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ABSTRACT

We present a Tool Suite which supports the (re-)construction of a
behavioral model of a legacy component based on a learning ap-
proach by exploiting knowledge of known models of the existing
component environment. This in turn enables to check whether the
legacy component can be integrated correctly into its environment.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Techniques;
D.2.4 [Software Engineering]: Software/Program Verification;
D.2.13 [Software Engineering]: Reusable Software

General Terms

Design, Verification

Keywords

Legacy System, Model-Driven Engineering, Integration, Formal
Verification, Safety-Critical Systems

1. INTRODUCTION

The software of complex embedded systems, like automotive and
aerospace systems, is usually a network of components. We as-
sume that the behavior of a single component basically consists
of the communication behavior on the one hand and the controller
behavior, i.e. controlled feedback loops taking sensor input and
producing actuator control signals on the other hand. Communi-
cation behavior enables to exploit knowledge of other components
in order to enhance the functionality and to adapt the behavior of
a single component when beneficial. Adapting the behavior might
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require reconfigurations of controllers in the form of mode man-
agement and control algorithms under hard real-time constraints.

As many of these systems are used in a safety critical environ-
ment, high quality software is absolutely necessary. To fulfill this
requirement, model-driven engineering has become the means to
construct reliable software. These techniques enable the developer
to use simulation and formal mathematical methods to verify criti-
cal system properties.

However, in domains like the automotive industry the develop-
ment of new functions is an exception rather than the regular case.
In many cases, components exist and have to be reused (for cost ef-
ficiency reasons) where no model or only a corrupted model exists.

In addition, with the development of new standards like e.g.
AUTOSAR!, the topic “software as a product” is promoted. This
means that a functional network consists of components from dif-
ferent producers. These supplied or bought components must be in-
tegrated into the electronical control units by the automobile manu-
facturers (OEM) or the suppliers. For the integration it is necessary
that the component meets the specification. Today this can only be
checked during the integration test phase. But the integration has to
be done and checked in an earlier development phase. Therefore,
the integration of legacy components into a model-driven engineer-
ing approach is obvious. This requires the existence of an adequate
model of the legacy system.

The main goal of our integration approach is thus to produce
a model of the communication behavior of a single legacy com-
ponent based on a real-time statechart. Real-time statecharts are
an abstraction of timed automata supporting more comprehensive
specifications. In addition, the approach also allows to reconstruct
the transfer functions of the embedded controllers. Finally, the pro-
duced model is used to check whether a correct integration with its
environment, namely the newly built components is possible.

In this paper, we present the FRiT'S¢*® Tool Suite?. The tool
applies an iterative learning approach to (re-)construct the real-time
statechart specifying the communication behavior of a single com-
ponent. Iterative learning speeds up the (re-)construction, because
it checks after each step of the learning algorithm whether the (re-
)constructed statechart of the legacy component communicates cor-
rectly with the given statechart(s) of the newly built component(s).

'www.autosar.org

2FRiTSC®: Fujaba Re-Englneering Tool Suite for Mecha-
tronic  Systems. FRiTS: Fujaba Re-Englneering Tool
Suite, Cab: short form of RailCab (http://www-nbp.uni-

paderborn.de/index.php?id=2&L=1), an example of an advanced

mechatronic system. FRiT'SC is part of the Fujaba Real-Time
Tool Suite (http://www.fujaba.de/projects/real-time.html)



Correct communication is based on predefined safety and bounded
liveness properties which have to hold for that particular commu-
nication. If not, the algorithm can backtrack right away and try
another possibility.

Furthermore, we support the identification of controller behavior
by the integration of classical system identification approaches to
describe the in- and outgoing controller behavior by transfer func-
tions. If all transfer functions are known, we are also able to iden-
tify reconfigurations.

In the next section we introduce our legacy checking approach.
Thereafter, we give an overview of the related work and finish with
a conclusion and future work. As an example of an embedded sys-
tem, we use a wiper control system to demonstrate the practical
relevance of our approach.

2. LEGACY CHECKING

In our modeling approach called MECHATRONIC UML (e. g. [5]),
the architecture is given by components (see Figure 1, e. g. Wiper-
Coordination and Wiper), their ports and the connections be-
tween ports. This model is formally described by an adapta-
tion of the UML 2.0 component model. Communication be-
tween components is defined by so-called coordination patterns
(WiperCoordination). A coordination pattern describes the com-
munication between two components and consists of communica-
tion partners, called roles (coordination and wiper), i. e. it can be
considered as a particular type of protocol specification. The com-
munication behavior of a role is specified by a real-time statechart.
Figure 2 shows a cutout of the coordinator role behavior.

