
Refinement Checking of Self-Adaptive Embedded
Component Architectures∗

Christian Heinzemann, Stefan Henkler
Software Engineering Group,

Heinz Nixdorf Institute
University of Paderborn

Warburger Str. 100
D-33098 Paderborn, Germany

[chris227|shenkler]@uni-paderborn.de

Martin Hirsch
Fraunhofer-Institute for Software- and

Systems-Technique ISST
Emil-Figge-Straï£¡e 91

D-44227 Dortmund, Germany
martin.hirsch@isst.fraunhofer.de

ABSTRACT
Software is increasingly used in embedded systems which have
to support self* properties like self-adaptation, -management or -
optimization. These systems enhance their functionality and im-
prove their performance by building networks of embedded com-
ponents which exploit local and global knowledge. Such systems
include complex coordination protocols which require execution in
real-time and reconfiguration of the software structure at runtime to
adjust their behavior to the changing system goals leading to self-
adaptation. Due to the complex nature of networked embedded sys-
tems and their usually safety-critical and hard real-time operations,
e. g. lives may be at risks in case of failure, model-driven devel-
opment of the software has become the means to construct reliable
software. The key enabler for a consistent model-driven develop-
ment approach is refinement. Refinement facilitates to preserve
properties of abstract models in more concrete models. Despite
the increased significance of self* properties in the last years, sur-
prisingly there is a lack in support of refinement techniques being
integrated in a model-driven development approach. We present
a modeling approach, called Timed Story Charts, which defines a
common formalism for real-time behavior and reconfigurations of
the software structure to address the challenge of modeling the be-
havior self-adaptive embedded component architectures. Based on
this common formalism and a well defined internal component ar-
chitecture, we introduce a refinement definition and -check which
preserves safety and bounded liveness properties as well as self-
adaptation in form of runtime reconfigurations.

1. INTRODUCTION
Advanced embedded software systems increasingly exhibit self*
properties like self-adaptation, -management or -optimization.
That implies software reconfiguration at runtime which increases
the complexity of the software additionally. As these systems are
often used in a safety critical environment, formal verification on
abstract models is required to ensure a proper functioning of the
software. Consequently, refinement is of importance as this facil-
itates to preserve properties of abstract models in more concrete
models.

Despite the increased significance of self* properties in the last
years, surprisingly there is a lack in support of refinement tech-
niques being integrated in a model-driven development approach.
∗This work was developed in the course of the Collaborative Re-
search Center 614 – Self-optimizing Concepts and Structures in
Mechanical Engineering – University of Paderborn, and was pub-
lished on its behalf and funded by the Deutsche Forschungsgemein-
schaft.

There are some modeling approaches for self-adaptive systems [3].
The approaches either support no refinement definition or time is
not supported.

Based on MECHATRONIC UML (e. g. [6]), we present a model-
ing approach, called Timed Story Charts, which defines a common
formalism for real-time behavior and reconfigurations of the soft-
ware structure. Timed Story Charts are an extension of Story Charts
[16]. Story Charts are an implementation of statecharts by an re-
strictive set of Story Diagrams, which are object oriented graph
transformations. Based on this common formalism and a well de-
fined internal component architecture, we introduce a refinement
definition and -check which preserves safety and bounded liveness
properties as well as self-adaptation in form of runtime reconfigu-
rations of the software structure.

MECHATRONIC UML is based on a methodical decomposition
of the embedded software and its constituent components. This
supports compositional verification. As oftentimes the collabora-
tion between a flexible number of participants is required, we ex-
tend in [11] our MECHATRONIC UML approach such that we can
model collaborations between components which include structural
adaptation in form of new or removed ports as well as multi-ports.
The modeling of complex collaborations is possible by means of
rules which describe how to join and leave these collaborations via
ports or multi-ports: hierarchical state machines with a dynamic
number of sub-machines are introduced to model the behavior of
the multi-ports. For the collaborations they are employed to de-
scribe the multi-port protocols.

For the components we use the collaborations in this paper to re-
fine the role behavior to model a proper synchronization with other
parts of the component behavior for example in form of delegating
the role behavior to embedded components (parts). This is enabled
by the Timed Story Chart formalism and a well defined internal
component architecture. The Timed Story Chart formalism takes
the basic formalisms of the collaborations, namely Graph Trans-
formation Systems and Parameterized Real-Time Statecharts, as
input to define a common formalism for the behavior and the re-
configurations. The internal component architecture is defined hi-
erarchically by multi-parts, -ports, and -delegations. Each of these
elements support a flexible number of participants by the specifi-
cation of functional behavior and the specification of adaptational
behavior as explained above by the example of collaborations.

The proper synchronizations with other parts of the component
behavior yields to complex internal reconfigurations triggered by
the structural adaptation of the collaborations. This is also an ex-
isting problem of UML-components and -parts as for example a
creation and a deletion of a part and its (delegated) port is not
supported in UML. Similarly, UML does not address the question

whether an embedded component (part) is a correct refinement of
the protocol behavior of the surrounding component.

A concrete example for a complex self-adaptive system with the
need to coordinate a varying number of components is the RailCab
project1. The vision of the RailCab project is a mechatronic rail
system where autonomous vehicles called shuttles apply the linear
drive technology, as used by the Transrapid system, but travel on
the existing passive track system of a standard railway system.

One particular problem is the convoy coordination of certain sys-
tem components, e.g. the shuttles [7]. Shuttles drive in a convoy in
order to reduce energy consumption caused by air resistance and to
achieve a higher system throughput. Such convoys are established
on-demand and require small distances between the shuttles. These
required small distances cause the real-time coordination between
the speed control units of the shuttles to be safety critical which
results in a number of constraints, that have to be addressed when
building the shuttles’ control software. In addition a complex co-
ordination is required when the convoy consists of more than two
shuttles. Since shuttles can join or leave a convoy during runtime a
flexible structure for the specification of the coordination is needed.

In the following section, we provide further information on
MECHATRONIC UML. Thereafter, we present the Timed Story
Charts in Section 3 and a refinement definition and -check for
Timed Story Charts in Section 4 along with some evaluation re-
sults. Related work is discussed in Section 5. We conclude with a
summary and future work in Section 6.

2. MECHATRONIC UML
In our approach, the architecture is given by components, their
ports, and the connections between those ports. This model is
formally described by an adaptation of the UML 2.0 component
model. Among other things, our model especially covers the def-
inition of restrictions on how ports have to be connected such that
communication via different ports of the same component is guar-
anteed to be side-effect-free.

shuttle1

front.convoy implies rear.convoy

shuttle2

front rear

DistanceCoordination

instantiation

(a) Structure
/ rear.breakConvoyProposalRejected

default

wait

answerdefault

default

noConvoy

convoy

wait

default

front

rear

front.convoyProposalRejected /

/ front.convoyProposal

front.breakConvoy / front.startConvoy /

/ front.breakConvoyProposal

front.breakConvoyProposalRejected /

/ rear.convoyProposalRejected

rear.convoyProposal /

convoy rear.breakConvoyProposal

/ rear.startConvoy

wait

noConvoy

/ rear.breakConvoy

rear.breakConvoyProposal

{t0}
[1 ≤ t0 ≤ 1000]

(b) Role behavior

Figure 1: Real-Time Coordination Pattern for a Shuttle Con-
voy

Communication between autonomous components has been de-
fined by so-called coordination patterns [7]. A coordination pat-
tern, as depicted in Figure 1(a), describes the communication be-
tween two components and consists of multiple communication
partners, called roles. Roles are linked by a connector. The com-
munication behavior of a role is specified by a real-time statechart.

