
Interpreting Story Diagrams for the Static Detection of
Software Patterns

Markus Fockel, Dietrich Travkin, Markus von Detten
Software Engineering Group, Heinz Nixdorf Institute,

University of Paderborn, Paderborn, Germany
[mfockel|travkin|mvdetten]@mail.uni-paderborn.de

ABSTRACT
Software maintenance tasks require knowledge about the
software’s design. Several tools help to identify implemen-
tations of software patterns, e.g. Design Patterns, in source
code and thus help to reveal the underlying design. In case
of the reverse engineering tool suite Reclipse [15], detection
algorithms are generated from manually created, formal pat-
tern specifications. Due to numerous variants that have to
be considered, the pattern specification is error-prone. Be-
cause of this, the complex, step-wise generation process has
to be traceable backwards to identify specification mistakes.
To increase the traceability, we directly interpret the detec-
tion algorithm models (story diagrams) instead of executing
code generated from these models. This way, a reverse en-
gineer no longer has to relate generated code to the story
diagrams to find mistakes in pattern specifications.

1. INTRODUCTION
Due to requests for new features and the discovery of de-
fects, software has to be continuously adapted and main-
tained. For this purpose, developers have to understand
the design of a given software. Software design patterns
[5] are approved, widely used solutions for design problems.
Knowledge about their usage in the software helps to un-
derstand how the original developers intended the software
to be extended or adapted and, thus, helps to avoid design
deviations or errors.

Incomplete documentation often complicates the task of iden-
tifying pattern implementations in source code. Several
tools have been developed to automate this tedious task
(Dong et al. give an overview [2]). Based on a formal speci-
fication of a pattern, usually represented by a set of condi-
tions, these tools automatically detect pattern implementa-
tions in source code.

Nevertheless, due to numerous implementation variants1 to
be considered during pattern specification, the task of spec-
ifying a pattern is error-prone which sometimes results in
missing pattern implementations (false negatives) or finding
more than are actually present (false positives). To correct
a specification, a reverse engineer has to identify the erro-
neous or missing conditions in the specification that lead
to the unexpected detection results which, in turn, requires
traceability of the detection process.

1For example, different loop implementations or the distinc-
tion between interfaces and classes in Java.

In case of the reverse engineering tool suite Reclipse2 [15],
the detection process is quite complex. Reclipse automat-
ically derives detection algorithms from pattern specifica-
tions, creates models of these algorithms in form of class
and story diagrams [3], generates code out of these models,
and executes this code to detect pattern implementations
in given source code [10]. To trace the detection process,
a reverse engineer has to observe the generated detection
code’s behavior, deduce the elements which are representing
this behavior in the generated story diagrams, and identify
the corresponding conditions in the pattern specifications.
Hence, the reverse engineer has to bridge two semantic gaps:
the one between code and story diagrams and the one be-
tween story diagrams and pattern specifications.

A pattern specification only describing a class declaration
and a contained method declaration already results in about
1000 lines of generated code. As example take the following
excerpt of code that would be generated based on such a
pattern specification. The lines 1 to 3 contain declarations
of two variables clazz and method to represent the decla-
rations and an auxiliary variable for the iteration through
all elements contained in a class. In lines 4 and 5 a part of
the code to be analyzed is assumed to be the specified class
declaration. The remaining lines describe the search for a
method declaration contained in the class represented by the
previously found class declaration. As a class can contain
several method declarations, this is done in a loop.

...

1 ATypeDeclaration clazz = null;

2 Iterator fujaba__IterClazzToMethod = null;

3 AMethodDeclaration method = null;

...

4 JavaSDM.ensure(_TmpObject instanceof

ATypeDeclaration);

5 clazz = (ATypeDeclaration) _TmpObject;

...