Real-time statecharts are an extension of UML state machines
which support more powerful concepts for the specification of real-
time behavior. They are semantically based on timed automata
such that a formal analysis is possible using the model checker UP-
PAAL’.

Integrating a legacy component like (Wiper) without an avail-
able statechart specification of the communication behavior re-
quires to derive such a model from the component interface and
possibly also from the available source code. In addition, such a
model must fulfill all liveness and safety properties like e. g. cOOr-
dination.off implies wiper.off which are required for communica-
tion between the legacy component and the communicating com-
ponent(s) behavior, in this example the coordinator role behavior.
In this example, basically “one half” of the communication proto-
col is known and it has to be checked whether the communication
behavior of the legacy component fits to the “other half” as defined
by the (WiperCoordination) pattern.
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Overview As a prerequisite of our approach a legacy component
has to provide a proper interface definition, i. e. all incoming and
outgoing events used for communication, as well as all signals used
and produced by the controllers, and all relevant information for the
execution of the legacy component (e. g. like the period).
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Our approach includes three different algorithms which support
(re-)construction of the statechart, if 1) the legacy component has
additional interface operations to retrieve the current state during
execution * or, 2) this is not the case. For case two we distinguish
in turn between a) a black-box (no source code is available) or b)
a white-box (source code is available) approach. We call the cor-
responding algorithms in case of 1) gray-box-checking, in case of
2a) black-box-checking, and in case of 2b) white-box-checking.

The correctness of the integration, i. e. component communica-
tion, can either be shown 1) by a formal verification of the legacy
component communication with the context (e.g. coordination) or
2) by a verification whether the (re-)constructed legacy component
(e.g. Wiper) behavior is a correct refinement of the abstract
role behavior (e. g. wiper) given by the coordination pattern.
It has to be shown that coordination||learned wiper =
coordination.of f implies learned wiper.of f N
= (no;deadlock) for 1) and learned wiper < wiper for
2).

A refinement could also be shown by a parallel composition if
a test automata is derived from the role behavior (e. .g the wiper
role) [9]. A test automata is derived by building the complement
of the abstract model (wiper). Additionally, the behavior which
is not fulfilled by the automata is taken into account by an extra
failure state. The analysis should show that this error state is not
reachable.

2.1 Gray-Box-Checking

Our approach extends the current knowledge of the legacy compo-
nent with chaotic behavior, resulting in a new model called chaotic
closure [7, 4]. Initially, we assume current knowledge to be a sin-
gle state automata, identifying that the legacy component is in a
quiescent state (see Figure 3). For all so far unknown behavior
it is assumed that on the one hand any possible interaction may
occur but on the other hand a deadlock is possible at any time as
well. Therefore, the chaotic closure is an over approximation of
the legacy component: it always models at least all of the legacy
components’ behavior, but not all of the modeled behavior has to
be possible in the legacy component. The chaotic closure is then in
combination with a model of the context subject to model checking
by taking safety and bounded liveness properties into account (step
1) and 2) in Figure 3). If we have a counterexample, we use this
as test input for the legacy component (step 3)). If the tested faulty
run is confirmed, we have found a real counterexample. If not, we
use the new observed behavior to refine the previously employed
behavior model of the legacy component (step 4)). We repeat the
checks until either a real counterexample has been found or all rel-
evant cases have been covered.

For modeling chaotic behavior a chaotic automaton, a non-
deterministic finite automaton consisting of two states is used: The
state ss with no outgoing transitions represents the case of the
legacy component being in a deadlock, neither receiving nor send-
ing any messages. The state sy on the contrary represents the
case where all inputs being possible for the legacy component are
enabled and all outputs can occur. This is modeled by one self-

“For example, AUTOSAR components provide this information
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transition and one transition to ss for each possible input (with no
output) and each possible output (with no input). For creating these
transitions the input- and output-alphabets of the legacy component
must be known. Both states of the chaotic automaton are initial
states.
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Figure 4: Example for a chaotic closure

The chaotic closure is a combination of a synthesized model with
the chaotic automaton for the legacy component, mapping all un-
known behavior to a chaotic one. Figure 4 shows as an example
of a chaotic closure (on the right side) for a trivial first conjectured
behavior model.

