
Modular Design and Verification of Component-Based
Mechatronic Systems with Online-Reconfiguration ∗

Holger Giese, Sven Burmester,† and
Wilhelm Schäfer

Software Engineering Group
University of Paderborn

[hg|burmi|wilhelm]@upb.de

Oliver Oberschelp
Mechatronic Laboratory Paderborn

University of Paderborn
Oliver.Oberschelp@mlap.de

ABSTRACT
The development of complex mechatronic systems requires a care-
ful and ideally verifiable design. In addition, engineers from differ-
ent disciplines, namely mechanical, electrical and software engi-
neering, have to cooperate. The current technology is to use block
diagrams including discrete blocks with statecharts for the design
and verification of such systems. This does not adequately support
the verification of large systems which improve the system behav-
ior at run-time by means of online reconfiguration of its controllers
because the system as whole has to be verified. It also does not sup-
port cooperative interdisciplinary work because a white-box view
on all blocks involved in the online reconfiguration is required.
This paper proposes a rigorous component concept based on the
notion of UML component diagrams which enables modular com-
position and decomposition of complex systems with online recon-
figuration given by hierarchical hybrid component specifications.
The approach enables compatibility checks between components
that are often independently developed (across the different dis-
ciplines) and supports compositional model checking based on a
rigorously defined semantics.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques—
Modules and interfaces, State diagrams; D.2.4 [Software Engi-
neering]: Software/Program Verification—Model checking; I.2.8
[Artificial Intelligence]: Problem Solving, Control Methods, and
Search—Control theory

General Terms
Design, Languages, Verification

†Supported by the International Graduate School of Dynamic In-
telligent Systems. University of Paderborn
∗This work was developed in the course of the Special Research
Initiative 614 - Self-optimizing Concepts and Structures in Me-
chanical Engineering - University of Paderborn, and was published
on its behalf and funded by the Deutsche Forschungsgemeinschaft.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT’04/FSE-12,Oct. 31–Nov. 6, 2004, Newport Beach, CA, USA.
Copyright 2004 ACM 1-58113-855-5/04/0010 ...$5.00.

Keywords
Hybrid Systems, Components, Reconfiguration, Unified Modelling
Language (UML), Real-Time

1. INTRODUCTION
Mechatronic systems combine technologies from mechanical and
electrical engineering as well as from computer science [5]. The
development of complex mechatronic systems, in particular the
software of those systems, has become a major challenge as the
tight collaboration which is required between the different disci-
plines is difficult to achieve. The functionality of these systems is
to a large extent defined by their software and its often complex
interaction with the hardware.

This interplay between soft- and hardware is in turn mainly de-
fined by the interface between the discrete, event-based software
controllers and quasi-continuous feedback controllers such that
those systems are usually called hybrid systems [2, 18, 28].

Those hybrid systems are usually time and safety critical. The
verification of their models is highly desirable to avoid failures dur-
ing operation of the system, because testing is not sufficient and
often not possible under real environment conditions.

Current standard technology for the design of such systems uses
block diagrams which contain blocks with quasi-continuous behav-
ior as well as discrete blocks with statecharts to describe the dis-
crete behavior.

Online reconfigurationmeans that continuous controllers are
exchanged at run-time and that the communication structure is
changed. It enables an improvement of the system behavior sig-
nificantly as our example in Section 2 will illustrate.

Modeling reconfigurable systems with block diagrams and state-
charts is rather cumbersome. The resulting dependencies easily
spread all over the whole model which complicates understanding
and formal verification. The behavior of the overall system has to
be studied exhaustively, which is usually only possible for small
systems with only linear continuous behavior. Approaching recon-
figurable systems with block diagrams does therefore not scale and
usually results in much manual, ad-hoc work to arrive at a reason-
ably correct system design.

In contrast to the commonly used separated discrete blocks, hy-
brid automata/statecharts [13, 4, 3, 2, 18, 28, 17] assign a control
law or continuous controller (in form of a block diagram) to each
discrete state. They thus result in a tighter integration between the
discrete behavior and the continuous control when designing sys-
tems with reconfiguration. As the interface between the statecharts
and their environment remains static, reconfiguration can, however,
only take place locally within each single statechart, which there-
fore becomes overly complex.

Our approach introduces a rigorously defined concept of a hy-
brid component, based on the UML 2.0 component diagram nota-
tion, which has been informally introduced in [7]. The interface
of the hybrid component enables embedded components to be co-
ordinated appropriately by the embedding component without re-
ferring to all their implementation details. Within the components,
an extended hybrid version of UML Statecharts is employed to en-
able a clear separation between the discrete system specification
by event-based state-transition systems and the continuous system
specifications by differential equations and block diagrams.

It supports compositional verification by model checking [9] and
thus also scales for complex systems, at least concerning the proof
of the correctness of the specified timing properties and consistent
reconfiguration. It also supports a rather independent system design
by classical engineers who develop the specification of the contin-
uous part and software engineers who develop the specification of
the discrete part.

The need for such an approach is underlined by the OMG request
for a proposal of UML for Systems Engineering [22]. Current re-
sponses to this request are currently being evaluated but to the best
of our knowledge they do not address support for compositional
verification and online reconfiguration.

We first review the state-of-the-art in modeling for reconfig-
urable mechatronic systems and related work in Section 2 and ad-
ditionally define the semantics foundations. Then, the proposed
notion for hybrid components is outlined and rigorously defined in
Section 3. The hierarchical composition of hybrid components, the
modular verification of their correct reconfiguration, and the inte-
gration with compositional model checking follows in Section 4.
Thereafter, we sum up with a final conclusion.

2. STATE OF THE ART MODELING AND
RELATED WORK

As a concrete example for a complex mechatronic product we use
a version of the software for the RailCab research project.1 The vi-
sion of the RailCab project is an entirely new type of mechatronic
rail system, where autonomous shuttles apply the linear drive tech-
nology used in the Transrapid, but travel on the existing passive
track system of the standard railway.

One particular problem that shows the interconnection between
the shuttle’s real-time behavior and its feedback control software is
the control of the suspension/tilt module. In this paper, we present
the design of this control software. The schema of the relevant
physical model of our example is shown in Figure 1. The ac-
tive spring-based displacement is effected by hydraulic cylinders.
Three vertical hydraulic cylinders, arranged on a plane, move the
bases of the air springs via an intermediate frame, the suspension
frame. This arrangement allows a damping of forces in lateral and
vertical directions. In addition, it is also possible to regulate the
level of the coach and add active tilting of the coach body. Three
additional hydraulic cylinders allow a simulation of vertical and lat-
eral rail excitation [16]. The vital task for the control system is to
control the dynamical behavior of the coach body. In our example,
we will focus only on the vertical dynamic behavior of the coach
body. The choice of appropriate feedback controllers for this mod-
ule is indispensable to provide the passengers a high comfort and it
is highly relevant for energy optimizations, safety, and stability.