6 fujaba__IterClazzToMethod = clazz

.iteratorOfBodyDeclarations();

7 while (fujaba__IterClazzToMethod.hasNext()) {

8 _TmpObject = fujaba__IterClazzToMethod.next();

9 JavaSDM.ensure(_TmpObject instanceof

AMethodDeclaration);

10 method = (AMethodDeclaration) _TmpObject;

...

}

...

2http://www.fujaba.de/reclipse

The reverse engineer has to mentally bridge the semantic
gap between this code and the corresponding story diagram
and eventually the pattern specification. She has to find the
conditions in the pattern specification that are represented
by the variables in the generated code and then identify the
error in the specification by debugging the code execution.

We’re aiming to avoid the semantic gaps by directly inter-
preting the pattern specifications, thereby adding tracing
functionality to Reclipse’s pattern detection, similar to de-
buggers. As a first step, we remove the semantic gap be-
tween generated code and story diagrams by directly inter-
preting the story diagrams instead of generating code. As
there is an existing interpreter for story diagrams [7] with a
corresponding debugger being currently developed [8], this
is a promising solution. Furthermore, by exploiting runtime
information, interpreting story diagrams can be more effi-
cient than executing code [7].

In this paper we present the actions we have taken to inte-
grate the story diagram interpreter developed at the Hasso
Plattner Institute in Potsdam [7] into Reclipse, the chal-
lenges we faced and an evaluation of the results.

2. THE PATTERN DETECTION PROCESS
Reclipse’s current pattern detection process is depicted in
Figure 1. First of all, the design patterns have to be de-
fined manually as formal pattern specifications. Algorithms
(in form of story diagrams) that describe the search for the
specified patterns are automatically derived from the formal
pattern specifications. These detection algorithm models
are then used to generate code that is later called by the
inference algorithm. The code in which to search for imple-
mentations of the specified patterns has to be transformed
into an abstract syntax graph (ASG), which is done by Re-
clipse automatically. The inference algorithm receives the
ASG and the generated detection algorithm code as input.
It decides where in the ASG to search for a pattern and
executes the respective detection algorithm code to do so.
Finally, the output is an ASG in which the detected pattern
implementations are marked by annotations. As Reclipse is
based on the CASE tool Fujaba3 [9], all models have been
created or generated with that framework (signified in Fig-
ure 1 by the ellipses with the Fujaba inscription).

3. INTERPRETER INTEGRATION
In order to remove the semantic gap between story diagrams
and generated detection code, we integrated the story dia-
gram interpreter into the pattern detection process of Re-
clipse as illustrated in Figure 2. During that integration we
faced several challenges.

First, the interpreter is based on a story diagram meta-
model that is slightly different from the one used in Reclipse
(provided by Fujaba). Hence, we had to translate the story
diagrams from one dialect to another. Instead of generat-
ing Fujaba-conformant story diagram models from the pat-
tern specifications, we now generate story diagram models
that conform to the interpreter’s story diagram meta-model
(signified in Figure 2 by the different shape and number of
elements in the detection algorithm models).

3http://www.fujaba.de

Formal pattern

specifications

Detection

algorithm models

Inference

algorithm

Annotated

ASG

Generated

detection

algorithm code

Transformation

Data flow

Code ASGCode to analyze

Fujaba Fujaba

Fujaba Fujaba

class XYZ {

 private B b;

 public D method() {

 ..

 }

}

class XYZ {

 private B b;

 public D method() {

 ..

 }

}

class XYZ {

 private B b;

 public D method() {

 ..

 }

}

class XYZ {

 private B b;

 public D method() {

 ..

 }

}

class XYZ {

 private B b;

 public D method() {

 ..

 }

}

class XYZ {

 private B b;

 public D method() {

 ..

 }

}

Figure 1: Original pattern detection process.

Formal pattern

specifications

Detection

algorithm models

Code ASG

Annotated

ASG

Transformation

Data flow

Story diagram

interpreter

Code to analyze

Fujaba EMF

EMF EMF

Inference

algorithm

class XYZ {

 private B b;

 public D method() {

 ..