A chaotic closure is constructed as follows: First, the chaotic
automaton for the input- and output-alphabets of the legacy com-
ponent is constructed. Then, the states and transitions of the chaotic
automaton are added to the incomplete automaton modeling the be-
havior that has been learned until now. For every combination of a
state and an incoming or outgoing event for which a transition nei-
ther has been defined nor excluded, a new transition is created from
that state to both the sy and the s; state. Contrary to the synthesized
behavior, the chaotic closure constructed for it is non-deterministic.

The explicit deadlock state s; in the chaotic closure makes sure
that as long as there still is behavior left to learn, the model checker
will be able to find a deadlock. The result is that in every iteration
of our approach at least one new transition is learned. However,
this only applies to behavior of the legacy component which can be
reached in combination with the model of the context. Any other
behavior is not considered to be relevant in the context the legacy
component is integrated into, and therefore no time needs to be
wasted with testing it.

2.2 Black-Box-Checking

Compared to the gray-box-checking approach, 1) we first have to
learn a candidate of the legacy component based on Angluin’s al-
gorithm [17°, which is a minimal automaton, 2) the candidate is in
combination with a model of the context subject to model check-
ing by taking safety and bounded liveness properties into account
(see Section 2.1), 3) if the check is successful, it is proven if the
candidate is equivalent with the legacy component (conformance
tests by Vasilevskii and Chow [11, 2]). Otherwise the counterex-
ample is input for step 1), and 4) if the candidate is equivalent, the
black-box-checking is finished.

To learn a candidate for step 1), we extend Angluin’s algorithm
for the domain of embedded systems [4, 6]. That means especially

3 Angluin’s algorithm [1] is a popular and efficient approach for
learning a DFA of a black-box.
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that we have to take into account in- and outgoing messages and
time.

To support in- and outgoing messages, we extend Angluin’s al-
gorithm, which supports DFA, by mealy machines similar to [8].
That means, the simple tracing of accepted words by the algorithm
of Angluin is extended to capture output sequences.

In principle, a legacy component of the considered domain has
to react deterministically. The reaction just in time is of paramount
importance. Hence, these systems are implemented periodically. A
timely periodic execution is a prerequisite for a correct function-
ality. The specification of the period of the legacy component is
mandatory for the integration of such components. Our learning
approach exploits this fact to check timing constraints which are
discretized by a (multiple of a) period of a legacy component. This
is enabled by adding specific empty words to the learning algorithm
which has the meaning of waiting for an answer for a specific time.
We know the maximum waiting period for an event as the upper
bound is given by the legacy component.

Besides the required in- and outgoing messages and time, we
extend Angluin’s algorithm additionally by taken the context into
account to learn and check iteratively the relevant behavior of the
integration. This is similar to the counterexample guided learning
presented in Section 2.1. The main difference is that a success-
ful model checking must be additionally confirmed by equivalence
checks of the learned automata and the legacy component to be sure
that the learning is finished.

If we know or estimate well the upper bound of the number of
states for the equivalence checks, the approach ensures either to
find a conflict in the integration or the integration is correct (with
respect to the constraints).

2.3 White-Box-Checking

To show the correctness of the integration for the white-box case,
we use existing source code model checker to take profit of its ab-
straction capabilities. Compared to the gray- and black-box ap-
proach, we are not able to learn and check iteratively the legacy
behavior as typically the internal model of a source code model
checker is not visible.

The main task for the white-box case is to generate source code
of the context behavior for a source code model checker in a proper
manner to support a compositional verification with the legacy
component. Furthermore, we support a run-time framework which
implements the execution semantics of real-time statecharts. The
generated source code, the framework source code, the legacy com-
ponent source code, and constraints are the input of a source code
model checker (see Figure 5).

[
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Figure 5: White-Box-Checking Overview

In a first step, we have to map the (abstract) model to source
code to enable the required check (with the legacy component) [6].
The mapping has to preserve the execution semantics of the model.
Hence, one possible (deterministic) path of the model has to be
mapped to source code.

