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ABSTRACT
Design pattern detection is a reverse engineering methodolo-
gy that helps software engineers to analyze and understand
legacy software by recovering design decisions and thereby
providing deeper insight into software. Recent research has
shown that a combination of static and dynamic source code
analysis can produce better results than purely static ap-
proaches. In this paper we present an extension of the pat-
tern detection approach proposed by Wendehals [22]. In par-
ticular, we extend the specification language for behavioral
patterns to increase its expressiveness and the approach’s
recall by introducing the concept of set objects.

1. INTRODUCTION
Due to requests for new features and the discovery of de-
fects, software has to be continuously adapted and main-
tained during its life cycle. Incomplete documentation or
the unavailability of the original developers often complicate
this task and are among the reasons that software engineers
often spend more time to maintain a complex software sys-
tem than to actually develop it. According to Sommerville
50% to 75% of the total programming effort spent on a sys-
tem are devoted to maintenance [17].

The tedious and error-prone task of understanding a large
system can be supported and simplified by reverse engineer-
ing tools that recover the design of the software and try to
locate the application of design patterns. Identifying these
pattern instances can help the reverse engineer to quickly un-
derstand a software system and thereby speed up the main-
tenance process. Design patterns were first introduced by
Gamma et al. and represent good solutions to frequently
occurring problems in object-oriented software design [6].
Since then design patterns have been thoroughly researched
and their detection for reverse engineering purposes has been
the subject of many scientific publications (e.g. [1, 2, 7, 8,
9, 11, 12, 15, 16, 18]).

One of the main challenges in design pattern detection lies
in achieving a high precision and recall, i.e. in finding the ac-
tual pattern implementations in the software while avoiding
false positives. Especially the existence of many implemen-
tation variants for the various patterns leads to incorrect or
incomplete detection results.

Lothar Wendehals presented an approach that combines sta-
tic and dynamic analysis to reduce the number of false posi-
tives by taking the runtime behavior of the analyzed software

into account [19, 22]. In this paper we present an extension
of his approach that aims at increasing its recall by making
the pattern specification language more expressive. For this
we introduce set objects and each fragments into the specifi-
cation language and adapt the analysis process accordingly.

The remainder of this paper is organized as follows: First,
we give a general overview of the pattern detection process
by Wendehals. In Section 2 we present an example and use it
to demonstrate the shortcomings of the pattern specification
language. A suitable extension of the language is proposed
in Section 3. Section 4 deals with the realization of the
approach that is then evaluated on a real software system
in Section 5. In the subsequent Sections we discuss related
work, draw conclusions and sketch ideas for future work.

2. STATIC AND DYNAMIC DESIGN
PATTERN DETECTION
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Figure 1: Static and dynamic analysis [22]

There are many examples in literature that use only a static
source code analysis to recover design patterns (e.g. [1, 9, 15,
16, 18]). Although a static analysis is not limited to con-
sidering structural properties of the software under analysis
certain object-oriented concepts like polymorphism and dy-
namic method binding make a precise static behavior anal-
ysis impossible. Hence, a common drawback of these ap-
proaches is that they generate false positives when design
patterns have a similar structure. The State and Strategy
patterns [6] are good examples for this: Their static struc-
ture is identical and they differ only in their runtime be-
havior. Common static pattern detection approaches often
recognize implementations of the State pattern also as Strat-
egy pattern implementations and vice versa. Obviously one
of those results is always a false positive.
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Figure 2: Observer structural pattern

Figure 1 shows the pattern detection process as proposed
by Wendehals [22]. It uses the source code of the software
system and a library of structural patterns to carry out a
static analysis. In his approach, that builds on the work in
[10] and [11], graph grammar rules are used for the spec-
ification of structural patterns (cf. Section 4). The result
of the static analysis is a set of possible implementations of
design patterns, the so-called pattern candidates. Pattern
candidates are sections in the source code whose structure
corresponds to the structural patterns used in the analysis.
Due to structurally similar patterns, the result set may con-
tain many false positives. At this point a dynamic analysis
is used to confirm or reject the candidates.