Real-Time Statecharts are an extension of UML state machines
which support more powerful concepts for the specification of real-
1http://www-nbp.upb.de

time behavior. They are semantically based on the timed automata
formalism such that a formal analysis is possible using the model
checker UPPAAL2.

The behavior of the connector is described by another real-time
statechart that, in addition to the transport of the messages, models
the possible delay and the reliability of the channel, which are of
crucial importance for many systems.

Safety constraints which have to hold (and are model checked)
for these patterns are either a so-called pattern constraint or a role
invariant which concerns a property of a single role only. A role
invariant specifies a property that has to be satisfied by the commu-
nication partner. A pattern constraint specifies a property that has
to be satisfied by all communication partners and connectors. Both
constraint types are defined in TCTL3.

The role behavior is refined by ports that build the interfaces of
our components, i.e. the ports implement the external behavior as
specified by the role behavior. The refinement has to respect the
role behavior (do not add possible behavior or block guaranteed
behavior) and additionally has to respect the guaranteed behavior
of the roles given by its invariants [7].

An additional statechart for synchronization is used to describe
required dependencies between role behaviors (as the component
behavior is not necessarily only a parallel composition of the dif-
ferent role behaviors). This allows for the strict separation of com-
munication behavior and internal component behavior.

In our application example as shown in Figure 1(a), the coor-
dination between two shuttles is modeled by the DistanceCoor-
dination pattern. It consists of two roles, the front role and the
rear role and one connector that models the link between the two
shuttles. The pattern specifies the protocols to coordinate two suc-
cessive shuttles.

Initially, both roles are in state noConvoy::default, which means
that they are not in a convoy. The rear role decides whether to
propose building a convoy or not. After the decision to propose a
convoy, a message is sent to the other shuttle resp. its front role.
The front role decides to reject or to accept the proposal after
max. 1000 msec. In the first case, both statecharts revert to the
noConvoy::default state. In the second case, both roles switch to
the convoy::default state. Eventually, the rear shuttle decides to
propose a break of the convoy and sends this proposal to the front
shuttle. The front shuttle decides to reject or accept that proposal.
In the first case, both shuttles remain in convoy-mode. In the sec-
ond case, the front shuttle replies by an approval message, and both
roles switch into their respective noConvoy::default states.

A safety requirement of the pattern is that no collision hap-
pens. The pattern constraint enforces the shuttle role to be in
state Convoy while the coordinator role is also in state Convoy
(shuttle.convoy implies coordinator.convoy).

3. TIMED STORY CHARTS
Timed Story Charts are a common formalism for the specification
of state based behavior and reconfigurations of self-adaptive sys-
tems. They are specified as an restriction of Timed Story Diagrams
which are Story Diagrams using Timed Story Pattern as described
in Section 3.3 instead of Story Patterns ([16]).

Timed Story Charts as introduced in this section support the se-
mantics of Parameterized Real-Time Statecharts ([11]) and enable
reconfigurations of one to many associations using so called multi
ports and multi parts.

The example shown in Figure 2 extends the shuttle application

2www.uppaal.com
3TCTL: Timed Computation Tree Logic

presented in the last Section by a ConvoyCoordination pattern.
The extended example reflects the real physically running proto-
type build in 1:2.5 build on the campus of the University of Pader-
born. To build a stable and safe convoy, a convoy leader is re-
quired which controls the convoy by calculating for example for
each convoy member the position (:PosCalc). For each member
a :PosCalc component and a coordinator port is required leading
to a :PosCalc multi-part and coordinator multi-port. The use of
hierarchical component structures arise the need for a proper dele-
gation of the behavior to embedded parts as well as a refinement of
such behavior which is not supported by our previous approach.

:Coordinator

shuttle1

:PosCalc
coordinator

shuttle

shuttle2

:DistanceCoordination
front

rear
:ConvoyCoordination

Figure 2: ConvoyCoordination pattern with multi-ports / -
parts

In the remainder of this section, we first introduce the foun-
dations of the Timed Story Chart formalism. These are Timed
Graph Transformation Systems (Timed GTS) and Parameterized
Real-Time Statecharts allowing to define behavior for multi-ports,
-parts, and -delegations. Afterwards, we define the architecture of
components and Timed Story Pattern based on Timed GTS. Finally,
we introduce the syntax of Timed Story Charts and show the map-
ping of the semantics of Parameterized Real-Time Statecharts to
Timed Story Charts.

3.1 Foundations
In the following, we define Timed Graph Transformation Sys-
tems and Parameterized Real-Time Statecharts being the basic for-
malisms for Timed Story Charts.

3.1.1 Timed Graph Transformation Systems
The reconfiguration of an embedded or mechatronic system archi-
tecture defined by graph transformation rules, is often time critical.
Especially the creation or deletion of a port object or component
might involve some complex operations. Verification of time con-
straints of reconfiguration operations should consequently be veri-
fiable on the model level as well.

Timed graph transformation systems extend graph transforma-
tion systems ([13]) by the notion of time as known from timed au-
tomata ([1]). The basis for our graph transformations are UML
object diagrams which are typed over a class diagram (cf. [12,
16]). These can be mapped to directed, attributed, labelled graphs
and corresponding transformations. The definition of a common
formalism for structure and behavior as described in this section
can be achieved by object-oriented graph transformation (cf. [16]).
Therefore, we define timed graph transformations based on object
diagrams such that we can use them for the definition of Timed
Story Charts in Section 3.4. First, we outline the idea of how time
can be integrated into graph transformations and second, we define

the semantics of timed graph transformation systems as they are
used in our approach.

Syntax.

The extension of graph transformation systems with time re-
quires adding clocks to the graphs as they are known from timed
automata. A clock is valid for a certain subgraph of a graph. In
contrast to timed automata, a subgraph may occur more than once
in a graph and all occurences might be created at different times.
Therefore, the clock has to be added several times to the same graph
(once for each subgraph it applies to). As all these instances of the
clock can have different values, we use the term clock instance to
refer to the clocks added to the graphs. The clock serves as a type
for the clock instances.

A timed graph is an UML object diagram extended by a set of
clock instances and their possible valuations. The type graph de-
fines a (possibly infinite) set of graphs. Furthermore, we assume a
set C of clocks over which the clock instances to be added to the
graph are typed.

DEFINITION 1 (TIMED GRAPH). A timed graph Gt is a
tripel (G,CI,Z) whereG is an attributed graph over a type graph,
CI is a set of clock instances over the clocks in C, andZ is a set of
clock zones ([1]) representing the possible valuations for the clock
instances in CI .

The clock instances are contained as nodes in the graph and have
references to the elements of the graph to which they apply. That
allows an easy binding of clock instances using the typed graph
matching. It is possible that multiple clock instances apply to one
object. The possible valuations for the clock instances are stored
in clock zones as in timed automata (cf. [1, 2]). We proceed with
the definition of the rules for our graph transformation system. The
rules are applied to a timed graph which we call the host graph.
First, we define timed transformation rules.

DEFINITION 2 (TIMED GRAPH TRANSFORMATION RULE).
A timed graph transformation rule tr := (Pl, Pr, T,R) consists
of a left hand side Pl and a right hand side Pr as defined for typed
graph transformations. The set T contains a set of time guards
over the clocks in C and R ⊆ C denotes the set of clocks to be
reset to 0. Let h be an isomorphic matching of Pl to the host
graph. Then, the constraints and resets are applied to all clock
instances in h.

Time guards have the form ci − cj ∼ n with ci, cj ∈ C, ∼∈
{<,≤,=,≥, >} and n ∈ N (cf. [1, 2]). A reference clock c0
having the value 0 at all times can be used to express lower and
upper bounds on a single clock. Note that constraints and resets
are expressed on clocks instead of clock instances. This is due
to the fact that the clock instances are not known in advance and
cannot be used in the constraints for that reason. This implies that
the constraints can be used for all clock instances created for the
respective clocks. These constraints are also used for the invariant
rules defined next.