There exist multiple different controllers applicable to the sus-
pension/tilt module. We focus on 3 controllers with different in-
and outputs, providing different comfort: One controller provides
sophisticated comfort by referring to a trajectory describing the re-

1http://www-nbp.upb.de/en/index.html

A B C

prop.- valves

A / D

controller

D / A

sensors

hydr. pump

car body

hydr. actuators

air springs

to the
actuators

z

y

a

Figure 1: Scheme of the suspension/tilt module

quired motion of the coach body in order to compensate the cur-
rent track’s unevenness, slopes, etc. As a track’s optimal reference
curve does not change, shuttles can profit from the experiences of
former shuttles passing the track. Therefore a shuttle sends its ex-
perience to a registry that provides this information to other shut-
tles.

This leads to the following procedure when a shuttle enters a
registry’s area: (1) the shuttle requests the trajectory from the lo-
cal registry, (2) the registry selects the appropriate track reference
curve and sends it to the shuttle, (3) the shuttle passes the track us-
ing the reference curve, (4) the shuttle sends an experience report
to the local registry, (5) the registry uses the shuttle’s experience to
compute a new, optimized reference curve [21].

To guarantee stability the sophisticatedreferencecontroller re-
quires –besides the reference curve– the vertical acceleration of the
coach body, which is delivered by a sensor. If the reference curve
is not available or is not received in time the less comfortableab-
solutecontroller has to be applied, which requires only the vertical
acceleration as input. If the sensor fails, ourrobustcontroller has
to be applied, which provides the lowest comfort, but requires just
standard inputs to guarantee stability.

The example shows that the transmission of the reference trajec-
tory has to meet real-time requirements. Further it demonstrates
that self-optimization often results in an online-reconfiguration of
the feedback controllers.

z
..
z

Zref.

abs.

XZ, A, ref.

X
Z, B, ref.

X
Z, C, ref.

normal

“reference”

“absolute”

failure

“robust”

body control

common
inputs

t0 tend

1

0

f (t)Switch

1-f (t)Switch

blending curves

Figure 2: Fading between different continuous control modes

Control engineering systems, such as the control system for the
suspension/tilt module, are usually described by means ofblock di-
agrams[24] as depicted in Figure 2. Thebody control (BC) compo-
nent, which is responsible for controlling the suspension/tilt mod-
ule, consists of the three described controllers. Dependent on the
available input signals, the respective controllers are active or not.
The reference signal is labeled aszref and the absolute acceleration
asz̈abs. The outputsXZ,A,ref , . . . , XZ,C,ref denote the positions
of the three hydraulic cylinders.

When switching between two controllers one must distinguish
between two different cases:atomic switchingandcross fading. In
the case of atomic switching the change can take place between
two computation steps. In our example, the switching from the
normal block to the failure block (see Figure 2) can be processed
atomically because the robust controller actually has no state.

If the operating points of the controllers are not identical, it will
be necessary to cross-fade between the two controllers. This han-
dling is required in the normal block depicted in Figure 2, where a
transition between the reference and the absolute controller is re-
alized. The cross-fading itself is specified by a fading function
fswitch(t) and an additional parameter which determines the du-
ration of the cross-fading.

To study the limitations of the block diagrams, we review their
formal model by means of differential equations. It describes the
behavior of a block diagram’s single block or of multiple intercon-
nected blocks as follows (see Appendix A for the employed basic
mathematical notations):

DEFINITION 1. A continuous modelM is described by a 7-
tuple(V x, V u, V y, F, G, C, X0) with V x the state variables,V u

the input variables, andV y the output variables. For the implicitly
defined state flow variablesV ẋ and auxiliary variablesV a = V y∩
V u, the set of equationsF ⊆ EQ(V ẋ ∪ V a, V x ∪ V u ∪ V a)
describes the flow of the state variables, the set of equationsG ⊆
EQ(V y ∪ V a, V x ∪ V u ∪ V a) determines the output variables,
and X0 ⊆ [V x → R] the set of initial states. TheinvariantC
with C ∈ COND(V x) is further used to determine the set of valid
states.

F ∪G is onlywell-formedwhen there are no cyclic dependencies,
no double assignments, and when all undefined referenced vari-
ables are contained inV u − V y. A well-formedF ∪ G must also
assign a value to all state and output variables present in the defini-
tion.

The state space of a continuous behavior isX = [V x → R]
which describes all possible assignments for the state variables. A
trajectoryρu : [0, ∞] → [V x → R] for the set of differential
equationsF and inputu : [0, ∞] → [V u → R] with ρu(0) = x
for the current continuous statex ∈ X and ρu(t) ∈ C for all
t ∈ [0,∞] describes a valid behavior of the continuous system. The
output variablesV y are determined byθu : [0, ∞] → [V y → R]
usingG analogously. The semantics for a continuous modelM is
given by all possible triples of environment and system trajectories
(u, ρu, θu) denoted by[[M]].

We can compose two continuous models if their variable sets are
not overlapping and the resulting sets of equations are well formed
as follows:

DEFINITION 2. The composition of two continuous mod-
els M1 = (V x

1 , V u
1 , V y

1 , F1, G1, C1, X
0
1) and M2 =

(V x
2 , V u

2 , V y
2 , F2, G2, C2, X

0
2) denoted byM1‖M2 is again a con-

tinuous modelM = (V x, V u, V y, F, G, C, X0) with V x
1 :=

V x
1 ∪ V x

2 , V u
1 := V u

1 ∪ V u
2 , V y

1 := V y
1 ∪ V y

2 , F := F1 ∪ F2,
G := G1 ∪ G2, C is derived fromC1 and C2 as C = {(x1 ⊗
x2)|x1 ∈ C1 ∧ x2 ∈ C2}, and the set of initial states isX0 =
{((l1, l2), (x1 ⊗ x2))|(l1, x1) ∈ X0

1 ∧ (l2, x2) ∈ X0
2}.

M1‖M2 is only well-formed whenV x
1 ∩ V x

2 = ∅, V u
1 ∩ V u

2 = ∅,
V y

1 ∩ V y
2 = ∅, andF andG are well-formed. A composition is

consistentif the resulting continuous model is well-formed.
Within the model atomic switching and fading is described by

specific continuous blocks. A standard approach to include discrete
blocks is to restrict states and signals to a discrete domain. The inte-
gration of discrete control elements into block diagrams is depicted

z
..
z

Z ref.

abs.

X
Z, A, ref.

X
Z, B, ref.

X
Z, C, ref.

normal

“reference”

“absolute”

failure

“robust”

body control

common
inputs

switch control

Figure 3: Controlling the fading between different continuous
control modes with a statechart

in Figure 3. The alternative controller outputs are fed into a discrete
block whose behavior is described by a statechart. The defacto in-
dustry standard employing this concept is MATLAB/Simulink and
Stateflow.2 Formal verification of MATLAB/Simulink and State-
flow models of moderate size can be accomplished by automati-
cally transforming them to hybrid automata (cf. [1]).

In the standard approach, the continuous control and the discrete
statecharts are separated, while we can observe strong relations be-
tween specific controller configurations and states for reconfigura-
tion. Hybrid automata [13] bridge this gap by simply assigning a
specific continuous controller to each discrete state.

