Visualization of Pattern Detection Results in Reclipse

Marie Christin Platenius, Markus von Detten, Dietrich Travkin
Software Engineering Group, Heinz Nixdorf Institute,
University of Paderborn, Paderborn, Germany
[mcp|mvdetten|travkin]@mail.uni-paderborn.de

ABSTRACT

Reverse engineering tools can simplify the recovery of a soft-
ware system’s design by detecting design pattern implemen-
tations. This helps to understand a software system and
thereby supports the process of maintaining or extending a
software. Because the manual specification of patterns has
to maintain the balance between precision and generality,
detection results may contain incorrectly detected pattern
implementations. Usually, a detected candidate cannot be
displayed in detail so that interpreting the detection results
is difficult. In this paper, we present an approach for a com-
prehensive and comprehensible visualization of detection re-
sults in the reverse engineering tool suite Reclipse.

1. INTRODUCTION

Reverse engineering is the task of analyzing a software sys-
tem in order to understand its design. A helpful part in
the recovery of the design is the detection of design pat-
terns. Design patterns represent general, reusable, and com-
monly accepted solutions to frequently occurring problems
in object-oriented software design [4]. Knowledge about the
presence of pattern implementations in a software helps to
understand the software system by revealing the original de-
velopers’ design intentions. It thereby supports the process
of maintaining or extending a software. Reverse engineer-
ing tools can automatically detect pattern implementations
and thereby simplify the reverse engineering process. In the
last years, the detection of design pattern implementations
in source code has been the subject of many scientific pub-
lications (Dong et al. give an overview [3]).

To automate the detection, a formal specification of the pat-
terns is needed. However, patterns can be implemented in
several ways and there can be many different variants of a
pattern which are difficult to capture in a single formal spec-
ification. This leads to the fact that the detection results,
the so-called pattern candidates, can contain false positives.
This problem can be mitigated to a certain degree, by speci-
fying a mandatory pattern core which has to be present and
several additional conditions whose detection increases the
confidence in the correctness of a detected pattern imple-
mentation. As a consequence, the detection results must be
inspected and for each candidate it has to be decided if it is
a true or false positive.

The static pattern detection of the reverse engineering tool
suite Reclipse! [7, 8] detects pattern implementations in source

"http:/ /www.fujaba.de/reclipse

code. The pattern detection results are currently displayed
as a simple list of pattern candidates in which the involved
classes are listed. An automatically calculated percental rat-
ing value indicates how much a pattern candidate conforms
to its specification. A low rating value means that the candi-
date does only contain the mandatory core and few or none
of the specified additional conditions. Therefore, this could
indicate that the candidate is a false positive.

As patterns are specified by the user, the specifications can
contain (possibly subtle) flaws. Such an incorrect specifi-
cation can result in erroneous detection results. Examples
are false positives, or misleading rating values that are too
high or too low. Currently, the user cannot distinguish these
cases by looking at the list of rated detection results and she
cannot see how the rating is calculated. Thus, more infor-
mation about the detected candidates is needed to make use
of the results.

In this paper, we present how the detection results can be
visualized in a comprehensive and comprehensible way. The
goal of the visualization is to provide a more detailed image
of the detected pattern candidates to the user and to make
the candidates’ rating more transparent.

The remainder of this paper is organized as follows: First, we
give a general overview of the pattern detection process, the
pattern specification and the current presentation of results
in Reclipse. In Section 3, requirements for a visualization of
detection results are proposed and in Section 4 our visual-
ization approach is presented. Section 5 deals with related
work. We finish with conclusions and ideas for future work.

2. PATTERN DETECTION IN RECLIPSE

The static pattern detection in Reclipse uses a graph match-
ing approach: The system, i.e. the source code under anal-
ysis, is represented by an abstract syntax graph (ASG) in
which an inference algorithm detects subgraphs that com-
ply to the structure of pre-specified graph patterns [5]. This
results in a list of so-called pattern candidates. The pattern
specifications consist of a number of conditions which have to
be satisfied for a successful match. A percental rating value
is computed for each candidate. The rating value determines
the ratio of a candidate’s satisfied conditions to all condi-
tions in the corresponding pattern specification. Thereby,
the rating quantifies the completeness of a candidate and,
thus, indicates if the candidate is a real pattern implemen-
tation or a false positive.

spObserver) .