DEFINITION 3 (INVARIANT RULE). An invariant rule ir :=
(Pl, T) consists of a left hand side Pl and a time constraint T over
the set of clock instances C. Let h be be an isomorphic matching
of Pl to the host graph. The time condition T must be fulfilled for
all clock instances c contained in h.

For an invariant rule, we restrict the set of feasible clock con-
straints to ci − c0 ∼ n, where ci, c0, and n are defined as before
and ∼∈ {<,≤} to be consistent to timed automata. Finally, clock
instance rules adding clock instances to the graph can be defined as
follows.

DEFINITION 4 (CLOCK INSTANCE RULE). A clock instance
rule cr := (Pl, c) consists of a left hand side Pl and a clock c ∈ C.
Let h be an isomorphic matching of Pl to the host graph. If h is
empty, the set CI of clock instances remains unchanged. If h is
not empty and there exists no clock instance ci ∈ CI over clock c
that references exactly the elements in h, then a new clock instance
over c is added to CI which references all elementes in h. The
clock instance is initialized with value 0.

Having defined the timed graph and all necessary kinds of rules,
we can now define the timed graph transformation system itself.

DEFINITION 5 (TIMED GRAPH TRANSFORMATION SYSTEM).
A timed graph transformation system Gt is a tuple
(TG,G0, C, TR, IR,CR), where TG is a type graph in-
ducing the set of feasible timed graphs, G0 is a timed start graph
over TG. C denotes the set of clocks serving as types for the clock
instance, TR is a set of timed transformation rules, IR is a set of
invariant rules, and CR is a set of clock instance rules.

The operational semantics of timed graph tranformation systems
is similar to the one of timed automata and is defined in the follow-
ing.

Semantics.

The semantics of timed story diagrams is defined by a Timed
Graph Transition System (TTS). The TTS represents the complete
reachable behavior and is defined as follows.

DEFINITION 6 (TIMED GRAPH TRANSITION SYSTEM (TTS)).
Let G be the set of all possible timed graphs,R a set of transforma-
tion rules, I a set of invariant rules. The Timed Graph Transition
System (TTS) is a triple T = (S, s0, T) where S represents the
states of the TTS, s0 ∈ S is the initial state and T represents the
transitions. A state s ∈ S is a tuple s = (g, z) with g ∈ G and z a
non-empty clock zone over the clock instances contained in g. In
s0, all clock instances are 0.

There exists a transition t from s1 to s2, s1
t−→ s2, iff there exists

a transformation rule r ∈ R such that s2 is a successor state of s1.

The states are tuples consisting of a timed graph and the current
clock interpretations represented by a clock zone ([1]). The clock
zone contains intervals for all clock instances representing the pos-
sible values as well as the differences between those values. The
definition of the TTS is analogous to the definition of zone graphs
([1, 2]), the only difference is that the states contain a timed graph
instead of an automaton location. Before each successor computa-
tion, all clock instance rules have to be executed to add all neces-
sary clock instances to the graph.

DEFINITION 7 (SUCCESSOR STATE). Let s1 =
(g1, z1), s2 = (g2, z2) be states of a TTS. s2 is a successor
state of s1 iff

• there exists a transformation rule r ∈ R such that r trans-
forms g1 into a graph isomorphic to g2 and

• z2 = (((z1 ∧ I(s1)) ⇑)∧ I(s1)∧ guard(r))[reset(r)] and
z2 non-empty.

The definition of a successor state is analogous to the definition
of successor states in timed automata ([1]). The only difference
is that a location switch is represented by a transition in timed au-
tomata whereas the changes in the TTS result from applications
of transformation rules. The computation of the successor clock
zone remains the same. First, the clock zone is intersected against
all constraints of invariant rules applicable to g1 denoted by I(g1).
Then, time passes (⇑) which is implemented by removing the upper
bounds of all clocks (cf. [2]) and then, the intersection against the
invariants is repeated. After that, the resulting clock zone is inter-
sected with the time guards of the applied transformation rule and
the clock resets specified by this rule are executed. Please note that
there might exist more than one possible successor state for the
same transformation rule as a rule might be applicable to several
subgraphs of the graph.

3.1.2 Parameterized Real-Time Statecharts
The behavior of components is specified by Parameterized Real-
Time Statecharts [11]. Parameterized Real-Time Statecharts en-
able the specification of multi-elements (multi-ports, -parts, and -
delegations).

A multi-element is specified by functional (sub-element) - and
adaptational behavior in form of a hierarchical statechart (see Fig-
ure 6). The adaptational behavior controls the instantiation of sub-
elements. Both behavioral parts are specified by Parameterized
Real-Time Statecharts (see Figure 3(a)). Parameterized Real-Time
Statecharts are semantically based on a parameterized timed au-
tomaton, a timed automaton extended by parameterized signals. In
the following, we present the relevant formalization of parameter-
ized timed automata.

DEFINITION 8. A parameterized timed-automaton A is a 7-
tupleA := (Σ,S,S0, X, I, Sig(l), T) with Σ a finite set of words,
S a finite set of locations, S0 ⊆ S a finite set of start-locations,
X := (x1, .., xn) a finite set of clock variables with xi ∈ R+, I
is a function I → C(X), which maps a set of inequalities to the
locations, the so called invariants, Sig(l) is finite set of signals,
parameterized with l. T is the set of transitions. C(X) is the set
of conditions over clock-variables X . C(X) consists of a set of in-
equalities xi ≺ c∨c ≺ xi with≺< or≤ and c ∈ N+. T is defined
as T ⊆ S × Σ × C(X) × 2X × Sig(l) × S. A single transition
from location s to s′ is described by a 6-tuple (s, a, ϕ, λ, sig, s′).
a ∈ Σ denotes the labels of the transition, ϕ a condition, which has
to be true to enable the transition, and λ ⊆ X a number of clock
variables, which a set to 0 when firing the transition. sig ⊆ Sig(l)
is a signal parameterized by l.

3.1.3 Extended Convoy Example
The parameterized role coordinator is depicted in Figure 3(a). The
upper statechart shows the functional behavior for each role in-
stance and the lower one shows adaptational behavior which trig-
gers the creation (the deletion is not shown) of new ports. If a new
port is triggered by receiving a addPort message the side-effect
createPort(n) is called (where n is the current number of convoy
members; initially set to 1). The side-effect is specified by Timed
GTS. After adding a port, the role instance behavior is triggered
to send an update message for example the current maximum ve-
locity of the convoy to each convoy member. The update message
is send every 200 time units and the maximum time for updating
the complete convoy is 6000 time units. This characterizes also the
considered domain. Each action requires a hard timing constraint

as otherwise the environment of the system could be endangered.
Besides time invariants and -guards, we specify the deadline and
the worst case of execution (WCET) of a transition, too. For exam-
ple the deadline and WCET of the transition from NoConvoy to
Convoy is [10;10] (ten for each).

The real-time statechart of the shuttle role consists of states
AwaitUpdate and SendAck (see Figure 3(b)). The role awaits
at least every 6000 time units an update message and sends after
receiving the update message an acknowledgment.

Coordinator

Idle

c1 <= 200

[1;1]{c1}

c1 <= 25

AwaitAck

Complete

c1 <= 29

/Port[k].update()

[10;10]

Port[k].ack() /

[1;1]

[1;1]

[1;1]

done!