<Rob
Abs>

<Ref
Abs>

<Abs
Ref><Rob

Ref>

zAbsOK

zAbsFailure

zAbsFailure

zAbsFailure

zRefFailure

zAbsFailure

Absolute

Reference
zRefFailure

zRefOK

zRefOK

Robust

zAbsFailure

FadeRobAbs

FadeRobRef
FadeRefAbs

<Ref>

FadeAbsRef

<Abs>

<Rob>

zAbsOK

com.
inputs

com.
inputs

com.
inputs

com.
inputs

com.
inputs

com.
inputs

com.
inputs

zAbsFailure

t0 = 0 d
1

low ≤ t0 ≤ d
1

up

t0 = 0

t0 = 0

t0 = 0

t0 ≤ d
1

up

t0 ≤ d
4

up

t0 ≤ d
2

up t0 ≤ d
3

up

z̈abs

zref

d
2

low ≤ t0 ≤ d
2

up

d
3

low ≤ t0 ≤ d
3

up

d
4

low ≤ t0 ≤ d
4

up z̈abs

zref

z̈abs

zref

z̈abs

zref

z̈abs

zref

zref

z̈abs

zref

z̈abs

Figure 4: Hybrid view of the body control with additional fad-
ing locations

Figure 4 shows thebody control (BC) component modeled by a
hybrid automaton. Among others it consists of the three locations
(discrete states)Robust, Absolute, andReference whose continuous
dynamics are specified by continuous models conform to Defini-
tion 1. The controller specifications are visualized by blocks with
arrows, denoting the in- and outputs.

If for instance the automaton resides in the start locationRobust
andzAbsOK is raised (to indicate that thëzabs signal is available)
the location and the controller changes to the absolute mode. An
atomic switch between these controllers can usually not avoid an
additional excitation or even guarantee stability. Thus theAbso-
lute location cannot be entered directly and an additional location
FadeRobAbs is entered (see Figure 4). This intermediate location
comprises the cross fading activity (transition) from the robust to
the absolute controller.

Since fading can only guarantee stability if its duration is within

2http://www.mathworks.com

specific bounds, we describe the lower and the upper bound by a
fading duration intervald1 = [d1

low, d1
up]. The duration is mod-

eled through the state variable (clock)t0 which is set to0 when
entering theFadeRobAbs-location. The invariantt0 ≤ d1

up and the
guardd1

low ≤ t0 ≤ d1
up ensure the specific bounds. Note that in-

side the fading locationṡt0 = 1 holds for any clock variablet0.
When the fading is completed, the original target locationAbsolute
is entered. Specifying the duration of the other fading transitions
is done similarly. If thëzabs signal is lost during fading or during
the use of the absolute-controller, the default location with its ro-
bust control will be entered immediately by the transition which is
triggered by thezAbsFailure event (cf. Figure 4).

The described behavior comprising continuous as well as dis-
crete elements is formally defined by means of hybrid automata
and statecharts [13, 4, 3]. In the following, we use a formalization
which extends the notion of a continuous model defined in Def-
inition 1. It provides means to specify continuous behavior and
synchronous event handling.

DEFINITION 3. A hybrid automatonis described by a 6-tuple
(L, D, I, O, T, S0) with L a finite set of locations,D a function
overL which assigns to eachl ∈ L a continuous modelD(l) =
(V x, V u, V y, F (l), G(l), C(l), X0(l)) conf. to Definition 1 with
identical variable sets,I a finite set of input signals,O a finite set
of output signals,T a finite set of transitions, and a set of initial
statesS0 ⊆ {(l, x)|l ∈ L ∧ x ∈ X0(l)}. For any transition
(l, g, g′, a, l′) ∈ T holds thatl ∈ L is the source-location,g ∈
COND(V x ∪ V u) the continuous guard,g′ ∈ ℘(I ∪ O) the I/O-
guard,a ∈ [[V x → R] → [V x → R]] the continuous update, and
l′ ∈ L the target-location. For everyl ∈ L we require thatD(l) is
well-formed.

The used interfaceI(M) of a hybrid automatonM is defined
as the external visible signal sets and input and output variables
(I −O, O − I, V u − V y, V y − V u).

ForX = [V x ⇀ R] the set of possible continuous state variable
bindings, the inner state of a hybrid automaton can be described by
a pair(l, x) ∈ L×X with x ∈ [V x → R]. There are two possible
ways of state modifications: Either by firing an instantaneous tran-
sition t ∈ T changing the location as well as the state variables or
by residing in the current location which consumes time and alters
just the control variables.

When staying in state(l, x) firing an instantaneous transition
t = (l′, g, gi, a, l′′) is done iff l = l′ (the transitions source
location equals the current location) and the continuous guard is
fulfilled (g(x ⊗ u) = true) for u ∈ [V u → R] the current input
variable binding, the I/O-guard is true for the chosen input and out-
put signal setsi ⊆ I ando ⊆ O (i ∪ o = gi), anda(x) ∈ C(l′′).
The resulting state will be(l′′, a(x)) and we note this firing by
(l, x) →(i∪o) (l′′, a(x)).

If no instantaneous transition can fire, the hybrid automaton re-
sides in the current locationl for a non-negative and non-zero time
delayδ > 0. Let ρu : [0, δ] → [V x → R] be a trajectory for
the differential equationsF (l) and the external inputu : [0, δ] →
[V u − V y → R] with ρu(0) = x. The state for allt ∈ [0, δ] will
be(l, ρu(t)). The output variablesV y−V u and internal variables
V y ∩ V u are determined byθu : [0, δ] → [V y → R] usingG(l)
analogously. We additionally require that for allt ∈ [0, δ] holds
thatρu(t) ∈ C(l).

The trace semantics is thus given by all possible in-
finite execution sequences (u0, l0, ρ

0
u0 , θ0

u0 , δ0) →e0

(u1, l1, ρ
1
u1 , θ1

u1 , δ1) . . . denoted by [[M]]t where all
(li, ρ

i
ui

(δi)) →ei (li+1, ρ
i+1
ui+1(0)) are valid instantaneous

transition executions.

Other aspects of hybrid behavior, such as zeno behavior and the
distinction betweenurgentandnon-urgenttransitions, are omitted
here. A suitable formalization can be found, e.g., in [13]. The
parallel composition of two hybrid automata is defined as follows:

DEFINITION 4. For two hybrid automataM1 and M2 the
parallel composition(M1‖M2) results in a hybrid automa-
ton M = (L, D, I, O, T, S0) with L = L1 × L2,
D(l, l′) = D1(l)‖D2(l

′), I = I1 ∪ I2, O = O1 ∪
O2. The resulting transition relation isT = {((l1, l2), g1 ∧
g2, gi

1 ∪ gi
2, (a1 ⊕ a2), (l

′
1, l

′
2))|(l1, g1, g

i
1, u1, l

′
1) ∈ T1 ∧

(l2, g2, gi
2, u2, l

′
2) ∈ T2 ∧ gi

1 ∩ (I2 ∪ O2) = gi
2 ∩ (I1 ∪

O1)} ∪ {((l1, l2), g1, gi
1, u1, (l

′
1, l2))|(l1, g1, gi

1, u1, l
′
1) ∈

T1 ∧ gi
1 ∩ (I2 ∪ O2) = ∅} ∪ {((l1, l2), g2, gi

2, u2, (l1, l
′
2))|

(l2, g2, u2, l
′
2) ∈ T2 ∧ gi

2 ∩ (I1 ∪ O1) = ∅}. S0 is defined as
S0

1 × S0
2 .

