the shuttle
sends itself a reached event that issues the next production
step, cf. Figure 6. While the shuttle is traveling, every 10000
milliseconds it reconsiders the current situation via method
checkPlan. Method checkPlan checks the state of gates and
shuttles and stations it is passing or traveling to. In case of
problems it may change plans. If for example the target
station is out-of-order it might switch to an alternative
station. 

In order to simulate production processes, easily, we have to
generate code from such statecharts. Our code generation
approach for statecharts is inspired by the state-design
pattern, cf. [GHJV95] and by [AT98] and by the Rhapsody
case tool [HG96, Rhap]. However, these approaches
generate specific new classes for each state employed in the
state-chart. This results in the generation of a complicated,
large inheritance hierarchy of many specific, small state
classes that mainly redefine a small number of methods,
only. [Doug98, chapter 6.2.3] uses a generic array based
state-table. This idea was attracting to us, however, we
considered the array based implementation as too inflexible. 

Our approach adapts the idea of [Doug98] but uses an object
structure to represent the state-table at runtime, cf.
[KNNZ99]. We use objects to represent the states of a
statechart and attributes to hold the do-, entry-, and exit-
methods. These state objects are linked via transition objects
that store the triggering events and possible guard and action
methods attached to a transition. Additional links and
attributes represent e.g. the nesting of complex states and
identify initial states, history states, deferred events, etc.
Each reactive object (e.g. each shuttle) holds its own runtime
representation of its statechart. In addition, we provide a
library function handleEvent that is able to interprete the
state-table and to react on events as specified in the
statechart and to issue the appropriate action methods and to
switch to the resulting states. 

Using a generic state-table representation at runtime, all
code that needs to be generated from a statechart by the

Figure 6 Simple State-chart of a shuttle



Fujaba environment is a single method initStatechart per
reactive class. Method initStatechart is called within the
constructor of the reactive object. It builds up the state-table,
attaches it to the reactive object and starts an event handling
thread. For the event methods of a process class we generate
a simple standard implementation. The event methods create
an event object encapsulating the event name and possible
parameter values. Then, the event object is enqueued to the
event queue where it is picked up by the event handling
thread. The event handling thread handles the event
according to the current state and the state-table structure.
Finally, auxiliary methods encapsulating transition guards
and the action methods have to be created. 

Note, to send an event to a reactive object one just calls the
according event method. This provides a very convinient and
uniform way to issue services on an reactive object. It also
enables a standard adaption of inter process communication
services like Java-RMI or CORBA. 

In our approach, actions used in statecharts may perform
complex computations that may need some time. For
example, the go activity used in Figure 6 does a shortest path
computation to minimize traveling times. To deal with these
computation times, our statechart implementation uses
event-queues and handles events asynchronously. Internal
events (like event reached within class Shuttle) create and
enqueue event objects, too. These internal event objects gain
a higher priority than external events. This ensures that all
reactions to an external events (direct activties and
secondary steps caused by internal events) are completed
before the next external event is handled. Note, our
statechart framework implements a so-called run-to-
completion semantics. For a more complete discussion of
these issues see [KNNZ99, Köhl99].

Note, in our approach all events are explicity targeted to
their receivers. (One actually calls a method on the receiving
object.) Targeting events explicitly models communication
channels between production agents as specified in the SDL
block diagrams. Targeted events have already been
introduced by UML statecharts. However, usually
statecharts assume a broadcast mechanism distributing
events to all available reactive objects. To support this style
of event handling, our framework provides a class
FBroadcaster. In case of broadcast events, the application
creates an implicit broadcaster object. All reactive objects
(interested in these kinds of events) register themselfs at the
broadcaster for the events they are interested in. Broadcast
events are created as usual and then pushed into the event
queue of the broadcaster. The broadcaster handles the
received events by forwarding them to the event queues of
the reactive objects that registered their interest in this kind
of events. Note, an application may employ additional
broadcasters, e.g. in order to establish broadcasting of
certain events for certain groups of reactive objects. Such
group events are just send to the group broadcaster object. 