«create»
observer

\

type
a

[observerClass:ATypeDeclaration referencedClass

«create»

:Observer

«create»
subject

v

type

S
referencingClass i

-

l simpleName: String = RegExp: " *listener" {additional}

type
bodyDeclaratio™s
4]

ence | bj: lass:ATypeDeclarati l

Earam:ASingIeVariabIeDe:IarationJ

>

class

callee

l update:AMethodDeclaration l

additional
s:SetMethod
setMethod | ¥

setSubject:AMethodDeclaration]

-«
overriddenMethod
v

SIZE>1

parameters

field | ¥ accessMethod bodyDeclarations T
" IS a
f:Field parameters [bodyDeclarations | ¥
A | elements - [l

call:MultiNeighborCall

om:OverriddenMethod

caller
notify:AMethodDeclaration

>

methodBindingReference

> type

p:ASingleVariableDeclaration)

Figure 1: Observer structural pattern

In the following, the pattern specification and the presenta-
tion of the pattern detection results are explained in detail.

2.1 Pattern Specification

In Reclipse, a pattern’s structure is specified with a pat-
tern specification language based on graph grammars, the
so-called structural patterns. Throughout this paper, we use
the Observer pattern as an example. The Observer pattern’s
intent is to “define a one-to-many dependency between ob-
jects so that when one object changes state, all its depen-
dents are notified and updated automatically” [4]. Figure
1 depicts our specification of the Observer pattern. The
rectangular objects represent elements of the system’s ab-
stract syntax graph, e.g. classes and methods. The objects
are variables that are matched to real objects in the given
ASG during pattern detection. The ellipses are so-called
Annotations and represent subpatterns that are specified in
other diagrams. Each element is a condition of the pattern
specification.

When the depicted structure is detected in an ASG during
the patten detection process, the Observer annotation that
is marked with create is created. It tags the structure as
candidate for the Observer pattern and marks objects that
play key roles in the pattern (here the observer class and the
subject class).

The Observer pattern’s structure contains the classes sub-
jectClass and observerClass. The observer class has a
method update. The subject class has the methods regis-
ter and notify. The register method takes an object of
the type observerClass as parameter. The subpattern Mul-
tiReference expresses that a subject references arbitrarily
many observers. The subpattern MultiNeighborCall speci-
fies that the subject’s notify method contains multiple calls
of the observer’s update method.

The dashed lines (e.g. of the NonConcreteType annotations)
indicate objects that are not mandatory for the detection of
the Observer pattern. They form additional conditions. In
the same way, the subgraph in the rectangle to the lower left
marked with additional (a so-called additional fragment)

is not mandatory for the detection of an Observer pattern
implementation. Detected additional elements increase the
number of satisfied conditions and thus the candidate’s rat-
ing value. The observerClass element includes an addi-
tional condition on its simpleName attribute that defines a
condition for the name of the type bound to the observer
role. The name has to match the specified regular expres-
sion which, in this case, declares that the string should end
with “listener”.

The OverriddenMethod annotation om is drawn with a sec-
ond border and thereby marks the node to represent a set
of objects in the ASG. This means that an arbitrarily large
number of objects can be mapped to this element. The ex-
pression “SIZE > 1” indicates that there has to be at least
one element in this set.

More details on the specification language used in Reclipse
can be found in other publications [5, 7, 10].