The automatonM is only well-defined when for all reachable
(l, l′) ∈ L holds thatD((l, l′)) is well-defined and the internal
signal sets are disjoint ((O1 ∩ I1) ∩ (O2 ∩ I2) = ∅). The com-
position of hybrid automata is onlyconsistentwhen the resulting
automaton is well-defined.

Specification of the optimization of the system behavior requires
an appropriate coordination for the hierarchical integrated sub-
components by the super-component. In our example, some sort
of monitor which embeds thebody control component has to take
action when additional information in form of the reference curve
is available or lack of sensor data has to be compensated. This
monitor initiates the location switches (e.g. by raising the signals
zAbsOK etc.) and handles the communication with theRegistry.

Discrete blocks as well as hybrid automata support only static
(continuous) interfaces (cf. Definition 1 and 3). Thus reconfigura-
tion as well as its coordination is always restricted to occur only
within one discrete block or hybrid automaton. The parallel com-
position of hybrid automata in their standard form can therefore
not be employed to decompose behavior which includes reconfigu-
ration.

In our example, the monitor behavior as well as the hybrid au-
tomaton describing the behavior of theBC component has to be
modeled within one hybrid statechart. In more complex systems,
the whole hierarchy and possible cascading controllers have to be
specified within one hybrid statechart with parallel states. There-
fore, the hybrid statecharts will often become too complex to verify
that the continuous model is well-formed for all reachable states.

There is a number of approaches, like Timed and Hybrid State-
charts [17], Charon [3], Masaccio [12], HyCharts [10, 26], Hy-
Room [27], and Hybrid I/O Automata [20], which address the prob-
lem of modeling complex systems by hybrid statecharts. Some of
them reduce the visual complexity by means of hierarchy and par-
allelism. They all fail in providing a component concept which
supports a dynamic interface which enables to decompose systems
with online reconfiguration into multiple hybrid statecharts.

Consequently the control engineering know-how for the contin-
uous control and the software engineering know-how for the real-
time coordination have to be specified both within a single hybrid
statechart. Thus the usually difficult tight cooperation between en-
gineers from different camps is required.

Available compositional reasoning approaches for hybrid sys-
tems [18, 15] require large manual effort of inventing auxiliary
properties to enable a full verification to decide whether the de-
scribed reconfiguration is consistent. In contrast, the presented
approach will ensure consistency by means of a syntactical check
guided by the proposed components and their interfaces.

Further the example shows that even simple examples are –
especially due to the fading-locations– so complex, that they be-
come difficult to comprehend. The application of classical high-
level constructs, such as hierarchy, parallelism and history, enable
some reduction of complexity, but mechatronic systems usually
achieve a complexity that requires further advanced concepts such
as modularity and a component-based design.

3. HYBRID COMPONENTS
To support the design of complex mechatronic systems and to over-
come the problems outlined in the last section, we introduce in this
section our notion of hybrid components and their rigorously de-
fined semantics. Hybrid components have been introduced infor-
mally in [7]. As the Unified Modeling Language (UML) is ac-
cepted worldwide as the quasi-standard for modeling, we apply
components in the sense of UML 2.0 [23].

3.1 Component Structures
Figure 5 depicts the component structure of our example by means
of a UML component diagram: TheMonitor component embeds the
subordinatedSensor, Storage, andBodyControl (BC) components.

Monitor
Role

:Sensor

:Registry

Registry
Role

:Monitor

storage : Storage

:BC

Registration
Pattern

Monitor−

Figure 5: Monitor and its environment

Using the basic UML 2.0 concepts for component diagrams, the
hierarchical embedding of theBC component into theMonitor com-
ponent is modeled using aggregation as presented in Figure 5. The
non-hierarchical link of theMonitor component to theRegistry com-
ponent is described by two ports (as defined in the UML 2.0 as
unfilled boxes) and a connector.

To additionally model the quasi-continuous aspects of the model
in form of communication via continuous signals, we extend the
UML by continuous ports, depicted by framed triangles whose ori-
entation indicates the direction of the signal flow. E.g. the contin-
uous signal̈zabs is transmitted from theSensor component to the
BC component through their continuous ports.

TheMonitor-Registry pattern uses a subset of UML 2.0 proposed
in [9] and specifies the time-discrete communication between the
shuttle’sMonitor component and theRegistry. It consists of two
roles (MonitorRole and RegistryRole) which specify the protocol
for the communication. The role’s behavior, which is considered
later in Figure 10 in Section 4.3, is modeled with an extension of
statecharts [8].

3.2 Component Realization
The behavior of the hybrid component is specified by means of an
extension of UML Statecharts calledhybrid reconfiguration charts.
We employ Real-Time statecharts [8] to describe required real-time
behavior and refer the continuous behavior only by embedding ap-

propriate basic quasi-continuous blocks similar to Figure 4 (cf. the
BC component behavior in Figure 6).

zAbsFailure

zAbsOK

Robust

Reference

Absolute

zRefOK

zAbsFailure

zAbsOK

zRefFailure

<Abs>

<Ref>

<Rob>

d4

d2

ffade2

ffade1

z̈abs

z̈abs

zref
d1

d3

ffade3

ffade4

Figure 6: Behavior of the body control component

Within the states of a hybrid reconfiguration chart, the required
controller logic with its specific required input and provided output
signals is specified (cf. Figure 6), while a hybrid automaton speci-
fication requires always the same input and output signals for every
location. The continuous ports that are required in each of the three
interfaces are filled black, the ones that are only used in a subset of
the states are filled white.

To reduce the visual complexity, arising from the fading-states,
we additionally supportfading-transitionsin our notion of hybrid
reconfiguration charts. Thefading-transitionsare visualized by
thick arrows while atomic switches have the shape of regular ar-
rows. The parameters of a transition are: A source- and a target-
location, a guard and an event trigger, information on whether or
not it is an atomic switch, and, in the latter case, a fading strategy
(ffade) and the required fading duration intervald = [dlow, dup]
specifying the minimum and maximum duration of fading.

A comparison with Figure 4 of the related hybrid automaton re-
veals that besides the locationsRobust, Absolute, andReference,
representing the three different controllers, the additional locations
FadeRobAbs, FadeRobRef, FadeAbsRef, andFadeRefAbs, regulat-
ing fading between the controllers, have been necessary. In Figure
6, the ability to avoid the explicit locations for fading considerably
decreases the number of visible locations and thus comprehension
is much simpler.