[this.parameter < n]

next[k+1]!

c2 <= 6000

Side Effects:

createPort(1)

Convoy

c2 <= 60

NoConvoy

addPort() /

{c2}

[10;10]

{c2}

SendUpdates

createPort(n+1)

Side Effects:

addPort() /

next[1]!

{c2} [1;1]

[10;10] [1;1] {c2}

done?

next[k]?

[this.parameter == n]

c2 <= 6000

c1 <= 10

SendUpdate

(a) Coordinator behavior

c2 <= 6000

AwaitUpdate SendAck

c2 <= 5

{c2}

{c2}

Coordinator.update() /

/ Coordinator.ack()

(b) Shuttle behavior

Figure 3: Real-Time Coordination Pattern for a Shuttle Con-
voy

An example of the creation of a new port by the Timed GTS
formalism is omitted. In concrete syntax, as presented in [11], the
GTS would simply add a new port role instance and link it to the
last created port to enable an update from the first shuttle to the last
one in the convoy in a structured way.

3.2 System architecture
As presented in Section 3.1, the system architecture is specified by
UML 2.0-components and -parts. For each component diagram,
a class diagram is automatically synthesized. The class diagram
includes classes for each component and its ports, for each embed-
ded part, and for all delegations and assemblies. The structure of
the class diagram is based on the meta model of the component dia-
gram (see Figure 4). An example class diagram of the Coordinator
component (see Figure 2) is shown in Figure 5.

The use of multi ports and multi parts introduces the need for an
adaptation because we have to control the creation and removal of
the instances. This adaptation is performed by an additional adap-
tation layer as shown in Figure 6. As we have multiple instances
of the port and the part, we also need multiple instances of the del-
egation. Thus, we need an adaptation for the delegation as well.
The delegation behavior itself simply forwards all events or might
implement some conversion function.

3.3 Timed Story Pattern
Based on Timed GTS introduced in Section 3.1, we define Timed
Story Pattern as an extension of Story Pattern by time. Timed Story
Pattern are, like Story Pattern, a short-hand notation for graph trans-
formations with time. Thus, we use the syntax introduced in [16]
enriched with the timing constructs of Timed GTS.

The changes in the timing constructs from Timed GTS to Timed
Story Pattern are syntactically, only. Clock instances are repre-

Part

ReqI nterfacePart

Component

ComponentPart PortPart

I nt er facePart

ProvI nterfacePart

AssemblyType

Delegat ionTypePort

UMLRealt imeStatechart

ProtocolStatechart

0..*1

isComposedOf

1

0..1

required

1

1

umlRealtimeStatechart

1

0..1

typeOf

1

0..*

has

1 1

umlRealtimeStatechart

0..*1

has

1

0..*

typeOf1

1

protocolStatechart

0..*

1

has

1

0..*

portPart

1

0..1

provided

1 0..*

port

1

1

protocolStatechart

Figure 4: Component and parts meta model

PosCalc

Coordinator

coordPort

coordPortPart

Coordinator

CoordPort

CoordinatorSC

CoordPortSC

PosCalcPart

CoordPortPart

Delegation

CoordPortPartSC

PosCalcPartSC

isComposedOf

has

uMLRealtimeStatechart

protocolStatechart

portPartport

protocolStatechart

uMLRealtimeStatechart

has

1 1

1 1 1 1

1 1
1 0..*

1

0..*

1

0..1

1

0..10..1

1

Figure 5: Example class diagram

PosCalc

Coordinator

coordPort

coordPortPart

coordPortPart1 coordPortPartk...
Multipart-Adaptation

coordPort1 coordPortk...
Multiport-AdaptationDelegation-Adaptation

del1 delk...

Figure 6: Multi-part, -port, and -delegation.

sented as objects and are created like objects by «++» annotations.
Clock instances always hold for a certain subgraph of the host
graph. The objects for which the clock instance is valid are an-
notated by links from the clock instance object to the respective
objects of the host graph as shown in Figure 7.

The clock instance rule in Figure 7 is used to add a clock in-
stance of type c2 to a subgraph consisting of a RailCab, its Co-
ordinationSC, and the ActiveState object of that statechart. The
first story binds the subgraph the clock instance applies to. Then,
the second story checks whether the clock instance already exists.
If the clock instance exists, another possible subgraph is seached.
If the clock instance does not exist, it is created in the third story at
the bottom.

Figure 8 shows an example for an invariant rule. The invariant
specifies that the state Convoy of the CoordinationSC as depicted
in Figure 3(a) must only be active for clock values up to 60. The
invariant rule binds the subgraph along with the clock instance and
contains the invariant condition in curly braces. As in Timed GTS,
the invariant rule has a left hand side, only.

RailCab::invariant_convoy(): Void

Match invariant structure

sc: CoordinatorSC state: State
name == "Convoy"

as: ActiveState
ci: ClockInstance

type == "c2"

{ ci <= 60 }

adRailCab::invariant_convoy()

in

in
hasNode

active

hasNode

Figure 8: Invariant Rule.

3.4 Syntax of Timed Story Charts
The Timed Story Chart formalism supports abstract states, time
constraints, and integrates dynamic adaptation by triggering recon-
figurations specified by (Timed) Story Diagrams. In this section,
the syntax of some of the key features of Timed Story Charts will
be introduced. The examples used in this section are kept on an
abstract level to underline the generality of the formalism.

The basis of the Timed Story Charts is the meta model shown in
Figure 9. For each statechart that should be translated into a Timed
Story Chart, there exists one subclass of class Statechart having
the same name as the statechart it represents. Each state of the stat-
echart is mapped to an object of type State having the name of the
state as an attribute. A complex AND-state containing several sub-
statecharts is modeled as an object of class ComplexState which
has references to all embedded statecharts. Transitions between the
states are implicitly mapped to rules of the Timed Story Chart as
described below 4. In contrast to [16], we did not use a dedicated
framework for the execution of the Story Chart as a reachability
4An explicit transition object would lead to extra computations by
the analysis and provides no further information.

analysis would be difficult due to the single method executing all
transitions. Hence, a transition would not be (easily) identifiable.

State
name : String

ClockInstance
type : String

ActiveState
parameter : int

Statechart

active

ComplexState
deleteSyncChannels()

subStatechart

1 1..*

10..1

1

Synchronization
parameter : int
name : String

recvSrc
0..1

sendSrc

0..1

EventQueue

enqueue(Event e)
dequeue()

parameter : int
Event

name : String

head

1 0..1

0..11

next
tail

has
1

1
0..1

0..1

has

1

0..*

0..*

Parameter
name : String

1

0..*

Object
value

1 1

{ordered}

1..*

1..*

0..*

0..*

0..*

has

in

in

Figure 9: Meta model for the mapping of Real-Time State-
charts to Story Diagrams

Dealing with multi ports, we have defined Parameterized Real-
Time Statecharts as described in Section 3.1.2. Here, all instances
have the same set of states. Thus, it would be inefficient to create
dedicated objects for the states of each statechart instance. Instead,
we exploit this fact by introducing a parameterized ActiveState ob-
ject for each instance where the parameter of the current instance
is stored as an attribute in the corresponding object. It is neces-
sary to provide unique parameter IDs for the statecharts at their
creation which is also necessary for the synchronization among the
instances using parameterized signals called synchronization chan-
nels. An example for this mapping is shown in Figure 10 where
we have two instances of the same statechart only differentiated by
their parameters in the Timed Story Chart. The ActiveState object
has at any time exactly one reference to the currently active state of
the statechart, i.e. the state in which the protocol currently is.

The execution of transitions is performed by graph transforma-
tions changing the link from the ActiveState object to another state
object. Figure 11 shows an example for a complex transition in-
cluing a synchronization. Here, for the embedded statecharts Co-
ordRoleSC and AdaptationSC the states are changed from Idle
to sendUpdate and from Convoy to sendUpdates respectively.
The example omits the deadlines specified at the transitions in order
to retrieve a single rule for the transitions.