After detecting the pattern candidates, the software system
under analysis is executed manually and the candidates’ be-
havior is traced. Depending on how often a candidate’s
classes are instantiated during execution time, a number of
traces is generated for each candidate. The candidates’ ex-
pected behavior is described with behavioral patterns based
on UML 2.0 sequence diagrams [13]. During dynamic anal-
ysis the traces are compared with the corresponding behav-
ioral patterns. If the majority of a candidate’s traces match
the behavioral pattern, it is likely that the candidate is an
actual design pattern implementation and the candidate is
confirmed. If most of the traces for a candidate do not match
the behavioral pattern, it probably is a false positive and
thus rejected.

2.1 Example
Throughout this paper we use the Observer pattern to ex-
plain the pattern detection approach devised by Wendehals
and our extension. Gamma et al. describe the Observer pat-
tern’s intent as follows:

”Define a one-to-many dependency between ob-
jects so that when one object changes state, all
its dependents are notified and updated automat-
ically.” [6]

Figure 2 shows the structural description of the Observer
pattern in the notation introduced in [11] and [12]. There
are two classes subjectClass and observerClass. The sub-
ject class has the methods register, which takes an observer
object as parameter, and notify1. The observer class has
1The object names in the pattern are only variables that are
matched to real names during the pattern detection process.
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Figure 3: Observer behavioral pattern

an update method. The ellipses are so-called Annotations
and refer to subpatterns which are specified in other dia-
grams. Annotations represent instances of required subpat-
terns. In this case the annotations indicate that the subject
class’ notify method must implement a delegation to the ob-
server class’ update method. The methods update and reg-
ister should be overidden. (The shown observer and subject
classes are intended to be subclassed by concrete observers
and subjects that implement their own specific behavior.)
The dashed lines of the OverriddingMethod annotations in-
dicate that these subpatterns are not mandatory for the de-
tection of the Observer pattern. The MultiReference anno-
tation expresses that a subject references arbitrarily many
observers. Finally, the Observer annotation that is marked
with create is created when the depicted structure is found
in the software system under analysis. It tags the structure
as candidate for the Observer pattern.

Figure 3 illustrates the expected behavior of the Observer
pattern in the syntax defined in [22]. It shows one object
s of the type subjectClass and two observer objects a and
b of the type observerClass. The types refer to object
names from the structural pattern (cf. Figure 2). a and b

both call the register method of the subject class to regis-
ter themselves for the subject’s updates. The following loop
fragment indicates that the enclosed message sequence must
occur at least once but can occur arbitrarily many times. It
states that whenever the subject class calls its notify method
each observer’s update method has to be called. If an ob-
server candidate fails to show this behavior it probably is a
false positive (or a variation of the design proposed in [6]).

For details on the specification of behavioral patterns with
sequence diagrams we refer to [20]. More on the dynamic
pattern detection algorithm can be found in [23].

2.2 Shortcomings of the Approach
One problem of the described approach lies in the use of ab-
solute quantities of objects where in reality arbitrarily large
sets of objects can participate in the pattern. The behav-
ioral pattern in Figure 3 uses an exemplary situation with
two observer objects to specify the desired behavior of an im-
plementation of the Observer pattern. In reality any number
of observer objects could communicate with the subject as
long as the messages occur in the correct order. The behav-
ioral analysis algorithm is currently limited to only recog-



nize traces with exactly the specified number of objects as
correct. In the example only candidate instances with two
observer objects would be deemed accurate. Traces that
represent the same situation with any other number of ob-
jects and otherwise conform to the behavioral pattern are
rejected. This increases the probability that a candidate is
incorrectly labeled as a false positive.

The same problem arises for all other patterns that involve
a possibly arbitrarily large set of objects. Examples are the
State pattern (an object can be in one of arbitrarily many
states) and the Chain of Responsibility pattern (a request
is passed down an arbitrarily long chain of handler objects
until one handler consumes it) [6].

