
Reverse Engineering with the Reclipse Tool Suite

Markus von Detten, Matthias Meyer, Dietrich Travkin
Software Engineering Group, Heinz Nixdorf Institute

Department of Computer Science, University of Paderborn, Germany
[mvdetten|mm|travkin]@upb.de

ABSTRACT
Design pattern detection is a reverse engineering methodolo-
gy that helps software engineers to analyze and understand
legacy software by recovering its design and thereby aiding
in the preparation of re-engineering activities. We present
Reclipse, a reverse engineering tool suite for static and dy-
namic design pattern detection in combination with a pat-
tern candidate rating used to assess the detection results’
reliability.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Restructuring, Reverse Engineering, and
Reengineering ; D.2.11 [Software Engineering]: Software
Architectures—Patterns

General Terms
Languages, Algorithms

1. INTRODUCTION
Due to requests for new features and the discovery of de-

fects, software has to be continuously extended and adapted
during its life cycle. Incomplete documentation often com-
plicates maintenance.

The tedious and error-prone task of understanding a large
software system can be supported by tools that recover the
system’s design by locating instances of design patterns [1].
Identifying pattern instances can reveal the original develop-
ers’ design intentions. This paves the way for re-engineering
activities by identifying adaptable or exchangeable software
parts, and presents adequate modification alternatives.

Several approaches for the detection of design pattern im-
plementations have been developed, most of which apply
a static, structural source code analysis. Some patterns,
however, also possess characteristic behavior. Furthermore,
patterns can be structurally similar to others (e.g. Strat-
egy and State [1]). A purely static analysis fails to detect or

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’10, May 2-8 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-719-6/10/05 ...$10.00.

distinguish those patterns or yields too many false positives.
Consequently, we developed a pattern detection approach

that integrates a static, structural analysis with a subse-
quent, dynamic runtime behavior analysis. The static ana-
lysis is used to detect potential pattern instances [3], i.e.
candidates. Where necessary, the dynamic analysis is used
to verify the runtime behavior of the candidates [5, 6].

In order to support the detection of new patterns and to
enable the analysis of arbitrary software systems or models,
we offer a flexible, graphical specification language based on
an exchangeable meta-model for structural and behavioral
patterns. This way, we also applied the approach to the
detection of design deficiencies in Java code [2] and guideline
violations in Matlab Simulink models.

We cover numerous pattern implementation variants in
our structural pattern specifications by complementing a
pattern’s invariant core structure with non-mandatory, ad-
ditional constraints which, if satisfied, increase the candi-
date’s probability to be a true positive. An automated rat-
ing mechanism quantifies a candidate’s number of satisfied,
additional constraints and thereby its compliance to its pat-
tern specification on a percentage basis. Thus, the most
promising candidates can be discerned by their rating.

In this paper we present the approach and especially its
implementation as a plug-in for the Eclipse IDE: the Re-
clipse Tool Suite1 [4]. We focus on the specification of
implementation variants, the candidate rating and the dy-
namic analysis.

2. THE PATTERN DETECTION PROCESS
Our pattern detection process is illustrated in Figure 1. A

reverse engineer specifies structural patterns with special ob-
ject diagrams. In a static analysis step, the system’s source
code is analyzed and parts which comply to the structural
patterns are detected. These structures are likely to con-
stitute pattern instances, thus, they are called candidates.
Afterwards, in case of patterns with a characteristic behav-
ior, a dynamic analysis is applied to confirm or reject the
candidates depending on their observed runtime behavior.

Static Analysis
For the static analysis, an abstract syntax graph representa-
tion of the software under analysis is created from the source
code. Formally, a structural pattern specification defines a
graph transformation rule which tries to match a certain
structure and adds an annotation to it. An inference algo-

1http://www.fujaba.de/reclipse

Source

Code

Behavioral

Patterns

Traces

Pattern

Candidates

Accepted / Rejected

Pattern Candidates

Static

Analysis

Dynamic

Analysis

Document

Process Step

Data Flow

Program

Execution

Traces
Structural

Patterns

Figure 1: The pattern detection process

rithm then applies the different rules to the abstract syntax
graph and tags parts whose structure complies to a pattern
with annotations. For details we refer to [3].

Pattern Variants and Rating of Pattern Candidates
In order to enable the recognition of different pattern vari-
ants with a single specification, we introduce the concept
of additional constraints. They allow to specify conditions
whose satisfaction is desired but not mandatory to consti-
tute an actual pattern instance.