As the considered kind of systems are reactive once the gener-
ated system is executed periodically (that is also the case for the
legacy component). The WCET (worst case execution time) of a



transition has to satisfy the specified deadlines. Within a period a
task can be executed nondeterministically by the scheduler. Fur-
thermore, the periods of the legacy system and the context can be
of different length as well as the sending and receiving of events
could be at some point during the period (see Figure 6).
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Our Tool Suite supports a C code generation which considers
the discussed requirements. Based on the generated code and a
runtime framework which encapsulates the communication calls
as well as a simulated time, we can start the proof with a source
code model checker. Conceptually the BLAST model checker® fits
the best as this model checker supports a good abstraction based
on lazy abstraction. But, in our evaluation BLAST had a lot of
problems with bounded arrays which are required for the commu-
nication. The bounded model checker CBMC’ supports the most C
constructs and also supports the required bounded arrays. Hence,
we use CBMC for our evaluation. To support nondeterministic con-
structs of the scheduler, e. g. the execution of a task can be arbitrary
within a period, we use the concept of non-deterministic variables
to specify an arbitrary execution within a specified time interval.

2.4 System Identification

System identification [10] is the approach which enables the iden-
tification of continuous behavior. This is done by simulation. We
can simulate each path of the learned behavior and for each state
we can identify the controller behavior. The input of the system
identification is a specified test trajectory or a realistic run in its
environment. Based on the input and output behavior the transfer
function of the controller is identified for linear systems. If the
transfer functions are known, we can identify reconfigurations by
different transfer functions. This approach supports the engineer in
integrating embedded (controller) components in a system model in
early development phases. Typically, the engineers test the legacy
components (controllers) only in hardware-in-the-loop scenarios or
the real environment later in the development process. We have in-
tegrated the MATLAB System Identification Toolbox® in our tool
suite [6].

3. RELATED WORK

A number of techniques which either use a black-box approach and
automata learning (e. g. [8]) or a white-box approach which ex-
tracts the models from the code exist (e. g. [3]). However, these
approaches did not consider the specific context and safety re-
quirements for (efficiently) synthesizing the relevant behavior of

Shttp://www.cs.ucla.edu/ rupak/blast/
"http:/fwww.cprover.org/cbmc/
8http://www.mathworks.com/products/sysid/
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the legacy component, which is of paramount importance for em-
bedded systems. Furthermore, these approaches are not capable of
finding conflicts in early learning steps.

4. CONCLUSION AND FUTURE WORK

In this paper we have presented a tool support for the incremental
synthesis of communication behavior for embedded legacy compo-
nents by combining compositional verification techniques, model
based testing and learning techniques. It enables context specific
learning with conflict detection in early learning steps. Further-
more, we enable the engineer to identify controller behavior and its
reconfiguration, which, in turn, supports an early conflict recogni-
tion. The presented legacy checking approaches cover a wide range
of techniques required for integrating legacy components with dif-
ferent supported information in a system model. Our evaluations in
industry and the RailCab project confirm this statement.
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APPENDIX
A. DEMONSTRATION

We exemplify our tool suite by an application of the automotive
industry. We consider the problem of integrating a legacy wind-
shield wiper and windshield heater component in a wiper-heater
component. This extends the functions of the wiper and heater by
an automatic control based on inputs of sensors for the temperature
and the rain intensity.

To remove fast wetness or ice (a film) from the windshield a
heating is required. Typically, the maximal possible temperature
is limited to 70° Celsius. Conventionally, the maximal heating is
heavily reduced to avoid exceeding this temperature. With a tem-
perature sensor and an automatic control of the heating, the clean-
ing of the windshield can be speed up as the temperature can be
precisely adjusted for different situations.

In combination with a rain(-light) sensor and an automatic con-
trol of the wiper the cleaning process of the windshield is com-
pletely automated and improved in its speed compared to the man-
ual adjustment of the wiper and heater. Especially in critical situ-
ations like a spindrift from other cars or changing snow-ratio, the
system can react faster than an (appalled) driver. A robust real-time
automatic film detection supports the driver and this way signifi-
cantly increases driving safety and comfort.

For reasons of simplification, we present in more detail in the
demo the integration of the wiper component and the automatic
control of this component. The implementation of the wiper com-
ponent is based on a patent [13]. This includes the specification of
in- and outgoing events for triggering specific wiper levels and the
transfer function of the wiper (and washer) controller. To exem-
plify the different analysis tools, we consider the wiper component
as a gray-, black-, and white-box component.

In this demonstration, we first show how the structure of the
component and network is specified by component diagrams and
a real-time coordination pattern (Section A.1.1). Furthermore, we
will show how we embed legacy components in such a component
architecture. Then we will present the behavior of the context spec-
ified by real-time statecharts (Section A.1.2). Thereafter, we will
show how we iteratively learn and check the coordination behavior
of the wiper component by our gray- and black-box-checking tool
(Section A.2). After that, we analyze the source code by our white-
box-checking tool (Section A.3). Finally, we will present the iden-
tification of the controller behavior (Section A.4). All presented
tools are part of F'RiT'SY*®, a Tool Suite in the Fujaba Real-time
Tool Suite.