Using more than one event queue allows a more concurrent
handling of events using multiple threads. However, this
probably changes the ’order’  in which events are consumed
and thus has semantic relevance. In addition, the usual

problems attached to concurrent executions, like race
conditions and deadlocks, are raised. Of course, a sound
specification should avoid such problems. Static checking
for (recognizable yet frequently occuring) specification
errors raising these problems is current work. 

7 COMBINING STATECHARTS AND COLLABORA-
TION DIAGRAMS 
The previous chapter described how one may use statecharts
to model the reaction of a process object to signals.
Depending on their current state, process objects execute
certain actions and change to new states. What is missing are
appropriate means for the modeling of the actual actions

Figure 7 Story-Chart for class AssemblyLine



triggered by the signals. Therefore, we propose to combine
statecharts and collaboration diagrams. We use statecharts to
specify complex control flows and collaboration diagrams to
specify the entry, exit, do, and transition actions that deal
with complex object-structures. 

Originally, collaboration diagrams are intended to model
scenarios of complex message flows between a group of
collaborating objects. In this context, collaboration diagrams
do not have a precise execution semantics. In order to use
collaboration diagrams as a visual programming language
one has to add a lot of details on how the participating
objects are found and how object structure modifications are
executed. As an example, Figure8 shows a detailed
collaboration diagram for the activity doPuttingGood which
is part of the statechart for class AssemblyLine, cf. Figure7.

The collaboration diagram of Figure 8 employs 5 objects
that are connected via various links. The collaboration
messages 1 to 3 look up associations attached to the this
object and fill variables s, factory, and cont with appropriate
values. Note, that according to the class diagram, holds is an
to-many association. Thus, looking up the holds association
results in a set of objects represented by the multi-object
cont. Step 4 retrieves the first element from this set of objects
and assigns the result to variable g. At this point, all
participating objects are found and the actual operations can
be executed. Step 5 removes the retrieved good g from the
set cont and step 6 creates a carries link between shuttle s
and good g and step 7 changes the value x of the amount
attribute of object factory to the new value x+1. Finally, step
8 sends a goOn signal to shuttle s. 

Provided with such detailed collaboration messages code
generation becomes very simple, cf. Figure 9. However, this
usage of collaboration diagrams adds little abstraction
compared to usual pseudo code. We raise the level of
abstraction by assigning a standard semantics to certain
graphical elements of collaboration diagrams and by a
systematic simplification of required elements. For the
collaboration diagram of Figure8 this will result in the
simplified collaboration diagram shown as do action of state

puttingGood at the bottom of Figure 7.

In our context, a collaboration diagram specifies the body of
a certain do method. At this, all collaboration messages
originate from the this object. All boxes depict local
variables of the current method or globals declared in the
class diagram. Thus, it is clear which kind of objects are
denoted and all «self», «global», and «local» links may be
omitted. Finally, only «association» links will remain. Thus,
the «association» stereotype is superfluous, too. Next, it is
clear, that the method variables have to be filled using the
depicted links between the objects. The Fujaba code
generator is able to compute the necessary look-up
operations, automatically, cf. [Zün96b, FNTZ98]. Thus, one
may omit the association look-up operations (step 1 to 4). In
Figure 8, the multi-object cont is used to look up the holds
association and to select one of its elements. Our code
generator derives these two steps, automatically. Thus, a
single holds link from this to g suffices. Next, the depicted
constraints {new} and {destroyed} indicate the creation and
deletion of the corresponding elements, clearly. Thus, steps
5 and 6 can be generated by our code generator and may be
omitted. Additionally, we simplify the frequent case of
attribute assignments by allowing inscriptions like
amount:=amount+1 in the attribute compartment of an
object. Thus, the two occurences of the factory object and
their connecting «becomes» link may be combined to a
single box. 

The bottom state in Figure7 shows the resulting simplified
collaboration diagram for activity doPuttingGood. In
addition to the discussed simplifications we use series of
(green/light grey) plus symbols and two parallel (red/dark
grey) cancelling lines instead of {new} and {destroyed}
constraints, respectively. Experiences in teaching our
notation to students have shown, that the textual constraints
are frequently overlooked and that the new graphical
notation is much easier to read. 