For the considered domain of mechatronic systems, the rather
complex micro step semantics of UML statecharts is not necessary.
Instead, the quasi-continuous behavior is evaluated constantly and
in each state machine cycle only a single transition is fired. Such
a semantics has already successfully been employed in [9] for the
timed case only. [19] explains that the micro step semantics creates
a lot of difficulties concerning the composition of statecharts and
their corresponding semantics. Our simplified semantic definition
avoids a lot of these problems.

Due to lack of space we further will omit the syntactical com-
plexity of the standard statechart concepts, such as hierarchy and
history [11] within this paper.3 We define a reconfigurable variant
of the hybrid automata model presented in Definition 3 which ex-
tends the formal concepts of hybrid automata and statecharts [13,
4, 3] to also support the specification of reconfiguration.

3This can be accomplished much like the case of the syntax and
semantics of the Real-Time Statechart presented in [8].

DEFINITION 5. A hybrid reconfiguration automatonis
described by a 6-tuple(L, D, I, O, T, S0) with L a fi-
nite set of locations, D a function over L which as-
signs to each l ∈ L a continuous modelD(l) =
(V x(l), V u(l), V y(l), F (l), G(l), C(l), X0(l)) conf. to Definition
1, I a finite set of input signals,O a finite set of output signals,T a
finite set of transitions, andS0 ⊆ {(l, x)|l ∈ L∧x ∈ X(l)} the set
of initial states. For any transition(l, g, gi, a, l′) ∈ T holds that
l ∈ L is the source-location,g ∈ COND(V x(l) ∪ V u(l))
the continuous guard,gi ∈ ℘(I ∪ O) the I/O-guard,
a ∈ [[V x(l) → R] → [V x(l′) → R]] the continuous up-
date, andl′ ∈ L the target-location. For everyl ∈ L we require
thatD(l) is well-formed.

The automaton additionally allows that each location has its own
variable sets. We useV x to denote the union of allV x(l). V u

andV y are derived analogously. The semantics can be adjusted
by always taking into account the location dependent notionV x(l)
etc. instead of the location independentV x.

The parallel composition also follows directly from the non con-
figurable case. In the case of hybrid reconfiguration automata, a
correct parallel composition has to ensure that for all reachable
(l, l′) ∈ L holds thatD((l, l′)) does not contain cyclic dependen-
cies. In contrast to the case of standard hybrid automata, the added
support for changing input and output variables may also result in
problems when required inputs are not provided. In our example,
thesensor element must be in a state which provides the according
data if theBC component is in stateAbsolute, otherwiseBC cannot
operate correctly.

Please note that in the presented flat hybrid automata model the
higher-level concept of the hybrid statecharts such as fading tran-
sitions are represented by means of additional locations at the un-
derlying flat hybrid automaton. The location set is thus partitioned
into regular locations, which relate to locations of the statechart,
andfading locations, which result from the fading transitions.

DEFINITION 6. For a hybrid automaton M =
(L, D, I, O, T, S0) a location lf ∈ L with D(lf) =
(V x(lf), V u(lf), V y(lf), F (lf), G(lf), C(lf), X0(lf)) is a
fading location iff C(lf) ≡ (v ≤ dmax), ∃v ∈ V x(lf)
with (v̇ = 1) ∈ F (lf), for all (l, g, g′, a, lf) ∈ T holds
that (v = 0) ∈ a, there is exactly one transitions leavinglf
(|{(lf , g, g′, a, l′)|(lf , g, g′, a, l′) ∈ T}| = 1), and for this
transition holdsg ≡ dmin ≤ v ≤ dmax, g′ = true anda = Id.
All non fading locations areregular locations.

DEFINITION 7. For a hybrid automaton M =
(L, D, I, O, T, S0) a regular location lp ∈ L is a passive
location iff the location and all transitions leaving it have no
continuous constraints.

Note that for any hybrid reconfiguration chart, we can ensure that
two fading locations are never directly connected.

3.3 Component Interface
For embedding or connecting a hybrid component (cf. Figure 5)
we do not need all details of the component realization, but only
enough information about its externally observable behavior such
that compatibility can be analyzed. This externally relevant behav-
ior is described in our approach through aninterface state chart.
This interface state chart describes the externally visible states of a
component as well as the in- and outputs present in each of these
states.

The related interface automaton of the body control component
of Figure 6 is displayed in Figure 7. It shows that the body control

zRefOK

zAbsFailure

zAbsOK

zRefFailure

zAbsOK

[Robust]

[Absolute]

zAbsFailure

[Reference]

d2

d3

d1

d4

z̈abs

zref

z̈abs

Figure 7: Interface state chart of the body control component

component has three possible different external relevant states with
different continuous interfaces. For all possible state changes, only
the externally relevant information, such as possible durations and
the signals to initiate and to break the transition, are present.

To study what a correct relation between the realiza-
tion of a component and its interface automaton is, we
write for a possible execution sequence of states and tran-
sitions of a hybrid automatonM = (L, D, I, O, T, S0)
with (u0, l0, ρ

0
u0 , θ0

u0 , δ0) →e0 (u1, l1, ρ
1
u1 , θ1

u1 , δ1) ∈ [[M]]t
simply (l0, ρ

0
u0(0)) →(u0,ρ0

u0
,θ0

u0
,δ0) (l0, ρ

0
u0(δ0)) →e0

(l1, ρ
1
u1(0)) →(u1,l1,ρ1

u1
,θ1

u1
,δ1) (l1, ρ

1
u1(δ1)) to represent the

state changes in a more uniform manner. We thus have the concept
of a hybrid pathπ = (u0, θ

0
u0 , δ0); e0; . . . ; (un, ln, θ1

un
, δn); en

such that we write(l0, ρ
0
u0(0)) →π (ln, ρn

un
(δn)) iff it

holds that (l0, ρ0
u0(0)) →(u0,ρ0

u0
,θ0

u0
,δ0) (l0, ρ

0
u0(δ0)) →e0

. . . (ln, ρn
un

(0)) →(un,ln,ρn
un

,θn
un

,δn) (ln, ρn
un

(δn)).

For e′i = ei − (O ∩ I) the externally relevant events andθi
ui

=

θi
ui
|V y(li)−V u(li) the output minus the internal variables, we have

an abstract pathπ′ = (u0, θ
0
u0 , δ0); e

′
0; . . . ; (un, θ1

un
, δn); en; . . .

and write (l0, ρ
0
u0(0)) ⇒π′ (ln, ρn

un
(δn)). Note thatw; e; w′

with e = ∅ is collapsed tow; w′ as no externally relevant events
are received or emitted. The offered discrete as well as contin-
uous interactions for a state(l, x) are further denoted by the set
offer(M, (l, x)) which is defined as{e|∃(l, x) ⇒e (l′, x)} ∪
{(du/dt)(0)|∃(l, x) ⇒(u,θu,δ) (l, x′)}.