A.1 Modeling

A.1.1 Structural Specification

The first step is to specify the architecture of the system, which is
done with a component diagram as visualized in Figure 7. The sys-
tem consists of legacy components Wiper and Heater. A specific
attribute for the specification of the legacy component is the desti-
nation of the legacy component (the source-code or the executable).
The component WiperHeaterCoordination implements the auto-
matic control of the Wiper and Heater. The WiperHeaterCoor-
dination component embeds the RainSensor and Temperature-
Sensor component (see Figure 8). The continuous output of the
sensor is visualized by a triangular port.

The network infrastructure is specified by the WiperCoordi-
nation pattern (see Figure 9) which specifies the communication
protocol. The communication pattern has the roles coordinator
and wiper which are instantiated by the WiperHeaterCoordina-

tion component (instantiating the coordinator port) and the Wiper
component (instantiating the wiper port). The communication be-
tween the roles is bidirectional. The behavior of the roles, which
belong to the pattern, is specified by real-time statecharts (RTSC)
(see Section A.1.2). The WiperHeaterCoordination component
refines the coordination role. As the protocol behavior of the
Wiper component is not known, the communication is unsafe. We
have to show that the Wiper component is a correct refinement of
the wiper role.

An ATCTL formula specifies the requirement of the pattern: No
deadlock may occur (A[] not deadlock) and the situation, that the
coordination is in state off while the wiper is active, may never
occur (coordination.off implies wiper.off). As mentioned before,
the correctness of these constraints is unknown, as the protocol be-
havior of the Wiper component is unknown.

A.1.2 Behavioral Specification - Context

In our application, the context is given by the coordination role.
The behavior of the role is shown in Figure 10. The coordina-
tion role is initialized when the driver/user selects the automatic
mode. The application distinguishes between three intervals of val-
ues from the rain sensor: Rain.high, Rain.mid, Rain.low, and
Rain.off. Based on these signals an event is send to the Wiper.
If signal Rain.high is received event step3 is send to the Wiper, if
signal Rain.mid is received event step2 is send to the Wiper, and
so on. The coordination role then waits 100 time units for an an-
swer of the Wiper. In case of sending the step3 event, the coordi-
nation waits 100 time units for the Wiper.high event. Accordingly,
in case of sending the step2 event the coordination role waits for
the acknowledgment of the Wiper in form of the Wiper.mid event,
and so on. If the acknowledgment of the Wiper role is not re-
ceived within the time-guard 0 < tywiper < 100, the coordination
role signalizes an error in form of sending the event warning_on.
This event could for example trigger an error-lamp of the dash-
board and record the error trace. We did not specity this situation
in more detail. The user must then restart the system by triggering
the automatic mode again. The coordination switches between the
different wiper steps (states wiper_0 to wiper_3) if another sen-
sor signal is received. From each state of the coordination role
it is possible to trigger the washer. After 5 time units a wash.off
event is automatically send to the washer and the coordination role
switches back to the last state (because of the history state).

A.2 Gray- and Black-Box-Checking

Now, as the Wiper component is embedded in its (new) system ar-
chitecture and the context is specified, we are able to apply our
legacy checking approaches (see Figure 7). To start the legacy
checking, some specific information for the legacy component is
required, like the in- and outgoing events and the initialization (-
method) of the legacy component. This information can be speci-
fied in the legacy component editor.

The execution environment in our demo is a simulated one,
which means that time for example is simulated by our verification
framework. This is enabled by specific knowledge of the worst case
execution time (WCET) of a legacy component’s function (which
can be computed by standard WCET analysis tools a priori). Our
simulated time uses this knowledge to compute the possible time
progress. As the time consumption of a function is not fix, we im-
plement the time consumption by non-deterministic variables (see
Section 2.3).

As the user interface of the gray- and black-box-checking tools
is similar, we present both parts in the demo section of this paper in
one section. The main difference is that the gray-box approach



shows a real-counterexample or the learned behavior at the end
while the black-box approach could also learn the behavior of the
protocol if a real-counterexample is found. A real-counterexample
means that the determined counterexample is confirmed by the
legacy component.