 }

}

class XYZ {

 private B b;

 public D method() {

 ..

 }

}

class XYZ {

 private B b;

 public D method() {

 ..

 }

}

Figure 2: Adapted pattern detection process.

Second, Reclipse and the story diagram interpreter are im-
plemented based on different frameworks. While Reclipse is
based on the CASE tool Fujaba with its model format and
API, the story diagram interpreter is based on the Eclipse
Modeling Framework (EMF)4 [14] and takes Ecore models
as input. Thus, we also had to adapt or convert the class
and story diagram models as well as the input ASG model
from one technology to another (signified in Figure 2 by the
ellipses with the EMF inscription).

Furthermore, instead of executing generated code we now
have to run the interpreter on a detection algorithm model
which enforces adaption of the inference algorithm.

3.1 Bridging the story diagram dialects
Reclipse and the story diagram interpreter use different story
diagram meta-models which have different expressive power.
Some things that can be modeled with Reclipse’s meta-
model cannot be modeled with the interpreter’s meta-model.
Other things are modeled differently. The Reclipse meta-
model, for instance, contains an element called statement
activity which can hold arbitrary Java code that is later in-
tegrated into the generated code. The interpreter obviously

4http://www.eclipse.org/modeling/emf/

does not generate any code, so its meta-model does not con-
tain such an element.

Thus, to use the story diagram interpreter the Reclipse story
diagram models had to be transformed into story diagram
models conforming to the meta-model of the interpreter.
This transformation had to take the meta-model differences
into account. That means, some things are transformed into
more complex ”workaround” models and others cannot be
transformed and thus may no longer be used in pattern spec-
ifications (unless the interpreter is extended).

For each element, we described a transformation rule from
the Fujaba story diagram meta-model to the interpreter’s
story diagram meta-model, if possible. In the following, we
describe the transformation of story patterns as an example.
The full list of transformations can be found in a Master’s
thesis [4].

Story diagrams describe graph transformations. They closely
follow UML activity diagrams and contain a number of story
patterns connected by transitions that define the control
flow. A story pattern contains a structure of objects that,
if it is matched in a host graph (e.g. found in the ASG), is
modified as defined by the story pattern (e.g. is annotated).

Figure 3 shows the meta-classes used to model story pat-
terns in Fujaba (top) and the corresponding meta-classes
of the story diagram meta-model used by the interpreter
(bottom). In Fujaba, a story pattern (UMLStoryPattern)
is contained in an activity (UMLStoryActivity). This activ-
ity can be marked as a for-each activity, which describes
a loop in the control flow. A UMLStoryPattern contains
a number of items (UMLDiagramItem) which are objects
(UMLObject), links (UMLLink) and method calls (UMLCol-
labStat). Additionally, a story pattern can contain textual
(Java) constraints (UMLConstraint) and maybe constraints
that weaken the matching rule (i.e. allow to map more than
one node in a story pattern to the same node in an ASG).

The story diagram meta-model of the interpreter in compar-
ison combines the two classes UMLStoryActivity and UML-
StoryPattern into one (StoryActionNode). It can contain
constraints that are described by a hierarchy of Expressions.
In the Fujaba model the Java constraints are integrated into
the generated code whereas the interpreter evaluates the ex-
pression hierarchy. Maybe constraints are not supported by
the interpreter. Objects and links are separately linked to
a StoryActionNode. Methods calls are handled by another
type of activity not shown in Figure 3.

This example shows that most elements can be translated
quite easily, but some elements (e.g. maybe constraints) can-
not be translated at all. We defined transformations for all
elements that could be translated. These also contained ele-
ments that are part of the interpreter’s meta-model, but not
yet evaluated by the interpretation engine itself. So, once
the engine is extended to evaluate these elements, they can
be used for pattern specification again.