An appropriate notion of hybrid refinement for the interface can
then be defined as follows:

DEFINITION 8. For two hybrid reconfiguration automataMI

andMR holds thatMR is a refinementof MI denoted byMR v
MI iff a relation Ω ⊆ (LR × XR) × (LI × XI) exists which
contains for everyc ∈ (LR × XR) a c′ ∈ (LI × XI) such that
(c, c′′) ∈ Ω and for all (c, c′′) ∈ Ω holds

∀c ⇒π c′ ∃c′′ ⇒π c′′′ : (c′, c′′′) ∈ Ω and (1)

offer(MR, c) ⊇ offer(MI , c′′). (2)

As refinement is a precongruence for‖ [6], we can exploit its prop-
erty to preserve time-stopping deadlocks to employ where required
the smaller abstraction (interface automaton) rather than the larger
refinement (realization).

The externally relevant behavior covered by the interface state
charts only includes the real-time behavior as well as the state-
dependent continuous interface. Therefore, the notion of an in-
terface automaton is essentially restricted to a timed automaton as
follows:

DEFINITION 9. A hybrid automatonM = (L, D, I, O, T, S0)
is an interface automatoniff for its continuous partD holds that
the set of auxiliary variables is empty (V y ∩ V u = ∅), all v ∈ V x

are clocks (̇v = 1), the updatea for any transition(l, g, gi, a, l′)
is restricted toOP const, and the continuous input/output behavior
for V y is not determined (G is restricted toOP⊥).

Note that the concrete operations used inG do not restrict the pos-
sible trajectories and are only used to abstract from the evaluation
dependencies.

A further, more restricted variant aresimple interface state charts
where only time constraints on the fading transitions are present.

DEFINITION 10. An interface automaton M =
(L, D, I, O, T, S0) is simple if it contains only passive and
fading locations and two fading locations are never directly
connected.

A component in our approach is thus described as a UML
component –with ports with distinct quasi-continuous and discrete
signals and events– as follows: Ahybrid componentis character-
ized by

• the realizationdescribed by a single hybrid reconfiguration
chart which coordinates its aggregated subcomponents.

• an interface in form of aninterface state chartwhich is a
correct abstraction of the realization (cf. Definition 8).

In our example, theBC component is described by its realiza-
tion by the hybrid reconfiguration chart of Figure 6 where the re-
quired quasi-continuous behavior is specified by controllers in form
of quasi-continuous blocks. The interface state chart presented in
Figure 7 describes the interface.

Using the notion of an interface automaton, we can thus formally
define a hybrid component as a realization plus such an abstraction.

DEFINITION 11. A hybrid reconfiguration componentC is
a pair (MI , MR) with an interface automatonMI =
(LI , DI , II , OI , TI , S0

I) and the concrete hybrid realization
MR = (LR, DR, IR, OR, TR, S0

R) for which MR v MI holds.
We further require thatV u

I = V u
R −(V u

R ∩V y
R), V y

I = V y
R−(V u

R ∩
V y

R), II = IR−(IR∩OR), OI = OR−(IR∩OR), and a witness
Ω for MR v MI exists such that for any(l, l′) ∈ Ω andDI(l) =
(V x

I (l), V u
I (l), V y

I (l), FI(l), GI(l), CI(l), X
0
I (l)) andDR(l′) =

(V x
R (l′), V u

R (l′), V y
R(l′), FR(l′), GR(l′), CR(l′), X0

R(l′)) all de-
pendencies present inGI(l) must also be present inGR(l′).

The interface automaton abstracts from the continuous behavior, it
still contains the information about the input-output dependencies.
The notion of a hybrid component thus permits to abstract from all
internal variables and signals using the interface automaton.

In a bottom-upscenario, the interface of a component can be
derived from its hybrid reconfiguration chart by abstracting from
realization details at the syntactical level. The valid refinement be-
tween a given interface state chart and a realization in atop-down
scenario must in contrast be additionally verified at the semantical
level.

4. COMPONENT COMPOSITION
As depicted in Figure 5, our hybrid components can have two dif-
ferent kinds of composition relations: (1) explicit port connections
to other components or (2) strict hierarchical aggregation of sub-
components by a super-component.

In the former case, the components are coupled via ports and
patterns (cf.Monitor andRegistry in Figure 5). As at this level only

the real-time behavior without any continuous elements has to be
specified, UML 2.0 components with ports and real-time protocols
are sufficient to exclude timing inconsistencies (see Section 4.3).

In the latter case, we have to ensure that the different reconfigu-
ration steps as well as their timing cannot result in an inconsistent
situation where the continuous model is not well-formed any more.
While in the general case the whole discrete state space of the sys-
tem has to be explored to exclude this problem, we can exploit the
modular structure of complex mechatronic systems modeled as hi-
erarchies of aggregated hybrid components.

We therefore present a concept for the behavioral embedding
of the subcomponents within the hybrid reconfiguration charts of
a component (Section 4.1), which permits to check consistency
w.r.t. reconfiguration at a purely syntactical level (Section 4.2).

4.1 Behavioral Embedding
The behavioral embedding of subcomponents is achieved by as-
signing a configuration of aggregated subcomponents (not only
quasi-continuous blocks) to each state of a hybrid reconfiguration
chart by means of UML instance diagrams. In this manner the re-
quired coordination of aggregated components can rather easily be
described (see Figure 8), similar to composite structure diagrams
and structured classes in UML 2.0. A switch between the locations
of the monitor chart thenimpliesa switch between locations of the
interface state charts of the embedded components.

The behavior of the Monitor component is specified by a hybrid
reconfiguration chart with the outlined behavioral embedding of its
subcomponents in Figure 8. We have assigned to each location of
the upper orthogonal state of the chart theBC component in the ap-
propriate state. E.g., theBC component instance in stateReference
has been (via a visual embedding) assigned to the locationAllAvail-
able of the monitor wherezref as well as̈zabs are available. The
lower orthogonal state of Figure 8 shows the communication with
the registry which is considered later in Section 4.3.

The upper orthogonal state consists of the statesRefAvailable and
AllAvailable which represents whether the required reference curve
is available for theactualtrack. The upper state is synchronized by
the lower one.

The aggregation of thebody control, sensor and storage com-
ponents by theMonitor component as depicted in Figure 5 is also
reflected in Figure 8. The semantics of this behavioral embedding
is described by the concurrent execution of the controlled compo-
nents which is formally described as follows.

DEFINITION 12. For hybrid reconfiguration automata
MS and M1, . . . , Mn the hierarchical parallel composi-
tion (MS‖H(M1‖ . . . ‖Mn)) is defined by a restriction
H ⊆ LS × (L1 × · · · × Ln) on the hybrid automaton
M = MS‖M1‖ . . . ‖Mn. The restriction holds iff for all~l ∈ L

reachable in[[M]] holds that~l ∈ H.

This formalization assumes that the reconfiguration of the in- and
output events for the different states of the differentMi described
by the behavioral embedding is realized by the coordinating hybrid
automatonMS . MS realizes the specific topology of each state by
providing the related signal connections in form of a continuous
model which only copies the variables accordingly. In addition,
the hybrid automatonMS has to trigger the implicitly specified
transitions of the subcomponents by emitting the events specified
in the interface state charts.