2.2 Pattern Detection Results View

Figure 2 shows the current results view of Reclipse. It
presents an excerpt of the detection results of a static pat-
tern detection on JHotDraw 5.1 [10]. Besides others, we
found some candidates for the Observer pattern. The view
lists one candidate with its annotated elements (i.e. ob-
serverClass and subjectClass) and additionally shows the
rating value and the detected subpatterns with their rat-
ings. In this example, Reclipse detected an Observer pattern
candidate with a class named StandardDrawing that plays
the role of the subject class and a class DrawingChangeLis-
tener that represents the observer class. All subpatterns
(Field, InterfaceType, MultiNeighborCall, MultiRefer-
ence and OverriddenMethod) were detected with a rating
value of one hundred percent. However, the Observer can-
didate as a whole only received a rating of 79.31%. That
means that some of the conditions in the pattern specifica-
tion are not satisfied. Unfortunately, the user is not able to
see where exactly the candidate deviates from the specifica-
tion, i.e. which conditions of the corresponding pattern are
not satisfied. Furthermore, it is not shown which other ob-
jects besides observer and subject class were matched. For

Annotation Rating Annotated Elements

4 g Observer 7931% observer=CH.ifa.draw.framework.DrawingChangelistener, subject=CH.ifa.draw.standard.5tandardDrawing
a =] detected subpatterns ...
- g Field 100,00% fragment=flisteners, type=CH.ifa.draw.standard.Vector, declaration=nc Name, owningClass=CH.ifa.draw.standard.StandardDrawing
>~ InterfaceType 100,00% type=CH.ifa.draw.framework.DrawingChangelistener

> “a MultiNeighborCall 100,00% calleeClass=CH.ifa.draw.framework.DrawingChangelistener, callee=drawinglnvalidated, caller=figurelnvalidated, callerClass=CH.ifa.draw.standard.5tandardDrawing, elements=Field
» g MultiReference 100,00% referencedClass= CH.ifa.draw.framework.DrawingChangelistener, referencingClass= CH.ifa.draw.standard.5tandardDrawing, field=Field, accessMethod=addDrawingChangelistener

> “a OverriddenMethod 100,00% subClass=CH.ifa.draw.standard StandardDrawingView, overriddenMethod=drawinglnvalidated, overridingMethod=drawinglnvalidated, superClass= CH.ifa.draw.framework.DrawingChangeListener

Figure 2: Detection results from a static pattern detection of JHotDraw 5.1

«cd Matched Observer Pattern o —
(_ Observer
obsemer | Subject

\ DrawingChangeListener | StandardDrawing

‘ @ drawinglnvalidated (e:DrawingChangeEvent):void ‘

lidated (e:FigureCt):void

@ addDrawingChangelistener (listener:DrawingChangeListener):void
@ fi

Figure 3: The class view of the candidate

example, the user cannot see which concrete methods were
matched for the register, the notify, or the update method
roles from the specification.

Essentially, the user has no overview of the (un-)satisfied
conditions. As a result, it is not comprehensible why the
actual rating values are as they are and the detection results
can barely be interpreted.

3. VISUALIZATION REQUIREMENTS

Visualization is important for pattern detection tools be-
cause it helps to envision the detection results so that the
user can easily understand the system [3]. Backofen iden-
tified several requirements for an adequate visualization of
detection results of a static pattern detection [1]:

R1 To attain clarity and comprehensibility, a compromise
between a detailed visualization and a compact, well-
arranged view has to be found.

R2 The presentation of the detection results should show
which conditions of a pattern specification are satisfied
and which are not.

R3 To provide a better understanding of the pattern de-
tection results, it should be easy to relate the matched
pattern candidate to the pattern’s specification.

R4 All specification elements that were matched to the
pattern candidate should be visualized accordingly to
provide the user with detailed information about a can-
didate.

R5 The concrete values of an object’s attributes should be
presented to inform the user about the concrete reason
why a condition is (not) satisfied.

4. PATTERN MATCHING VIEWS

As an addition to the current presentation of detection re-
sults as a list of candidates, we developed a graphical visu-
alization, the pattern matching views. In the following the
new visualization approach is presented.