3.2 Bridging technical differences
Reclipse is based on Fujaba and the story diagram inter-
preter is developed with EMF. Fujaba and EMF are not

Figure 3: Story patterns in the two story diagram
meta-models.

compatible. The saved models have different formats, the
models are on different meta levels (UML vs. eMOF [11])
and the generated code follows different implementation con-
ventions. To use the story diagram interpreter, we converted
the Fujaba-based models generated by Reclipse (esp. story
diagrams) and ASG models into EMF-based models.

The story diagram meta-model of the interpreter was cre-
ated using EMF. Using the transformation described in Sec-
tion 3.1, we could translate Fujaba story diagram models
into EMF story diagram models. Based on this transforma-
tion, the Reclipse component that generates detection algo-
rithm models from pattern specifications was replaced with
a new component that creates detection algorithm models
that are conformant to the interpreter’s EMF-based meta-
model. The new component was implemented manually.
This way, it could easily be derived from the former (also
manually implemented) component, so that it fits into the
process and conforms to its interfaces.

Because of the interpreter’s requirement to get EMF-based
models as input, we also switched from the Fujaba-based
ASG meta-model to an EMF-based ASG meta-model. The
former, hardly maintainable component for parsing source
code into an ASG was replaced by a manually implemented
slim component that uses an existing Eclipse plug-in for
parsing Java code (JDT5).

5http://www.eclipse.org/jdt/

3.3 Inference adaptations
In the original pattern detection process the inference algo-
rithm selects an element of the ASG and starts the search
for a pattern by executing the corresponding generated code.
As we removed the code generation step, the inference algo-
rithm had to be adapted so that it triggers the interpretation
of a story diagram rather than the execution of code.

In addition, the inference algorithm had to be adapted to
the use of EMF-based models instead of Fujaba-based mod-
els. Thus, we adapted existing interfaces and introduced
new ones in the inference algorithm’s implementation. This
way, the reverse engineer now can choose whether she wants
to use the former process based on code generation or the
one based on the interpreter. The needed code adaptations
and additions had to be done manually, because of the com-
plexity of the existing (manually evolved) code base.

4. EVALUATION
We applied the adapted pattern detection process to eval-
uate our success. The traceability of the process improved,
because the engineer no longer needs to bridge the gap be-
tween generated code and story diagrams. The interpreter
provides a log of all interpretation steps. The coming story
diagram debugger will further improve the traceability by vi-
sualizing the current state of execution and offering oppor-
tunities to observe and influence the execution. Although
there are some limitations in the use of the story diagram
interpreter, the first detection results are promising.

4.1 Limitations
Most story diagram elements could be translated from the
one meta-model to the other. Except for maybe constraints,
all non-translatable elements are provided in the interpreter’s
meta-model, but not yet supported by it’s execution algo-
rithm. For example, paths are not supported so far. A
path between two ASG nodes describes that there is a di-
rected, possibly indirect connection between the nodes. In
the meta-model paths are represented by a special type of
link between objects, but the execution algorithm does not
separately handle them. In the story diagram translation we
included these elements, so that they can be used as soon as
the interpreter supports them.

4.2 Detection results
We evaluated the adapted detection process by detecting
patterns in JUnit6 4.8.2 and comparing the detection results
with those obtained with our previously applied detection
process. For this purpose, we re-used an existing catalog
of design pattern [5] specifications and auxiliary subpattern
specifications.

The catalog had to be modified due to the limitations of
the interpreter and its story diagram meta-model (cf. Sec-
tion 4.1). Pattern specifications that could not be modeled
for use with the interpreter were removed for both detection
processes. Pattern specifications that had to be weakened
(some conditions had to be removed because of the lack of
expressiveness) for the interpreter use, were only modified
for the run of the adapted detection process.

6http://www.junit.org

Pattern SDI CodeGen

AbstractStructureImplementation 114 78
AbstractType 17 16
ContainerWriteAccessMethod 379 12
DirectGeneralization 77 75
Field 194 191
Implementation 29 29
IndirectGeneralization 66 31
InterfaceType 13 10
MultiReference 276 7
OverriddenMethod 157 122
SingleReference 135 115
TemplateMethod 86 11
Visitor 1 1

Table 1: Pattern detection results.