Figure 11 also shows the synchronization of two statecharts us-
ing a synchronous synchronization channel. Such channels are
modeled by objects of type Synchronization carrying the name of
the channel as well as the parameter for synchronization of parame-
terized statecharts as attributes. We provided a joint Story Diagram
including both synchronized transitions because these transitions
have to fire simultaneously. The synchronization object has links
to the source states of both transitions requesting the synchroniza-

RailCab::clockInstance_rule(): Void

Match the subgraph

rc: RailCab sc: CoordinatorSC

as: ActiveState

Check for existing clock instance

as

rc sc

ci: ClockInstance
type == "c2"

Create clock instance

as

rc sc

«create»
ci: ClockInstance

type := "c2"

adRailCab::clockInstance_rule()

has

in
hasNode

hasNode

hasNode

[each time]

[success]

[failure]
[end]

«create»
hasNode

«create»
hasNode

«create»
hasNode

Figure 7: Adding a Clock Instance c2 to the Graph

rtsc : AB_Statechart, Instance 1

A B

s1 : State
name = „A“

s2 : State
name = „B“

sc : AB_Statechart

as1 : ActiveState
parameter = 1

as2 : ActiveState
parameter = 2

active active

rtsc : AB_Statechart, Instance 2

A B

Figure 10: Example of a mapping of a statechart to a graph

tion, which are modeled by the recvSrc and sendSrc associations
in the meta model.

A core feature of Timed Story Charts is the integration of re-
configuration with the aforedescribed state based concepts. Re-
configurations of the system are modeled as (Timed) Story Dia-
grams and can be called using so-called Collaboration Messages
(cf. [16]). They can be used to directly call another Story Diagram.
All actions such as entry or exit actions of states are mapped to
Collaboration Messages as well. An example is given by the call to
deleteSyncChannels which invokes a method on the cs object.

The time related aspects of Real-Time Statecharts such as clocks,
time guards, clock resets, and deadlines are mapped to the corre-
sponding elements of Timed Story Pattern. Invariants are mapped
to special invariant rules having no right hand side as described in
Section 3.3. Clocks instances are mapped to objects of type Clock-
Instance. We use the name clock instance because we have to in-
stantiate all clocks of a parameterized statechart for each instance
of the statechart. Thus, we have multiple instances of the same
clock with potentially different values due to different active states

in the different instances. For sake of clarification, we consider the
clock to be on type level and the clock instance to be the current
instance associated with an instance of a statechart. The clock in-
stance has references to all objects of the subgraph it applies to.
By referencing the ActiveState object, a clock instance refers to
a specific statechart instance. An example for a clock instance is
shown in Figure 12.

s1 : State
name = „A“

as : ActiveState

AB_Statechart::Trans_A_B_Pt1()

this

s2 : State
name = „executingTransAB“

A B[lb, ub]

c1 : ClockInstance
type = „AB_SC_d1“

<<++>>

<<++>>
<<++>>

rs : ClockReset

reset
<<++>>

<<++>>

<<-->> <<++>>active
active

<<++>>

Figure 12: A transition with deadline, pt. 1

Along with a clock instance, a ClockReset object is created and
linked to the clock instance. It does not need to carry the parameter
itself as it is linked to exactly one clock instance already having the
parameter. Each time this ClockReset object is bound in a Story
Pattern along with the clock instance, the clock instance is reset to
0.

Figures 12 and 13 together represent the mapping of a deadline
and thus, in our real-time statechart semantics the elapse of time.
Since no time can elapse during the execution of a rule of a Timed
Story Chart as in Timed Automata [1], we split the transition in
two transitions with an intermediate state. The semantics of the

as2:ActiveState

aSc:AdaptationSC

s2:State
name = „convoy“

s1:State
name = „idle“

sy1:Synchronization
name = „next“
parameter = 1

RailCabSC::transition_IdleSendUpdate_ConvoySendUpdates()

{ as1.getParameter() == sy1.getParameter()∧as2.getParameter() == sy1.getParameter() }

this

cSc:CoordRoleSC

cs:ComplexState

as1:ActiveState

ci2:ClockInstance
type = „c3“

ci1:ClockInstance
type = „c1“

{ ci2 ==300 }

<<-->>

[success] [failure]

[success]

[failure]

Check applicability of the rule

ci1

ci2

reset

reset

Execute clock resets

s2

cs

sy2:Synchronization
name = „newFollower“

<<-->>

deleteSyncChannels()

Delete synchronizations of outgoing transitions

recvSr

cs
sy3:Synchronization

name = „next“
parameter = aSc.getN() + 1

Check for existing synchronization object

has

s2
<<++>>

Bind state to sychronization

sy3recvSrc s2
sy3:Synchronization

name = „next“
parameter = aSc.getN() + 1

<<++>>

cs

Create synchronization and bind it to the state
<<++>>
recvSrc

<<++>>
has

s3:State
name = „sendUpdate“

s1 as1

cSc

Enter target states

<<-->>
active

<<++>>
active

s4:State
name = „sendUpdates“

s2 as2

aSc

<<-->>
active

<<++>>
active

in in

subStatechart

<<-->>

subStatechart

inin

in inhasNode

active active

has

hasNode hasNode hasNode

hasNodehasNode

recvSrc
<<-->>

sendSrc

Figure 11: Complex Timed Story Chart Transformation Rule Including a Synchronization

transition will be explained in Section 3.5.

s1 : State
name = „executingTransAB“

as : ActiveState

AB_Statechart::Trans_A_B_Pt2()

this

s2 : State
name = „B“

A B[lb, ub]

c1 : ClockInstance
type = „AB_SC_d1“

<<-->>

<<-->>

rs : ClockReset

reset
<<-->>

<<-->>

<<-->> <<++>>active active

<<-->>

Figure 13: A transition with deadline, pt. 2

Figure 13 shows the syntax of a time guard. They are modeled as
Boolean conditions for the binding of the Story Pattern (cf. [16]),
i.e. a match will only be accepted if the condition can be evaluated
to true. The time guard is shown in curly braces at the bottom of the
pattern and contains an inequality of the form c ≺ x where c is the
variable name of a clock instance bound in the Story Pattern, x is
an integer, and≺ is a comparison operator out of {<,≤,=,≥, >}.
They can be conjuncted with normal transition guards as shown in
Figure 13.

Finally, we want to introduce briefly the event concept of the
Timed Story Charts. Events are considered to be asynchronous
and can carry parameters. We have to distinguish between trigger
events, that activate a transition, and raised events, that are cre-
ated when the transition fires. Both are modeled as instances of
the class Event in the meta model and have an ordered set of pa-
rameters. The event as well as the parameter has a name and the
parameter additionally has a link to a value of type Object. This
can be any basic type like integer or double as well as a complex
type such as a string or an arbitrary object. Each statechart instance
has an EventQueue serving as an inbox for incoming events. The
EventQueue is organized as a simple FIFO queue in our example,
but different semantics can be introduced by changing the function
that inserts new events. A trigger event is specified by binding the
event object as head of the event queue as it is shown in Figure
14 for event a. A raised event is implemented by an event object
with modifier «++» . Raised events have to be added to the event
queue of the receiving statechart (instance) which is not shown in
the figure.