The Reclipse tool suite, which is based on Fujaba, is a col-
lection of plug-ins for Eclipse. The pattern matching views
were also realized in an Eclipse plug-in. There are three

different views: The class view, the pattern view and the ab-
stract syntaz view. The views can be displayed for each de-
tected pattern candidate and satisfy the requirements iden-
tified in Section 3.

In the following, the three views are described in detail. As
an example, the Observer candidate from Figure 2 is used.

4.1 Class View

In Reclipse, we mostly deal with patterns at the design level
which are primarily concerned with classes. Accordingly,
their natural syntax is a class diagram. Because of this,
the class view shows the pattern candidate in a UML class
diagram. Class diagrams are a language that most users are
familiar with, so they can see immediately which classes play
the key roles in the candidate. In addition, this illustration
is very compact and thereby provides a convenient overview
to the user (cf. requirement R1).

Figure 3 shows the class view for the Observer candidate.
The DrawingChangeListener and the StandardDrawing class-
es from the example in Figure 2 are presented with their roles
in the Observer pattern.

4.2 Pattern View

The pattern view shows the pattern specification of a pattern
candidate, enhanced by information about which conditions
are satisfied by the selected candidate, and which are not
(cf. requirement R2). Satisfied conditions of the pattern are
shown in black. Conditions that are not satisfied are marked
as unsatisfied and are visualized in gray.

In Figure 4, the pattern view for the Observer candidate
is shown. In this example, the objects in the additional
fragment on the lower left are conditions that are not satis-
fied. That means, the candidate has no set method in the
Observer class that takes an object of the subject class as
parameter and calls the subject’s register method. Also, the
attribute expression for the name of the observer class is
not satisfied: the class’ name does not end with “listener”.
The NonConcreteType annotation on the right side is not
matched either, which means that the type which represents
the subject is neither abstract nor an interface.

4.3 Abstract Syntax View

The abstract syntax view shows the subgraph of the ASG
that was matched for the candidate. The advantage is that
this is similar to the syntax of the pattern specification,
which means that the user is able to easily compare the
candidate to the specification (cf. requirement R3).

In Figure 5, the Observer candidate is visualized in the
abstract syntax view. Here, all matched objects are pre-
sented (cf. requirement R4). For example, the observer class

spObserver

«create»

ncl: ‘opConcreteTxge N «create»
atisfied, total=1.0} 4
_— observer

[observerClass:ATypeD

-
‘ referencedClass
| simpleName: String = RegExp: * Mlstener” {additional, unsatisfied) | P

Type

bodyDeclaratiwns
Q

f:Field

:Observer

ref:MultiReference
>
field | ¥ accessMethod
~

«create»

.. {unsatisfied, total=1
subject e

ype [V
subjectClass:ATypeDeclaration
bodyDeclarations
/
bodyDeclarations | ¥

referﬁcmgclass

Py |

A | class
callee

1 A | elements -

caller

update:AMethodDeclaration

< call:MultiNei
overriddenMethod

additional {unsatisfied) | —
—_— -

setMethod | ¥

setSubject:AMethodDeclaration

parameters

gl .

| notify:AMethodDeclaration

>

methodBindingReference

>

‘ :ASi iableDeclaration }

odMatched Observer Pattern)

ncl:NonConcreteType
00,00 % (InterfaceType) :Observer

observer 7931 %

-

observerClass : ATypeDeclaration
referencedClass

name = "CH.ifa.draw.framework.DrawingChangelistener"

Figure 4: The pattern view of the candidate

ref:MultiReference

subject

»~
referencingClass

subjectClass : ATypeDeclaration ‘

simpleName = "DrawingChangeListener"

type field | ¥

bodyDec\aratio‘ns

[param : ASing|

100,00 %

f:Field
100,00 %
‘ parameters [

> name = "CH.ifa.draw.standard.StandardDrawing"]

bodyDeclarations
A
yDeclarations
14

register : AMethodDeclaration ‘

accessMethod

I name = "listener"

update : AMethodDeclaration ‘ callee

name = "drawingInvalidated"]