3. EXTENDING BEHAVIORAL PATTERNS
WITH SET OBJECTS

Our approach solves the mentioned shortcomings by intro-
ducing a new element to the behavioral pattern specification
language: the Set Object. A set object represents an arbi-
trarily large set of objects of the same type. With this new
construct the Observer pattern can be specified without the
need to predefine the exact number of observer objects in-
volved at execution time.

oSet:ObserverClass
oSet:ObserverClasss:SubjectClass

Each update()

Loop(1,*)
register()

notify()

Loop(1,*)

bp Observer

Figure 4: Observer behavioral pattern with set ob-
ject

Figure 4 shows the Observer behavioral pattern with the
new element. The set object is depicted by the double border
and replaces the two separate observerClass objects from
Figure 3.

The introduction of the set object necessitates proper se-
mantics for messages between set objects and regular ob-
jects. A message from a set object to a regular object repre-
sents a method call from one of the objects in the set to the
regular object. An example for this is the register message
in Figure 4. Analogously, a message in the opposite direc-
tion represents a call to one object that is of the same type
as the set object.

Additionally, we need to model the case that a method is
called on each object in a set. For this we introduced a new
combined fragment, the Each Fragment, which has seman-
tics similar to the loop fragment. An each fragment can only
be used for messages from regular objects to set objects (or

vice versa) and means that the contained messages are sent
to each object in the set (or from each object in the set to the
regular object). Note that the semantics for message passing
from one set object to another in conjuction with an each
fragment remains undefined here. If such a construct was
allowed, it would have to be specified if a message should
be passed from each object in set 1 to each object in set
2 or if other combinations would be appropriate. However,
in our investigations we have not found a case where such
a construct would be needed. The exploration of this topic
remains future work.

In Figure 4 the each fragment is used to express that after
the subject has called its own notify method, it must call
the update method of each of its observers.

4. REALIZATION
The Reclipse tool suite [21] has been implemented as a
collection of plug-ins for Fujaba4Eclipse, which is an in-
tegration of Fujaba [4] into the Eclipse framework.

Structural patterns are specified as special graph grammar
rules. They describe the object structure that constitutes
a given pattern in abstract syntax. These graph grammar
rules are then translated to Story Diagrams [3] from which
code is generated. The generated code realizes search al-
gorithms for every structural pattern. The software under
analysis is parsed into an abstract syntax graph representa-
tion. The search algorithms try to match the patterns in the
abstract syntax tree and create annotations when a match-
ing object structure is found (cf. Section 2). The annotations
mark objects that represent relevant roles of a given pattern,
e.g. for the Observer pattern the subject and the observer
objects. Details on the structural pattern detection process
can be found in [10].

In order to analyze the runtime behavior of a software sys-
tem it is executed and the method calls that occur during
execution are traced. To reduce the amount of data that has
to be analyzed, not the complete behavior of the software
is traced but only the instance behavior of previously an-
notated classes and methods, i.e. of pattern candidates that
were identified during structural analysis. The behavior of
objects of other types and other method calls is omitted.
All pattern candidates are traced individually and, depend-
ing on the concrete program execution, a number of traces
is generated for each of them.

The behavioral analysis algorithm assesses if each candi-
date’s traces conform to the corresponding behavioral pat-
tern. A trace conforms to the behavioral pattern when its
method calls all conform to the pattern and when the trace
represents a complete pass through the pattern. In this case
the trace is accepted. If the trace contains method calls
that violate the behavioral pattern, it is rejected. If the
trace does not contain prohibited method calls but does not
contain all mandatory method calls that are specified in the
pattern, the software system may not have been executed
long enough to collect sufficient data. In this case the trace
is neither rejected nor accepted. Technically the analysis
is performed by mapping the behavioral patterns to finite
automata and using the traces as input for the automata.
The traces can be accepted, not accepted or rejected by an



automaton. For further information on the analysis process
we refer to [23]. The ratio between accepted, not accepted
and rejected traces enables the reverse engineer to judge if a
given pattern candidate really is a pattern implementation.

5. EVALUATION
The dynamic design pattern detection approach in Reclipse
[21] has been extended by the concepts presented in Sec-
tion 3.

Wendehals evaluated his approach by analyzing parts of
the Eclipse IDE in the version 2.1 [22]. That particu-
lar software was chosen because Gamma and Beck docu-
mented some of the design patterns employed in the de-
sign of the software [5]. Wendehals found that Observer im-
plementations that were documented by Gamma and Beck
were detected by the static analysis but rejected in the dy-
namic analysis step because of the problems described in
Section 2.2.