3.5 Semantics of Timed Story Charts
The syntactical mappings of (Real-Time) Statechart constructs de-
fined above are now combined to a sequence of stories defining the
execution semantics of Timed Story Charts. The execution seman-
tic meets the semantic of the Real-Time Statecharts [7]. Figure 15
shows a transition with all relevant features including a deadline.
The transition specifies a guard requiring the shuttles’ speed to be
less than 10 and a time guard allowing the transition to be activated
only for clock values between 10 and 20 for clock c1. Additionally,
the transition has a trigger event a, a raised event b, and synchro-
nizes with some other transition using the channel sync. Finally,
the transition executes a side effect and therefore has a deadline
[2; 5] meaning that the firing will terminate at least 2 unit of time

A B

State
name = „A“

ActiveState

AB_Statechart::Trans_A_B()

this

State
name = „B“

a / b

eq : EventQueue

e1 : Event
name = „a“

head

e2 : Event
name := „b“

<<++>>

1: dequeue()
2: enqueue(e2)

<<-->> <<++>>
active active

Figure 14: Events

after it started but at most 5 after it. Before entering the target state
B, a clock reset on c1 is performed. A schema of the resulting
Timed Story Chart rules is shown in Figure 16. The boxes repre-
sent the different stories of the Timed Story Diagram created for
the transition.

A B

sideEffect1()exit: exitAction1() entry: entryAction1()

a / b
sync?

{c1}10≤c1≤20

[sh.speed < 10] [2 ;5]

Figure 15: Transition of a real-time statechart

For the transition to fire, the precondition must be fulfilled. The
precondition requires, of course, that the statechart is in the source
state A which is represented by the link active pointing to the corre-
sponding object in the Timed Story Chart. Additionally, all guards
and time guards must be evaluated to true making them part of the
first story. Finally, the trigger event must be first in the event queue
and all synchronizations must be available, i.e. the synchroniza-
tion partner is also ready to execute the transition (cf. Section 3.4).
If this precondition holds, the event is removed from the queue as
stated in the second story. Afterwards, all synchronization channels
belonging to other transitions than the one currently taken, have to
be removed as they are no longer available. This is performed by
the third story, possibly in multiple steps as indicated by the dou-
ble border line of the story. Then, the source state is left and an
intermediate state is entered which only allows to proceed into the
target state. When leaving the source state, the exit action of the
source state has to be executed. This behavior is captured by the
forth story. The example transition has a deadline which states that
it takes at least 2 units of time for it to fire but at most 5. This
time has to be measured by a clock (instance) which is created and
initialized to 0 in the fifth story. As the main time consumption of
the transition is caused by the execution of the side effect, the side
effect is executed after creating the deadline clock. As the event
is processed by the side effect and therefore after its execution no
longer needed, it is deleted afterwards. This behavior is elaborated
by the stories 6 and 7. At this point, time has to pass until the
expiration of the deadline. Therefore, the first Story Diagram ter-
minates and the execution of the transition continues in the second
Story Diagram after the deadline expired.

To force the execution of the second rule, an additional invariant
rule is used forbidding to stay in the intermediate state longer than
the 5 units of time forming the upper bound in our example. The

precondition of the second Story Diagram requires the system to
be in the intermediate state and contains a time guard requiring the
deadline clock to have a value greater or equal to the lower bound
of the deadline. As the deadline clock is no longer needed for this
transition, it can be deleted to improve the efficiency of the com-
putations. Before entering the target state, the raised events have
to be created and the clock resets have to be performed as done in
the ninth story. Entering the target state enables all synchroniza-
tion channels of its outgoing transitions. That causes them to be
created in story 10. Since there may be more than one outgoing
transition, the step might require several substeps. At last, the tar-
get state is entered and the entry action of the target state has to be
executed afterwards. As all Collaboration Messages are executed
after the graph transformation, the entry action is indeed executed
after entering the target state.

1. Check
precondition

4. Leave source
state and execute

exit action

9. Create raised
events and perform

clock resets

11. Enter target
state and execute

entry action

6. Execute
side effect

2. Remove
event from

queue

7. Delete event
object

3. Delete sync
channels of
source state

10. Create sync
channels of
target state

L
ea

ve
 s

o
ur

ce
 s

ta
te

E
xe

cu
te

tr
a

n
si

tio
n

E
n

te
r

ta
rg

et
st

a
te

5. Create
deadline clock

8. Check
precondition

Figure 16: Execution semantics

4. REFINEMENT
In this section, we will first define the refinement along with the
requirements it must meet. Then, we introduce the idea of an re-
finement check based on the definition. Finally, we show the de-
cidability of the check and present some evaluation results.

4.1 Definition
A correctly refined protocol should be usable as an implementation
of an abstract protocol such that it does not affect the communica-
tion partner, i.e. a communication partner will not encounter any
difference to the abstract protocol. This arises two requirements:
1) the external visible real-time behavior has to be fulfilled by the
refined behavior and 2) the (formal) compositional verification re-
sults of the abstract behavior have to be preserved by the refine-
ment. The fulfillment of these requirements ensures that a com-
munication partner will not experience any difference between the
abstract protocol and the refined protocol.

The refinement definition we propose is based on timed traces as
defined in [15]. Timed traces capture the externally visible behavior
of the protocol executed by the port. Additionally to the behavior,
we also have to monitor the reconfigurations of the system as they
are part of the protocol. Throughout this paper, we will use the
distinction between action transitions and delay transitions made in
[2], because it enables us to precisely obtain the points in time when
a state is entered and how long it is possible to stay in the particular
state. The definition presented in [4] contains these information
only implicitely. Definition 9 captures the information necessary
for the refinement of the traces.

DEFINITION 9 (TIMED TRACE). Let Gt = 〈TG,G0, TR,
IR〉 be a timed graph transformation system with externally vis-
ible events A = Ai ∪ Ao of a timed story chart with Ai received
events and Ao sent events. Let Z be a set of clock zones on clock
instances C. A timed trace ξ = (Sξ, Rξ) is a sequence of rule ap-
plications of TR with states Sξ and transitions Rξ for which hold

ξ = 〈g0, z0〉 ⇒δ0 〈g0, z↑0〉 ⇒a0 〈g1, z1〉 ⇒δ1 〈g1, z↑1〉...
with

• z↑ = {z + d|z ∈ Z, d ∈ R+}
• 〈g0, z0〉 ⇒δ0 〈g0, z↑0〉 corresponds to 〈g0, z0〉 ⇒ 〈g0, z↑0 ∧
I(g0)〉 with I(g0) invaraint applicable to g0
• 〈g0, z0〉 ⇒a0 〈g1, z1〉 corresponds to 〈g0, z0〉 ⇒ 〈g1, ((z0∧
g)[λ := 0]) ∧ I(g1)〉 with I(g1) invariant applicable to g1,
g time guard of the transition and λ a set of clock instances,
λ ⊆ C, being reset to 0.

Each state of the trace consists of a timed graph as defined in
Section 3.1.1 having a set of associated clocks and a clock zone
[1] describing the possible clock values. For each pair of clock in-
stances there is one inequality of the form x1 − x2 ≺ d where x1
and x2 are clock instances, d is an integer, and ≺ is one of the op-
erators {<,≤}. Additionally, the clock zone contains a reference
clock x0 which is always set to 0 to specify comparisons which
integers.

Transitions in a trace can occur due to an event, which is either
sent or received, or due to a delay representing the elapse of time.
Event transitions are executed by a rule of the Timed Story Chart as
introduced in Section 3 and may be the concatenation of multiple
internal operations also executed by rules of a Timed Story Chart
with one external visible event being sent or received. During such
an event transition, no time can elapse, but the clock zone of the
source state has to be intersected with the guard and, after applying
the resets, with the invariant of the target graph. A delay transition
models the elapse of time by removing the upper bounds from all
clocks and intersecting the resulting clock zone with the invariants
of the current graph. The resulting clock zone defines how long the
situation described by the given graph is valid.