-
overr

od

100,00 %

‘ A | elements -«
call:MultiNeighborC..

l name = "addDrawingChangelListener"]

caller

[notify : AMethodDecl:

name = "figurelnvalidated”

>

Figure 5: Abstract syntax view of the candidate

is named DrawingChangeListener and the subject class is
named StandardDrawing. Also the names of all other matched
objects are visualized (cf. requirement R5). The annotations
show that the matched subpatterns are all rated with one
hundred percent. Additionally, the size of the Overridden-
Method annotation is presented. In this example, the update
method is overridden only once as indicated by the expres-
sions SIZE = 1.

Figure 4 shows that the attribute expression of the observer
class’ name is not satisfied. The reason for this is revealed
in the abstract syntax view: The name of the class is Draw-
ingChangeListener. This does not match the regular ex-
pression “*listener” from Figure 4. This hints at a flaw
in the specification. The expression could be corrected to
“*(1|L)istener” to improve this condition.

4.4 Additional Features

To support the user in comparing the pattern candidate and
the specification, the three views provide a consistent selec-
tion. If an element in one of the views is selected, the cor-
responding elements in the other views are highlighted as
well.

To simplify the comparison, the layout of the elements shown
in the pattern view and in the abstract syntax view is based
on the layout of the pattern specification (cf. requirement
R3). The user is able to customize the layout of all three
views by dragging the elements to new positions.

To enable a clear, well-arranged view of the pattern candi-
date in abstract syntax, only attributes that have a corre-
sponding condition in the pattern specification are shown
(cf. requirement R1).

If the selected pattern candidate includes annotations that

represent subpatterns, the user is able to directly open the

matching views for the subpattern out of the currently opened
views. For example, from the visualized Observer candidate

in the abstract syntax view, the user can jump to the de-

tected candidate of the MultiReference pattern to see details

about the relation between the observer class and the sub-

ject class.

Furthermore, if the pattern specification contains sets of ob-
jects or annotations, the user can expand the contained ele-
ments for inspection by selecting an action from the context
menu. In the pattern view for the Observer candidate, for
example, the user can display all methods that are bound
to the OverriddenMethod annotation, i.e. all methods that
override the observer’s update method.

S. RELATED WORK

There are many approaches which deal with the detection of
patterns. In their survey paper, Dong et al. present several
pattern detection approaches that also provide visualization
support [3]. Most of those tools present their results as UML
class diagrams, in which the pattern roles are marked. One
of the approaches proposes a UML profile containing new
stereotypes, tagged values and conditions and thereby ex-

tends UML diagrams for visualizing pattern-related issues
[2]. Another visualization technique proposed by Dong et
al. is a class hierarchy in addition to class diagrams. There,
the first level nodes under the root are the classes partici-
pating in the pattern while the roles that a class plays are
defined as their children [3].

Wiebe et al. use a pattern detection approach similar to the
analysis Reclipse uses [12]. After executing a graph match-
ing algorithm, the detected pattern candidates are evaluated
and presented. However, the candidates are visualized ex-
clusively as UML class diagram.

Schauer and Keller present an approach where the pattern
candidate is juxtaposed with the description from literature
[6]. But the informal description is not equivalent to the
used formal pattern specification. Thus this approach is not
sufficient because it does not provide appropriate informa-
tion about the discrepancies between pattern specification
and candidate.

In summary, none of these pattern detection tools satisfies
all of the requirements described in Section 3.

6. CONCLUSIONS AND FUTURE WORK

With the pattern matching views, Reclipse provides a visu-
alization of pattern candidates that illustrates the detected
candidates in a comprehensive and comprehensible way. Our
visualization results in a more transparent rating and thereby
supports the user by simplifying the decision if a candidate
is a false positive or a real pattern implementation. Fur-
thermore, the user now can compare pattern candidates to
the specification. In our Observer example, we received a
more detailed view of the classes in JHotDraw which are
responsible for updating a drawing because the matching
views displayed the methods that play important roles in
this mechanism. Furthermore, we were able to correct our
Observer specification, because we noticed the flawed at-
tribute condition for the observer class name.