Table 1 contains the pattern detection results. The ”SDI”
column lists the number of pattern implementation candi-
dates detected by the adapted process using the story dia-
gram interpreter. The column ”CodeGen” lists the number
of candidates detected with the original process using gen-
erated code.

As some patterns had to be removed from the catalog be-
cause of the interpreter limitations, the only ”real” design
pattern implementations found by either detection process
were Template Method and Visitor. The latter was found
equally often. Candidates for the Template Method pat-
tern were found more often by the adapted process than by
the original. The same holds for most other patterns (e.g.
ContainerWriteAccessMethod and MultiReference). This is
a result of the weakened pattern specifications. For exam-
ple, the story diagram meta-model used by the interpreter
does not support paths. So, they had to be removed, mean-
ing that instead of searching for connected nodes, arbitrary,
possibly unconnected nodes satisfying all other conditions
are searched in the ASG. This results in more matchings.

Despite the fact that we have more false positives with our
adapted detection process, the results are promising. Avoid-
ing the code generation step significantly increases the trace-
ability of the pattern detection. Debugging the pattern spec-
ifications and the detection process is easier and will be even
more traceable with the interpreter’s debugger [8]. The re-
sults obtained with the interpreter deviate from the orig-
inal results (cf. Table 1) solely because of the weaknesses
in the current interpreter implementation. Our story dia-
gram translation already supports some story diagram ele-
ments that the interpreter does not yet consider. Thus, by
improving the interpreter the pattern specifications will be-
come more sophisticated and the detection results will equal
the results achieved by the original process.

5. RELATED WORK
The overall goal of our work was to simplify the debug-
ging of the detection process. The two main challenges with
our approach were the transformation of the story diagram
meta-models and the migration from Fujaba to EMF.

Geiger and Zündorf developed a tool to debug code gener-
ated by Fujaba and connect it at runtime to the correspond-

ing story diagrams [6]. As an alternative to using the story
diagram interpreter, we could have used this approach, but
that would have made the detection process more complex
instead of simplifying it and we could not have benefited
from the possible performance gain resulting from the use
of information that is only available at runtime [7].

There are numerous approaches for model-to-model trans-
formation which we could have used to translate the story
diagrams from one meta-model to the other. Among them
are Triple Graph Grammars (TGGs, [13]) and OMG’s QVT
(Query/View/Transformation, [12]). These approaches sup-
port model synchronization and bidirectional transforma-
tions. We decided against generating story diagrams con-
forming to one meta-model and then translating them to
story diagrams conforming to another meta-model during
each pattern detection. Instead, we decided to adapt the
story diagram generation once and omit the creation of ob-
solete story diagram models. Since we already had a genera-
tor for Reclipse’s story diagrams, we only had to replace the
creation of story diagram elements such that they conform
to the new meta-model. Furthermore, Java code represented
by plain text in generated story diagrams significantly com-
plicates the translation with TGGs and QVT.

Amelunxen et al. [1] developed an approach to tool integra-
tion using TGGs. This approach still requires manual code
adaptations and as it uses TGGs it has the aforementioned
disadvantages. Thus, we chose another solution.

6. CONCLUSIONS AND FUTURE WORK
To simplify the pattern detection process of the Reclipse
tool suite and support the engineer in finding mistakes in
his specifications, we integrated a story diagram interpreter
and removed the code generation step.

The used interpreter still has some limitations. It does
not yet support certain story diagram features that were
supported by the formerly used story diagram meta-model.
Adding these features is future work which is already started
by the SDM unification task force that aims to unify the
meta-models used by several teams from the Fujaba com-
munity.