The aforedescribed traces can then be refined as described by
Definition 10.

DEFINITION 10 (REFINED TRACE). Let ξa = 〈Sξ,a, Rξ,a〉,
ξk = 〈Sξ,k, Rξ,k〉 be timed traces of timed graph transfor-
mation systems Gat = 〈TGa, G0

a, TRa, IRa〉, Gkt = 〈TGk,
G0
k, TRk, IRk〉. Let abs : Gkt → Gat be an abstraction func-

tion associating objects of Gkt with objects of Gat . Furthermore, let
Dreset(s, c) be a relation returning for a given clock zone s and a
clock c all clock zones containing a reset on c since the last event
before zone s. Let cdiff (c, s1, s2) be a function computing the dif-
ference of the upper bound of clock c in the clock zones s1, s2, i.e.
ubound(s1.z.c)− ubound(s2.z.c), with s1 ∈ Sξ,a, s2 ∈ Sξ,k. ξk
is a refined trace of ξa, ξk ≤ ξa, if

1. G0
a ⊆ abs(G0

k) and all clocks are 0 in sa,0.z, sk,0.z
2. For each transition ti ∈ Rξ,a with sa ⇒ao s

′
a having event

ao ∈ Ao exists a transition tj ∈ Rξ,k with sk ⇒ao s
′
k, for

which holds

• s′a.g ⊆ abs(s′k.g)

• For all clocks c in s′a.z:∑
{z|z∈D(s′a,c)}

ubound(z.c) + ubound(s′a.z.c) =∑
{z|z∈D(s′

k
,c)} ubound(z.c) + ubound(s′k.z.c) +

cdiff (c, sa, sk)

3. For each transition ti ∈ Rξ,a with sa ⇒ai s
′
a mit ai ∈ Ai

exists a transition tj ∈ Rξ,k with sk ⇒ai s′k, for which
holds

• s′a.g ⊆ abs(s′k.g)

• For all clocks c in s′a.z:
∑

{z|z∈D(s′a,c)}
ubound(z) +

ubound(s′a.z) ≤ ∑
{z|z∈D(s′

k
,c)} ubound(z) +

ubound(s′k.z) + cdiff (c, sa, sk)

4. All external events are defined over the same namespace in
ξa and ξk.

We want to introduce the term corresponding states for pairs of
states in both traces having the same prior event sequences as well
as a compatible amount of elapsed time. By definition, the initial
states of the traces are corresponding because there have been no
events before them and because all clocks are 0 (Condition 1). The
Conditions 2 and 3 define the timing conditions that must be ful-
filled for sent events ao and received events ai respectively. For a
sent event, the deadline for sending the event must be met exactly
indicated by the equal operator. The requirement is necessary as we
consider hard real-time protocols which don’t allow the deadline to
be extended. As we can’t make assumptions on the communication
partner, reducing the deadline is also impossible as we can’t be sure
that the communication partner can receive the event earlier.

Having a received event, we consider the currently checked side
of the protocol. Under the assumption that we have a buffer for
incoming messages which stores messages until they are taken out
of it, we can relax the deadlines for such events. Again, we can’t
make the deadline smaller as the communication partner can sent
the event at the end of the original deadline. But it is possible to
extend it as the buffer is able to take the message at any point in
time. The exact point in time at which the message is removed
from the buffer and actually processed by the protocol automaton
doesn’t affect the communication partner. So, relaxing the upper
bound is possible as long as it doesn’t violate internal properties
of the component executing the protocol. This can be ensured by
performing a model checking of the basic components that don’t
delegate their port behaviors to embedded parts.

The term s′a.g ⊆ abs(s′k.g) defines a structural refinement ([9]),
i.e. both graphs, the abstract and the refined one, must have the
same kinds of objects. Since we have different level of abstrac-
tion, the actual classes over which the objects are typed are likely
to differ as shown in Figure 5. Therefore, we use the abstraction
function according to [9] to map the object types. The structural
refinement is in our case relaxed to the condition that the abstract
and the refined system must have the same set of ports which are
connected in the same way by delegations.

The forth condition for refined traces is that the events are de-
fined over the same namespace. However, if the namespaces differ,
both namespaces must be mappable onto each other by a bijective
conversion function.

Using Definition 10 we are able to refine the refinement relation
between two protocols fulfilling the two requirements.

DEFINITION 11 (REFINEMENT). Let Gat ,Gkt be timed graph
transformation systems with external behaviour Traces(Gat) and
Traces(Gkt) respectively. Gkt is a refinement of Gat , Gkt ≤ Gat , if

1. for each trace ξk ∈ Trace(Gkt) exists a trace ξa ∈
Trace(Gat) with ξk ≤ ξa and

2. ¬∃ξk ∈ Trace(Gkt) : succ(s) = ∅ for a state s ∈ ξk and
3. each trace in Trace(Gat) has been covered.

The Conditions 1 and 2 define a weak timed simulation relation-
ship ([14]) with the abstract protocol simulating the refined one.
Condition 1 states that for each refined path there must be a path
in the abstract protocol fulfilling Definition 10. Condition 2 states
that the refinement is free of deadlocks. The simulation relation-
ship ensures the preservation of ATCTL formulas which is the rel-
evant class of verified properties in our compositional verification
approach. Condition 3 of the refinement ensures the complete ful-
fillment of the protocol. There must be a path in the refined pro-
tocol for each path of the abstract protocol. Considering only the
simulation relationship, it would be possible that the abstract pro-
tocol has more paths than the refined one. A path being covered
means that there is a state marked as corresponding between every
two events. If this is the case, all paths have been considered by the
simulation and thus the abstraction doesn’t contain more path than
the refinement.

4.2 Refinement Check
The refinement check consists of two steps. First, a timed reacha-
bility analysis is performed for both systems. Then, the refinement
is checked based on the reached transition systems.

The timed reachability analysis is based on the computation of
reachability graphs as introduced in [17]. Basically, the Timed
Story Patterns used to execute the Timed Story Charts are trans-
formed such that the matching and the rewrite step are separated
into two operations. Then, the matching operation is embedded into
a for each construct, searching for all possible matches of a given
Timed Story Pattern in the current graph. For each match, we use
a library operation introduced in [17] in order to create a copy of
the current graph and then, the rewrite operation is applied to that
graph copy. We do this for all Story Patterns that are enabled for
the current graph. Thus, for a given start graph the expansion step
described above computes the set of all possible successor graphs
reachable with the available Story Patterns. We apply this expan-
sion step to all reachable graphs as long as possible. During the ex-
pansion, we use an isomorphism check provided by a library [17],
to compare each new graph with all other derived graphs. Thereby,
we identify and merge graphs that may be reached by different se-
quences of Story Pattern applications. During the application of
Timed Story Patterns, the timing constraints are maintained using
clock zones [4]. Accordingly, handling of the clock zones is in-
corporated in the graph copy operation and especially in the graph
isomorphism check. Thus, two timed graphs are considered iso-
morphic, if the graph structure is isomorphic and if the clock zones
are equivalent.

The refinement check algorithm then traverses the reached tran-
sition system for the refined system using a depth first approach.
The algorithm investigates all possible traces and identifies corre-
sponding traces in the abstract system. The algorithm then com-
pares both traces according to Definition 10. Corresponding states
are added between every two events for states that fulfill the con-
ditions stated in the definition. It is possible that there exists more
than one possible corresponding trace in the abstract system for
a given trace of the refined system. In this case, all possible ab-
stract traces are investigated. If no trace can be found such that the
conditions of Definition 10 hold, the check fails and thus the re-
finement is not correct. After all traces of the refined system have
been checked, the abstract system is traversed in order to check
the coverage criterion. If this check is successful, the refinement is
correct.