However, the visualization approach still provides space for
enhancements. For instance, only attributes that have a cor-
responding condition in the pattern specification are shown,
which is useful, but in some cases not sufficient. The user
should be given the additional possibility to view the values
of attributes which are not involved in the pattern specifi-
cation to get a more detailed view of the candidate. An ad-
ditional idea for the visualization of a candidate is a source
code view. Another interesting feature could be the com-
parison between several candidates of the same pattern.

Moreover, the detection results are non-persistent at the mo-
ment. The ability to save the results would allow the user
to review them later and to compare different results from
multiple analysis runs. This would further support the flaw
detection in pattern specifications.

Furthermore, Reclipse also provides a dynamic analysis that
analyzes a pattern candidate’s runtime behavior. The dy-
namic pattern detection can be used to reject or verify pat-
tern candidates from the static analysis based on their be-
havior [9, 11]. The results of the dynamic pattern detection
could be used to enhance the pattern matching views by ad-

ditional information. Thereby the user could gain an even
more comprehensive illustration of the detected design pat-
tern implementations in the analyzed software.

7. ACKNOWLEDGMENTS

We would like to thank Andre Backofen for his conceptual
work [1] on the approach and his help in implementing the
pattern matching views in Reclipse.

8. REFERENCES

[1] A. Backofen. Visualisierung von Musterfunden bei der
statischen Software-Muster-Erkennung. Bachelor’s
thesis, University of Paderborn, Nov. 2009.

[2] J. Dong, S. Yang, and K. Zhang. Visualizing design
patterns in their applications and compositions. I[EEE
Transactions on Software Engineering, pages 433-453,
2007.

[3] J. Dong, Y. Zhao, and T. Peng. A Review of Design
Pattern Mining Techniques. International Journal of
Software Engineering and Knowledge Engineering
(IJSEKE), 2009.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading,
MA, USA, 1995.

[5] J. Niere, W. Schiifer, J. P. Wadsack, L. Wendehals,
and J. Welsh. Towards pattern-based design recovery.
In Proc. of the 24" International Conference on
Software Engineering (ICSE), Orlando, FL, USA,
pages 338-348. ACM Press, May 2002.

[6] R. Schauer and R. Keller. Pattern visualization for
Software Comprehension. In Proceedings of the 6th
International Workshop on Program Comprehension,
pages 4-12. IEEE, 2002.

[7] M. von Detten, M. Meyer, and D. Travkin. Reclipse —
a reverse engineering tool suite. Technical Report
tr-ri-10-312, University of Paderborn, Paderborn,
Germany, 2010.

[8] M. von Detten, M. Meyer, and D. Travkin. Reverse
Engineering with the Reclipse Tool Suite. In
Proceedings of the 32nd International Conference on
Software Engineering (ICSE 2010), Cape Town, South
Africa, May 2-8, 2010, volume 2, pages 299-300. ACM
Press, May 2010. Informal Research Demonstration.

[9] M. von Detten and M. C. Platenius. Improving
Dynamic Design Pattern Detection in Reclipse with
Set Objects. In Proceedings of the 7th International
Fujaba Days, pages 15-19. Eindhoven University of
Technology, 2009.

[10] M. von Detten and D. Travkin. An Evaluation of the
Reclipse Tool Suite based on the Static Analysis of
JHotDraw. Technical Report tr-ri-10-322, Universitiy
of Paderborn, 2010. Vers. 1.0.

[11] L. Wendehals. Struktur- und verhaltensbasierte
Entwurfsmustererkennung. PhD thesis, University of
Paderborn, September 2007. In German.

[12] E. Wiebe, S. Keul, S. Staiger, and G. Vogel.
Entwurfsmuster-erkennung mit bauhaus. In
Proceedings of the 10th Workshop Software
Reengineering, volume 126 of LNI, pages 181-185. GI,
2008.