In our usage, collaboration diagrams depict the effects of
operations in terms of changed attribute values and created
and destroyed objects and links. Thus, the initial situation
modeled by a collaboration diagram corresponds to the left-
hand side of a graph rewrite rule. Accordingly, the situation
resulting from the execution of the collaboration diagram
corresponds to the right-hand side of that graph rewrite rule.
This view allows the execution and translation of
collaboration diagrams using code generation techniques
known from the graph grammar field, cf. [SWZ95, Zün96,
FNTZ98]. In addition, the rich graph grammar theory
facilitates the proof of complex system properties, cf.
[Roz97] for an overview of graph grammar theory and
[JZ99] for an application of this theory to the database re-
engineering field. 

Figure 7 shows how we combine statecharts and
collaboration diagrams to so-called story charts. Figure 7
shows the story chart of our assembly lines. Our assembly
lines loop through 4 major states. Usually an assembly line is
in state waiting. When it receives a produce event, it stores
the wanted parameter into its task attribute and changes to
state getMaterial. State getMaterial shows its do method as a
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Figure 8 Detailed story-diagram for action doPuttingGood



collaboration diagram, directly. The do method looks up the
shuttle s that should currently stay at this assembly line and
the good g that is carried by s. It just cancels the carries link
between g and s and creates a holds link between this and g,
thus simulating that the assembly line takes the carried
material from the shuttle. The collaboration diagram of the
next state producing simulates that the assembly line turns
the held material into the desired good. For simplicity
reasons this is done by simply changing the type attribute of
g to the value of this.task. The transition to state puttingGood
fires after 20000 milliseconds, simulating that the
manufacturing process needs some time. Finally, state
puttingGood loads the manufactured good on the shuttle
again and increments the amount of manufactured goods of
its factory. In addition the collaboration message 1: goOn()
sends a signal to the shuttle which should then switch from
its state produce to state goDeliver and proceed with its tasks,
cf. Figure6. 

Figure 7 illustrates the expressive power of story charts, the
combination of statecharts and collaboration diagrams.
Beyond just specifying the reactions to signals in terms of
method activations and state changes, the embedded
collaboration diagrams show the object-structures that model
the concrete internal states of our production agents and how
these states evolve over time. Due to our experiences with a
combination of activity diagrams and collaboration diagrams
cf. [JZ98, FNTZ98, NZ99] the combination of high-level
control flow specifications (statecharts or activity diagrams)
and high-level object structure rewrite rules (collaboration
diagrams) results in a powerful visual progamming
language. This powerful visual progamming language is an
ideal means for the specification of the reactive behavior of
flexible production agents that use an object-oriented
representation of the world they are living in and of the plans
and tasks they are executing. Note, due to the formal
semantics of statecharts and graph rewrite rules, the
semantics of story charts is well defined. Similarly, the
Fujaba environment provides a code generator for story
charts generating a table-driven implementation for the

statechart parts and usual Java code for the collaboration
diagrams as shown in Figure9. 

8 VALIDATION VIA SIMULATION 
Once the specification reaches a complete and consistent
state, the Fujaba code generators may translate them to an
executable Java implementation. To facilitate simulation and
graphical debugging of the generated application, the Fujaba
environment provides Mr. Dobs, our Dynamic Object
Browsing System. Mr. Dobs uses Java runtime type
information and dynamic method invocation features for
analysing Java runtime object structures and for the user
driven execution of application specific methods.

Figure 10 shows a screen-shot of a Dobs session running our
example specification. The depicted topology is derived
from Figure3. Note, on the creation of reactive objects, like

Figure 9 Java Code for action doPuttingGood

1: public class AssemblyLine ... {  ...
2: void doPuttingGood () {  
3: Shuttle s; Factory factory;
4: Set cont; Good g; int x;
5: s = getAt ();
6: factory = getRevHas ();
7: cont = getHolds ();
8: g = cont.getFirstElem ();
9: cont.remove (g);

10: s.setCarries (g);
11: x = amount;
12: amount = x+1;
13: s.goOn ();
14: }  // doPuttingGood
15: }  // AssemblyLine