4.3 Decidability
In general, the verification of correct refinements based on trace in-

clusion is undecidable for timed systems [1] due to the possibility
that the reachability computation may not terminate and paths may
be infinite. We restrict our input to hard real-time models, as re-
quired by the considered application domain, which lead to a finite
number of reachable graphs.

The specification of a hard real-time system requires each tran-
sition of the state behavior to carry a deadline which ensures the
elapse of time along transitions of the input Real-Time Statecharts.
A further property of a hard real-time systems is that each state has
to carry an invariant to force transitions to happen. Thus, time con-
stantly increases. These properties lead to a finite reachable graph
as dependent behavior (e. g. , a dependency between sub-elements
as shown in Section 3.1.3) has an upper hard timing constraint or
the behaviors are independent and therefore only one possible in-
stance of the behavior has to be considered. These restrictions lead
to a finite set of traces in which every infinite trace will end in a
loop. Thus, the total number of reached trace states is finite. As
finite problems are always decidable, the verification of correct re-
finements is decidable for our class of problems.

4.4 Evaluation
We made an evaluation of the reachability analysis and the refine-
ment check based on the convoy coordination example with differ-
ent numbers of ports. As we expected, the size of the graphs grew
slowly with the number of ports. The maximum size of a reachable
graph rose by 6 for each participant including 2 clock instances, 2
reset objects, 1 ActiveState object, and 1 object for the port itself.
The resulting runtimes of the reachability analysis with and without
consideration of time are shown in Figure 17.

! " # $ % !& !% "& "%
"'" (') !"'% "&'% #! !#% #$*)+# !%&)
"# !&+ #*! !!+* #$&%

,-./01.2.-34
,-./2.-34

! " # $ % !& !% "& "%
!

!&

!&&

!&&&

!&&&&

,-./01.2.-34
,-./2.-34

!"#$%&'()'*(&+,

-
"
.
+/
#
%
'/
.
',
%
0
(
.
1
,

Figure 17: Runtime of the reachability analysis

For the evaluation, the abstract protocol was checked against it-
self with positive verification result. As the scalar on the Y-axis
is logarithmic, the runtime of the reachability analysis with time is
exponential.

5. RELATED WORK
In [3] an overview of modeling approaches for self-adaptive sys-
tems is presented. The approaches either support no refinement
definition or time is not supported. In [5] a refinement is defined
for hybrid graph transformation systems which preserves verifica-
tion results of the abstract behavior. The focus is not, as in our case,
to define a more relaxed refinement which enables a more flexi-
ble integration of possible refined behavior and it is not required
that the external visible real-time behavior is still preserved by the
refined behavior. [9] considers graph transformation systems for
the specification of service oriented architectures. The presented
refinement should preserve the external visible services. The ap-
proach did not take into account time and the ability to preserve
verification results. [8] examine refinement for graph transforma-

tion systems based on an algebra but they did not take into account
time.

6. CONCLUSION AND FUTURE WORK
In this paper, we introduced Timed Story Charts which provide
a common formalism for modeling real-time behavior and self-
adaptation in form of runtime reconfigurations of the software
structure based on our previous work [11, 10]. Timed Story Charts
combine state-based real-time behavior with the ability to recon-
figure the system architecture by graph transformations based on
Story Diagrams. Based on this formalism and a well defined in-
ternal component architecture, we introduced a refinement defini-
tion and a refinement check that preserves safety and bounded live-
ness properties as well as the externally visible real-time behavior.
Our refinement check is based on a reachability analysis on Timed
Graph Transformation Systems. In our future work, we want to
provide more automatisms as the transformation of statecharts to
Timed Story Charts is a manual task by now. Furthermore, we
plan to introduce a refinement check based on static rule analy-
sis (e. g. inductive invariants) as this technique might allow us to
extend our refinement definition to applications with infinite state
systems and improve the runtime of the refinement check.

7. REFERENCES
[1] R. Alur. Timed automata. Theoretical Computer Science,

126:183–235, 1999.
[2] J. Bengtsson and W. Yi. Timed automata: Semantics,

algorithms and tools. In J. Desel, W. Reisig, and
G. Rozenberg, editors, Lectures on Concurrency and Petri
Nets, volume 3098 of Lecture Notes in Computer Science,
pages 87–124. Springer, 2003.

[3] J. S. Bradbury, J. R. Cordy, J. Dingel, and M. Wermelinger.
A survey of self-management in dynamic software
architecture specifications. In WOSS ’04: Proceedings of the
1st ACM SIGSOFT workshop on Self-managed systems,
pages 28–33, New York, NY, USA, 2004. ACM.

[4] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. MIT Press, 2000.

[5] H. Giese. Modeling and verification of cooperative
self-adaptive mechatronic systems. In Reliable Systems on
Unreliable Networked Platforms, volume 4322 of Lecture
Notes in Computer Science, pages 258–280. Springer Berlin
/ Heidelberg, 2007.

[6] H. Giese, S. Henkler, M. Hirsch, V. Roubin, and M. Tichy.
Modeling techniques for software-intensive systems. In
D. P. F. Tiako, editor, Designing Software-Intensive Systems:
Methods and Principles, pages 21–58. Langston University,
OK, 2008.

[7] H. Giese, M. Tichy, S. Burmester, W. Schäfer, and S. Flake.
Towards the compositional verification of real-time uml
designs. In Proc. of the European Software Engineering
Conference (ESEC), Helsinki, Finland, pages 38–47. ACM
Press, September 2003.

[8] M. Große-Rhode, F. P. Presicce, and M. Simeoni. Formal
software specification with refinements and modules of typed
graph transformation systems. J. Comput. Syst. Sci.,
64(2):171–218, 2002.

[9] R. Heckel and S. Thöne. Behavioral refinement of graph
transformation-based models. In Proc. of the ICGT 2004
Workshop on Software Evolution through Transformations
(SETra 04), pages 139–151. Electronic Notes in Theoretical
Computer Science, 2004.

[10] C. Heinzemann, S. Henkler, and A. Zündorf. Specification
and refinement checking of dynamic systems. In P. V. Gorp,
editor, Proceedings of the 7th International Fujaba Days,
pages 6–10, Eindhoven University of Technology, The
Netherlands, November 2009.

[11] M. Hirsch, S. Henkler, and H. Giese. Modeling
Collaborations with Dynamic Structural Adaptation in
Mechatronic UML. In Proc. of the ICSE 2008 Workshop on
Software Engineering for Adaptive and Self-Managing
Systems (SEAMS’08),Leipzig, Germany, pages 33–40. ACM
Press, May 2008.

[12] Object Management Group. UML 2.2 Superstructure
Specification, 2009. Document – formal/09-02-02.

[13] G. Rozenberg. HANDBOOK of GRAPH GRAMMARS and
COMPUTING by GRAPH TRANSFORMATION, Volume 1:
Foundations. World Scientific, 1997.

[14] C. Weise and D. Lenzkes. Efficient scaling-invariant
checking of timed bisimulation. In Proc. of STACS’97, LNCS
1200:pages 177–188, pages 177–188. Springer-Verlag, 1997.

[15] W. Yi and B. Jonsson. Decidability of timed
language-inclusion for networks of real-time communicating
sequential processes. In Foundation of Software Technology
and Theoretical Computer Science, volume 880 of Lecture
Notes in Computer Science, pages 243–255, 1994.

[16] A. Zündorf. Rigorous Object Oriented Software
Development. University of Paderborn, 2001.

[17] A. Zündorf. Model Checking the Leader Election Protocol
with Fujaba. In 5th International Workshop on Graph-Based
Tools (GraBaTs), July 2009.