Furthermore, the story diagram debugger [8] needs to be
integrated. This debugger would simplify the search for
pattern specification errors. The language used for pattern
specifications is partly very similar to story patterns. So,
if the debugger reveals an error in a story pattern, it will
be easy to find the corresponding element in the pattern
specification.

7. REFERENCES
[1] C. Amelunxen, F. Klar, A. Königs, T. Rötschke, and

A. Schürr. Metamodel-based tool integration with
MOFLON. In ICSE ’08: Proceedings of the 30th

International Conference on Software Engineering,
Leipzig, Germany, pages 807–810, 2008.

[2] J. Dong, Y. Zhao, and T. Peng. A Review of Design
Pattern Mining Techniques. International Journal of
Software Engineering and Knowledge Engineering
(IJSEKE), 19(6):823–855, Sept. 2009.

[3] T. Fischer, J. Niere, L. Torunski, and A. Zündorf.
Story Diagrams: A new Graph Rewrite Language
based on the Unified Modeling Language. In H. Ehrig,
G. Engels, H.-J. Kreowski, and G. Rozenberg, editors,
Proc. of the 6th International Workshop on Theory
and Application of Graph Transformation (TAGT),
Paderborn, Germany, LNCS 1764, pages 296–309.
Springer Verlag, November 1998.

[4] M. Fockel. Interpretation von
Graphtransformationsregeln zur statischen Erkennung
von Software-Mustern. Master’s thesis, University of
Paderborn, Oct. 2010. (In German).

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading,
MA, USA, 1995.

[6] L. Geiger and A. Zündorf. Design Level Debugging
with Fujaba. In International Workshop on
Graph-Based Tools (GraBaTs), Barcelona, Spain,
2002.

[7] H. Giese, S. Hildebrandt, and A. Seibel. Improved
Flexibility and Scalability by Interpreting Story
Diagrams. In T. Margaria, J. Padberg, and
G. Taentzer, editors, Proceedings of the Eighth
International Workshop on Graph Transformation and
Visual Modeling Techniques (GT-VMT 2009),
volume 18. Electronic Communications of the EASST,
2009.

[8] A. Krasnogolowy. Entwurf und Implementierung eines
Debuggers für Story-Diagramme. Master’s thesis,
Hasso-Plattner-Institut für Softwaresystemtechnik
GmbH, Potsdam, Germany, 2010. (In German).

[9] U. A. Nickel, J. Niere, and A. Zündorf. Tool
demonstration: The FUJABA Environment. In Proc.
of the 22nd International Conference on Software
Engineering (ICSE), Limerick, Ireland, 2000.

[10] J. Niere, W. Schäfer, J. P. Wadsack, L. Wendehals,
and J. Welsh. Towards Pattern-Based Design
Recovery. In Proc. of the 24th International
Conference on Software Engineering (ICSE), Orlando,
FL, USA, pages 338–348. ACM Press, May 2002.

[11] Object Management Group. Meta Object Facility
(MOF), Jan. 2006. OMG document
formal/2006-01-01.pdf.

[12] Object Management Group.
Query/View/Transformation (QVT), Apr. 2008. OMG
document formal/08-04-03.pdf.

[13] A. Schürr. Specification of Graph Translators with
Triple Graph Grammars. In G. Tinhofer, editor, 20th

Int. Workshop on Graph-Theoretic Concepts in
Computer Science, Heidelberg, Germany, volume 903
of Lecture Notes in Computer Science (LNCS), pages
151–163. Springer Verlag, 1994.

[14] D. Steinberg, F. Budinsky, M. Paternostro, and
E. Merks. EMF: Eclipse Modeling Framework. The
Eclipse Series. Addison-Wesley, 2nd edition, Dec. 2008.

[15] M. von Detten, M. Meyer, and D. Travkin. Reverse
Engineering with the Reclipse Tool Suite. In
Proceedings of the 32nd International Conference on
Software Engineering (ICSE 2010), Cape Town, South
Africa, 2010.