If we abstract from the events exchanged between the automata
we can thus assume thatMS‖H(M1‖ . . . ‖Mn) is a refinement of
MS . To formally abstract from these internal events, we addition-
ally define the hiding of events.

:Sensor[Off]:BC[Robust]

storage:Storage

:Sensor[On]:BC[Reference] :Sensor[On]:BC[Absolute]

:BC[Robust] :Sensor[Off]

when(next
Segment)
noData? /

when(nextSegment)
data(Vector zRef)?

registry.sendInfo(zRef) / storage.add(zRef)

when(storage.isEmpty())

Trajectory
Available

/ registry.experience
data(Vector zRef)!
!storage.isEmpty())
when(

when(nextSegment)
data(Vector zRef)? /

sensor.ok

RefAvailable NoneAvailable

sensor.failure

sensor.ok

data(Vector zRef)?

noData?

AbsAvailableAllAvailable

sensor.failure

when(nextSegment)
data(Vector zRef)? /

registry.experience
noData! /

after(20) /
registry.requestInfo

TrajectoryNot
Available

db

dd da

dc

Figure 8: Behavioral embedding in the Monitor realization

DEFINITION 13. For a hybrid automaton M =
(L, D, I, O, T, S0) the hiding of some signalsA ⊆ I ∪ O
denoted by M\A is defined as the hybrid automaton
M ′ = (L, D, I ′, O′, T ′, S0) with I ′ = I − A, O′ = O − A, and
T ′ = {((l, g, gi −A, u, l))|(l, g, gi, u, l)) ∈ T}.

The hybrid reconfiguration chart specified in Figure 8 equals
MS\I1∪···∪In∪O1∪···∪On . The additional details ofMS describ-
ing the coordination withM1, . . . , Mn are omitted in in Figure 8,
as they can be automatically derived.

For any regular location of the corresponding hybrid automaton
l1 ∈ L1, the strict assignment ofonestate of the contained com-
ponents to a single location of the hybrid reconfiguration chart (as
present in Figure 8) makes sure that|H∩{l1}×(L1×· · ·×Ln)| =
1. Consequently,l1 can coexist only with the related regular target
locations ofM1, . . . , Mn. For a fading locationl1 ∈ L1 we can
expect that|H ∩ {l1}× (L1× · · · ×Ln)| = 2 such thatl1 can co-
exist only with the related regular target locations ofM1, . . . , Mn

or with intermediate fading locations ofM1, . . . , Mn which even-
tually lead to this target location. We require that there is no in-
teraction amongM1, . . . , Mn, so that they do not initiate location
changes of parallel components.

4.2 Consistency Checking
The complex conditions a correct parallel composition has to fulfill
(cf. Definition 4) highlight an important fact: The parallel execu-
tion of two components with inconsistent control laws (e.g., if the
input and output variables do not fit) can result in undefined behav-
ior.

A single state of a hybrid reconfiguration chart can also result in
an incompatible reconfiguration, if the composed dependency rela-
tion for the related configuration of subcomponent states contains
a cycle. Due to the refinement relation any dependency between an
input and output in the component realizationMR of a component
is also present in its interface automatonMI . Thus, considering
the interface automaton is sufficient to exclude incompatible state
configurations.

Additionally, the correct real-time coordination of the fading-
durations etc. has to be ensured. By restricting our considerations

here tosimple interface state chartswhere only the fading locations
are characterized by a simple duration restriction and the states are
not restricted, we can check that the hybrid reconfiguration chart
alone is an abstraction of the hybrid reconfiguration chart combined
with the interface state charts of the subcomponents.4 We have to
check for each transition in the hybrid reconfiguration chart and the
related state transitions in the interface state chart of the aggregated
subcomponents that the behaviors are consistent (cf. Theorem 1).

storage:Storage

:Sensor[On]:BC[Reference] :Sensor[On]:BC[Absolute]

when(next
Segment)
noData? /

when(nextSegment)

AbsAvailableAllAvailable

Behavior

Monitor

data(Vector zRef)? /

Behavior
BC

zRefFailure

Reference Absolute
zRefOK

db

dd

d2

d3
zref

z̈abs

z̈abs

Figure 9: Scheme for the syntactical checking of correct recon-
figuration

Figure 9 depicts a part of the monitor behavior and a part of the
interface state chart of the embeddedBC component (cf. Figures
7 and 8). As described in the previous sections the transition from
stateAbsAvailable to AllAvailable implies a change of theBC compo-
nent from stateAbsolute to Reference. Further the monitor requires

4As in the general form of hybrid systems considered here reach-
ability is undecidable [14], we cannot expect to find an automatic
solution for the general problem.

this transition to be completed within the timing intervaldb. As the
implied state change ofBC will occur within the timing interval
d3, the overall specification is only correct, ifd3 ⊆ db. Similar,
d2 ⊆ dd must hold for the transition toAllAvailable/Reference.

The outlined syntactical rule for the hierarchical parallel com-
positionM1‖HM2 of two hybrid automataM1 andM2 ensures
that the supervisor cannot be blocked by the supervised automata.
The following theorem describes the general syntactical rule which
is sufficient to prove for the above sketched restricted case that a
hierarchical parallel product does not have any timing errors.

THEOREM 1. For the hierarchical parallel composition
M1‖HM2 of two hybrid automataM1 andM2 holdsM1‖HM2 v
M1\I2∪O2 iff I(M1‖HM2) = I(M1\I2∪O2), all initial states are
also contained inH ({(l1, l2)|(l1, x) ∈ S0

1 ∧ (l2, y) ∈ S0
2} ⊆ H),

M2 is a simple interface state chart (cf. Definition 10), and for all
(l1, l2) ∈ H and transitiont1 = (l1, g1, g

i
1, a1, l

′
1) ∈ T1 holds:

• if l′1 is not a fading location, then for allt2 =
(l2, g2, g

i
2, u2, l

′
2) ∈ T2 with gi

1 ∩ (I2 ∪ O2) = gi
2 must

hold: g2 = true, l′2 is a passive location, and(l′1, l
′
2) ∈ H.

In addition at least one such transition inM2 must exist.

• if l′1 is a fading location we can conclude that exactly one
transitiont′1 = (l′1, g

′
1, g

i
1
′
, a′1, l

′′
1) ∈ T1 with g′1 ≡ d1

min ≤
v ≤ d1

max exists. For anyt2 = (l2, g2, g
i
2, u2, l

′
2) ∈ T2

with gi
1 ∩ (I2 ∪ O2) = gi

2 must hold: g2 = true, l′2 is a
fading location, and(l′1, l

′
2) ∈ H. For the uniquely deter-

mined successor transitiont′2 = (l′2, g
′
2, g

i
2
′
, a′2, l

′′
2) ∈ T2

with g′2 ≡ d2
min ≤ v ≤ d2

max must hold: l′′2 is a passive
location, (l′′1 , l′′2) ∈ H, and [d2

min, d2
max] ⊆ [d1

min, d1
max]

must be satisfied. Again, at least one such pair of transition
in M2 must exist.