We repeated the analysis using our extension of the approach
and found that the dynamic analysis now was able to con-
firm the Observer candidates discovered in the static anal-
ysis. We also were able to detect implementations of the
State, Strategy and Chain of Responsibility patterns. It was
possible to tell State and Strategy implementations apart
even though their static structure is identical.

6. RELATED WORK
Several approaches exist that use a combination of static
and dynamic analysis to detect design patterns.

Brown [2] uses static and dynamic analysis to detect four
of the patterns described in [6] in Smalltalk source code.
The source code is transformed into two different models,
one describing the static structure and the other describing
method calls between objects at runtime. However, due to
this separation of models, it is not possible to combine the
analysis techniques. Three of the chosen patterns (Compos-
ite, Decorator, Template Method) are detected by analyzing
the static model while the Chain of Responsibility pattern
is detected in the dynamic model. The pattern detection al-
gorithms are implemented manually and hence are not easy
to extend or maintain.

Guéhéneuc and Ziadi [7] propose to extract UML 2.0 dy-
namic models such as sequence diagrams and statecharts
from Java source code and carry out high level analyses,
like conformance checking and pattern detection, on these
models. Further results have however not been published to
date.

Similar to our approach, Heuzeroth, Holl and Löwe use a
dynamic analysis in order to improve results from a static
one [8]. They define the pattern structure as relations on
the elements of an abstract syntax graph. The static anal-
ysis finds tuples that satisfy these relations which are then
used for the dynamic analysis. The behavior of the pat-
terns is specified with pre- and postconditions in Prolog.
The authors state that their pattern specifications tend to
get lengthy and complicated which reduces maintainability.
An extension of their specification language, SanD-Prolog,
makes pattern specifications easier at the expense of their

expressiveness. Conditions like ”a class may not have any
methods” cannot be expressed in SanD-Prolog.

7. CONCLUSIONS AND FUTURE WORK
In this paper we presented an extension of the pattern detec-
tion approach described by Wendehals [22]. We introduced
a new element to the pattern specification language to be
able to deal with arbitrarily large sets of objects in behav-
ioral pattern specifications. The extension was implemented
for the Reclipse tool suite and evaluated for several pat-
terns. It is now possible to correctly detect patterns that
caused problems in Wendehals’ original approach [14].

The approach still leaves open questions for future research.
We intend to analyze larger software projects and try to de-
tect more patterns to get a feeling for the scalability and
expressiveness of our approach. Furthermore it would be
interesting to quantitatively analyze the precision and re-
call of the extended Reclipse tool suite and compare it to
similar reverse engineering tools. In the future we want to
build upon the current reverse engineering techniques and
use reverse engineered behavioral models to carry out fur-
ther analyses like conformance checking.
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APPENDIX

A. BEHAVIORAL PATTERN
CHAIN OF RESPONSIBILITY

The Chain of Responsibility design pattern is another pat-
tern where set objects can be used. The pattern intent is
described in [6] as follows:

”Avoid coupling the sender of a request to its re-
ceiver by giving more than one object a chance to
handle the request. Chain the receiving objects
and pass the request along the chain until an ob-
ject handles it.” [6]

H:AbstractHandler
h:AbstractHandlerclient

handleRequest(r)

handleRequest(r)

other

Loop(0,*)

bp Chain of Responsibility

Figure 5: Chain Of Responsibility behavioral pattern

In Figure 5 there are two objects. client is an untyped ob-
ject that delegates the request r to the handler chain. A set
object represents an arbitrary number of AbstractHandler

objects that constitute the chain. The handleRequest mes-
sage represents the passing of the request along the chain.

Note the property {other} on the message, which is an-
other language extension presented in [14]. A message from
a set object to itself can either represent a method that is
called by an object in the set on itself (i.e. the caller instance
equals the callee instance) or a call of that method on an-
other object in the set. To distinguish between these cases
we introduced the keywords self and other.

The other call is enclosed by a loop fragment with the
bounds 0 and *. Either the request is handled (and con-
sumed) by the first handler in which case the loop fragment
would be executed zero times or it is handled by an arbitrary
handler somewhere in the chain.