For example, many patterns describe certain properties,
like the visibility of an attribute or a class being abstract,
which are not essential and are therefore often neglected
in implementations. Hence, we mark such constraints as
additional. This way, we detect both, candidates with and
without the specified properties.

We use the information given by the satisfaction of ad-
ditional constraints to separate reliable from less reliable
results. This is done automatically by rating each pattern
candidate with a percental value that relates the number of
constraints satisfied by a candidate to the total number of
constraints in the corresponding pattern specification. The
more constraints are satisfied the higher is the rating value.

The rating quantifies the degree of a pattern candidate’s
compliance to its specification and helps the reverse engineer
to distinguish true from false positives. Moreover, a thresh-
old can be set in order to display only pattern candidates
with a rating higher than the threshold.

Dynamic Analysis
The dynamic analysis is based on traces of the pattern can-
didates. To obtain these traces, the system under analysis
is executed and method calls between instances of classes
which are part of a candidate are recorded. Note that we
only trace the candidates’ behavior instead of the whole sys-
tem which drastically reduces the search space for the dy-
namic analysis.

The expected behavior for a given pattern is formally spec-
ified with special sequence diagrams. They describe interac-
tions between elements in structural patterns and determine
which method calls may occur in which order between the
classes that participate in a pattern candidate.

During the analysis step, the traces are compared to the
corresponding behavioral patterns. For this purpose, a spe-
cial automaton is automatically generated for each behav-
ioral pattern. If a trace matches the pattern, it is accepted
and rejected otherwise [7].

If the majority of a candidate’s traces match the behav-
ioral pattern, the candidate likely is an actual design pattern
instance. If most of the traces for a candidate do not match
the behavioral pattern, it is assumed to be a false positive
which is only structurally similar to the actual pattern.

3. EVALUATION RESULTS
We used our prototype implementation in the Reclipse

Tool Suite to evaluate the approach by analyzing, e.g. Java’s
Abstract Window Toolkit, the Java Generic Library, Eclipse’s
Standard Widget Toolkit, and JUnit 3.8.2. Details on our
results are given in [4].

We compared the analysis results of JUnit to other ap-
proaches. In accordance with them we found instances of
the Composite, Decorator and Template Method patterns.
We also detected several Observer candidates, but the dy-
namic analysis revealed that only one of them showed a cor-
rect Observer behavior. The other candidates were false
positives.

4. CONCLUSIONS AND FUTURE WORK
In this paper we presented our reverse engineering ap-

proach. The major advantages compared to other approaches
are the combination of static and dynamic analysis for the
detection of patterns as well as its flexible, yet formal way of
structural and behavioral pattern specification that enables
the re-engineer to extend and adapt the specifications.

Furthermore, the approach allows to specify several struc-
tural variants of a pattern at one go by means of additional
constraints which are used to automatically rate detected
pattern candidates.

We obtained evaluation results which showed that our
approach and its implementation are mature and efficient
enough to be applied to real systems.

In the future, we plan to allow the usage of ”fuzzy” val-
ues in metric-based constraints and thereby avoid metric
thresholds that are hard to determine. We also want to
integrate the concept of additional constraints into the be-
havioral patterns and intend to provide better support for
the interpretation of dynamic analysis results.

5. REFERENCES
[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.

Design Patterns. Addison-Wesley, 1995.

[2] M. Meyer. Pattern-based Reengineering of Software
Systems. In Proc. of the 13th Working Conference on
Reverse Engineering, pages 305–306, 2006.

[3] J. Niere, W. Schäfer, J. P. Wadsack, L. Wendehals, and
J. Welsh. Towards Pattern-Based Design Recovery. In
Proc. of the 24th International Conference on Software
Engineering, pages 338–348, 2002.

[4] M. von Detten, M. Meyer, and D. Travkin. Reclipse –
A Reverse Engineering Tool Suite. Technical Report
tr-ri-10-312, University of Paderborn, Germany, 2010.

[5] M. von Detten and M. C. Platenius. Improving
Dynamic Design Pattern Detection in Reclipse with Set
Objects. In Proc. of the 7th International Fujaba Days,
pages 15–19, 2009.

[6] L. Wendehals. Struktur- und verhaltensbasierte
Entwurfsmustererkennung (Structural and Behavioral
Design Pattern Detection). PhD thesis, University of
Paderborn, 2007. In German.

[7] L. Wendehals and A. Orso. Recognizing Behavioral
Patterns at Runtime using Finite Automata. In Proc.
of the 4th ICSE Workshop on Dynamic Analysis, pages
33–40, 2006.