Figure 10 Simulation of a simple production system
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shuttles, stations, and gates, the corresponding event
handling threads start automatically. After selection of an
object, the left column of Mr. Dobs shows all invokable
methods of that object. One may interactively invoke one of
these methods. If the invoked method requires parameters, a
generic dialog window is opened, allowing to enter
parameter values. After a(n interactive or event driven)
method execution, Mr. Dobs reflects the changed object
structure. In Figure10 we have invoked the event method
assign for all shuttles, asking them to produce keys and
locks. From that on, the shuttles execute their manufacturing
task as specified in Figure 6. They travel along the tracks,
comunicate with gates, assembly lines, and storages, fetch
material, trigger assembly lines, and deliver the created
goods. Studying the running simulation, one may already
observe specification errors like communication problems or
deadlocks. One may also recognize bottlenecks or
productivity problems due to unemployed production agents.
Within the running system, one may create new objects, e.g.
additional gates and tracks, and connect them to the existing
object structure. Thereby, alternative system configurations
might be tested. Additionally, one may simulate defects of
some components, e.g. by disconnecting an assembly line,
and analyse the behavior of the remaining production agents.
In Figure 10 we just have disabled the upper-right assembly
line. Due to their flexible specification, our shuttles are not
threatened by this drop-out, but just travel to the alternative
lower-right assembly line. However, the single functioning
assembly line has become a bottleneck such that one shuttle
(left of the lower assembly line) is already blocked, queuing
for service. 

Mr. Dobs already provides an easy to use but restricted
animation possibility for the Java code generated from story-
chart specifications. A better integration with the
specification, e.g. an animation of the executed story-charts
for selected reactive objects is current work. We also try to
improve the user interaction e.g. by attaching buttons and
other GUI elements to depicted objects. Eventually, an
adapted version of such an user interface might even serve as
an user interface for the actual production system. 

9 CONCLUSIONS
This paper discusses the use of UML diagrams as a visual
programming language. For class diagrams the translation to
an object-oriented program is straight-forward. The
translation of statecharts is based on a table driven approach
inspired by [Doug98]. The use of collaboration diagrams and
their translation to Java is taken from our previous work
[FNTZ98, JZ98, ZSW99]. The main contribution of this
paper is the integration of SDL block diagrams and class
diagrams and statecharts and collaboration diagrams to a
sound and complete specification language for flexible
production control systems, as discussed in chapter 3 and
shown in Figure 2. The resulting specification language and
modeling approach combines the power of statecharts,
providing sophisticated means for modeling concurrent
reactive objects, with the power of graph grammars,
providing appropriate means for the specification of
application specific object-structures on a very-high level of
abstraction. 

In addition, this paper describes a possible semantics for the
various UML diagrams (via their translation to Java). This
may facilitate the reading of certain UML diagrams (by
thinking in terms of the corresponding implementation
concepts) and clarify ambigous modelings. In addition, one
may learn which UML diagram should be used for which
purpose and how different UML diagrams may be combined
to cover mixed cases. Thereby, we think that one may
transfer our results to other application areas. 

Currently, the Fujaba environment supports editing of SDL
block diagrams and UML class diagrams and story-charts
and story-diagrams that combine statecharts and activity
diagrams and collaboration diagrams. Code generation is
provided for all these diagrams but SDL block diagrams. We
already generate class diagrams from SDL block diagrams.
The generation of process distribution and initialisation code
from SDL block diagrams is current work. 

The current prototype of the Fujaba environment is available
as free software and comprises about 205 000 lines of pure
Java code. The release of Fujaba is available via: 

http://www.uni-paderborn.de/cs/fujaba.html 

Note, so far we simulate multiple concurrent production
agents via threads that comunicate via events and share some
common memory. The distribution of production agents on
multiple processors without a shared memory is current
work within the ISILEIT project in collaboration with our
mechanical engineering department. This will eventually not
only allow the simulation of production agents but also the
generation of real production control software that operates
the physical actors and sensors of a production system.

In our application domain, we deal with concurrent
processes that face the usual concurrency problems like
deadlocks, race-conditions, lifeness, safety. Equipped with
the rich theory of statecharts and graph grammars, future
work will try to provide verification mechanisms for simple
cases of these problems. 
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