In the presented example, the gray- and black-box-checking tool
detects a real-counterexample after some learning steps. The event
sequence step1,low/step2,mid/off,-/- pinpoints a deadlock. The
cause is, as shown by the learned behavior (see Figure 12), that the
legacy Wiper component does not allow switching from each step
back to the off state. Based on the patent description this is not
clearly specified. This kind of failure could cause a danger for the
environment / the driver as the wiper would not be able to switch
to the off state if it is in step2 or step3 and the Wiper off signal
is triggered. As the legacy component has shown their quality, we
have to adapt the context behavior to enable an integration. In our
example, we have to disable to switch directly from each Wiper
step to the off state. E. g. the off event is connected through the
next lower Wiper steps.

While the gray-box-checking tool found the counterexample
within a few seconds after some learning steps, the black-box-
checking tool sends about 500 hundred queries to the legacy com-
ponent to identify a state behavior. This could be very expensive
if the period of the legacy component is long. If the period is 10
seconds for example than the learning algorithm based on Angluin
(see Section 2.2) needs about 5000 seconds only for the mem-
bership queries. Positive is that our implementation detects about
600 cache hits and about 7000 prefix cache hits in the shown sce-
nario. As our approach also takes the context into account, we can
learn the relevant behavior much more goal oriented. In cases that
we only want to find a counterexample, we can improve/reduce
the computation time drastically with respect to the classical An-
gluin algorithm’. However, if also the complete behavior should be
learned if a counterexample is found, we have to check the equiva-
lence by the Vasileskii and Chow algorithm. This is one of the most
popular conformance test algorithms which can show the equiva-
lence indeed. The runtime however, is exponential with the max-
imum number of states of the legacy component. As we consider
a compositional approach, where each protocol behavior has only
a small number of states typically, all this drawbacks have no con-
sequences. In our example the runtime of our black-box-checking
approach is about two minutes.

A.3 White-Box-Checking

To start the white-box-checking approach, the ports wiper and co-
ordination have to be selected. Using the context menu (see Figure
7), the dialog for the adjustment of the parameters of the white-
box-checking can be called (see Figure 13). The dialog enables the
user to adjust different parameters for different source code model
checkers, like CBMC and BLAST. These parameters are used as
the input for the code generation of the context (coordination
role) which is required to enable the model checking of the source
code of the legacy component. As presented in Section 2.3, the
source code of the context, the source code of the legacy compo-
nent and a verification framework, which simulates the semantics
of RTSCs, are inputs for the source code model checker. The pa-
rameters specify for example, the length of the context’s period and
the legacy component. The code generation of the context is trig-
gered when the start button of the white-box-checking properties
dialog is pressed.

If the verification is successful the correctness is determined (as

°As explained in Section 2.2, we also have to extend the Angluin
algorithm to learn the behavior of the considered system.

in typical model checking approaches). If an error is detected a
counterexample is presented by a dialog. In our case, the coun-
terexample shows the scenario as presented by the gray- and black-
box-checking. Additionally, the counterexample can be animated
in the context behavior.

A.4 System Identification

System identification enables to identify continuous behavior of a
system. In our case, it enables to identify controller behavior. In
general we would have to identify the behavior of a hybrid system.
Our approach however, uses the knowledge of learned state behav-
ior (see Section 2.4). Based on this state behavior, we identify the
controller behavior for each state. As the controller behavior of a
state could be different for each incoming transition, we simulate
all possible situations a state could be switched. For each situa-
tion, we start a diagnosis of the legacy controller behavior. This
could be some specific test trajectory or, as in our case, a standard
diagnosis trajectory supported by the Matlab System Identification
Tool Box. We record for each diagnosis the test trajectory and the
output of the system. Then, we load this data into our tool suite.
Figure 14 depicts the situation where we have loaded two differ-
ent data (data_controller1 and data_controller2) which are con-
nected to the legacy Wiper component by in- and out-going contin-
uous ports. We start the system identification for each loaded data
(by triggering the Matlab System Identification Tool Box). The
identified behavior (identificationResult) is presented as a transfer
function (see Properties Element). Additionally a fitness function
is computed. This shows the correlation of the estimated model
output compared to an output data set of the system in order to
ensure that the estimated model represents the system dynamics
accurately. Next, this transfer functions can be analyzed by engi-
neers to identify specific controllers for example (in our case the
WiperController and the WasherController). Finally, we attach
the results of the system identification to the corresponding state.
State g2 to state g4 for example, embed the WiperController and
state g5 embeds the WiperController and WasherController.

B. SCREEN DUMPS
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