PROOF. see [6].

Theorem 1 can be extended to the general case of
MS‖H(M1‖ . . . ‖Mn) by induction. Due to the syntactical
check of Theorems 1, the hierarchical composition by means of
the underlying hybrid control software cannot invalidate the timing
properties ensured by the embedding hybrid reconfiguration chart
of the monitor.

4.3 Pattern-based Verification
If the embedding hybrid reconfiguration chart does only contain
timing constraints but no general hybrid constraints, we can exploit
the result of Theorem 1 to model check the real-time coordination
of the overall system.

The syntactical check of the hierarchical composition ensures
that the underlying subcomponents cannot invalidate the timing
properties ensured by the behavior of the embedding component.

requestInfo
/ registry.

experience
/ registry.

experience
/ registry.

Default Proceed

Vector zRef)
/ shuttle.sendInfo(

shuttle.requestInfo /

TrajectoryNot
Available

registry.sendInfo(zRef) /

Available
Trajectory

a) Monitor role b) Registry role

Figure 10: Roles of theMonitor-Registration -pattern

The real-time communication between the registry and the mon-
itor is described by theShuttleRegistration pattern as depicted in
Figure 5. The behavior of the track section’s registry which is

frequently contacted by the monitor to obtain the required refer-
ence data (zref) is depicted in Figure 10b. The related Monitor
role which has to be realized by the shuttle software is depicted
in Figure 10a. Besides the lookup of reference data by the moni-
tor, the monitor can also send its gained experience to the registry.
Staying in the locationTrajectoryNotAvailable the monitor sendsre-
questInfo-requests to the registry. If the registry receives such a
request from a shuttle, it may either answer by sendingsendInfo
back to the shuttle or it may not answer. When the shuttle receives
such an answer, it stores it internally and switches to the location
TrajectoryAvailable. This role protocol has been refined in the lower
orthogonal state of Figure 8.

To verify the correct real-time coordination between the monitor
and the registry the refinement of the role protocols outlined above
is required. Further model checking of the pattern has been shown
to be sufficient to verify the required local safety and liveness prop-
erties (cf. [9]).

5. CONCLUSION
Today, advanced mechatronic systems are hybrid systems which

reconfigure themselves online. As outlined in the paper, the pro-
posed extension of UML components and statecharts supports the
required modular hierarchical modeling of reconfigurable systems.

Discrete coordination is designed by a software engineer with
timed statecharts, whereas a control engineer may construct the ad-
vanced controller component which offers the technical feasible re-
configuration steps, in parallel. Tool support which integrates the
models and the automatic code generators of these two parts of the
system is under development. The UML CASE tool Fujaba5 and
the CAE tool CAMeL [25] are currently being integrated [7]. These
tools will be used to evaluate the presented approach.

A serious problem which comes with the ability of the system
to reconfigure itself online is the possibility of an inconsistent re-
configuration. By our notion of components and the exploitation
of a domain specific restriction, namely a strictly hierarchical sys-
tem structure, at least up to the level of components communicating
via ports, we only need to check the consistency of a reconfigura-
tion by checking the hybrid reconfiguration chart of a component
and the interface state charts of its directly aggregated subcompo-
nents. Finally, a compatibility check at the level of components
whose communication is specified by ports and roles, serves to ex-
clude temporal inconsistencies in the discrete specification part of
the whole system. Here, compositional model checking can be ap-
plied.

6. REFERENCES
[1] A. Agrawal, G. Simon, and G. Karsai. Semantic Translation

of Simulink/Stateflow models to Hybrid Automata using
Graph Transformations. InInternational Workshop on Graph
Transformation and Visual Modeling Techniques, Barcelona,
Spain, 2004.

[2] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P.-H.
Ho, X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The
algorithmic analysis of hybrid systems.Theoretical
Computer Science, 138(3-34), 1995.

[3] R. Alur, T. Dang, J. Esposito, R. Fierro, Y. Hur, F. Ivancic,
V. Kumar, I. Lee, P. Mishra, G. Pappas, and O. Sokolsky.
Hierarchical Hybrid Modeling of Embedded Systems. In
First Workshop on Embedded Software, 2001.

[4] K. Bender, M. Broy, I. Peter, A. Pretschner, and T. Stauner.
Model based development of hybrid systems. InModelling,

5www.fujaba.de

Analysis, and Design of Hybrid Systems, volume 279 of
Lecture Notes on Control and Information Sciences, pages
37–52. Springer Verlag, July 2002.

[5] D. Bradley, D. Seward, D. Dawson, and S. Burge.
Mechatronics. Stanley Thornes, 2000.

[6] S. Burmester, H. Giese, and O. Oberschelp. Hybrid UML
Components for the Correct Design of Complex
Self-optimizing Mechatronic Systems. Technical Report
tr-ri-03-246, University of Paderborn, Germany, 2004.

[7] S. Burmester, H. Giese, and O. Oberschelp. Hybrid UML
Components for the Design of Complex Self-optimizing
Mechatronic Systems. InProc. of the Eighth International
Conference on Informatics in Control, Automation and
Robotics (ICINCO) , Setubal, Portugal. IEEE Press, 2004.

[8] H. Giese and S. Burmester. Real-Time Statechart Semantics.
Technical Report tr-ri-03-239, University of Paderborn,
Paderborn, Germany, June 2003.

[9] H. Giese, M. Tichy, S. Burmester, W. Schäfer, and S. Flake.
Towards the Compositional Verification of Real-Time UML
Designs. InProc. of the European Software Engineering
Conference (ESEC), Helsinki, Finland. ACM Press,
September 2003.

[10] R. Grosu, T. Stauner, and M. Broy. A modular visual model
for hybrid systems. InProc. of Formal Techniques in
Real-Time and Fault-Tolerant Systems (FTRTFT’98), LNCS
1486. Springer-Verlag, 1998.

[11] D. Harel. STATECHARTS: A Visual Formalism for
complex systems.Science of Computer Programming,
3(8):231–274, 1987.

[12] T. A. Henzinger. Masaccio: A Formal Model for Embedded
Components. InProceedings of the First IFIP International
Conference on Theoretical Computer Science (TCS), LNCS
1872, Springer-Verlag, 2000, pp. 549-563., 2000.

[13] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: The
Next Generation. InProc. of the 16th IEEE Real-Time
Symposium. IEEE Computer Press, December 1995.

[14] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya.
What’s decidable about hybrid automata?Journal of
Computer and System Sciences, 57:94–124, 1998. A
preliminary version appeared in the Proceedings of the 27th
Annual Symposium on Theory of Computing (STOC), ACM
Press, 1995, pp. 373-382.

[15] T. A. Henzinger, M. Minea, and V. Prabhu.
Assume-Guarantee Reasoning for Hierarchical Hybrid
Systems. InProceedings of the 4th International Workshop
on Hybrid Systems: Computation and Control (HSCC 2001),
Rome, Italy, March 28-30, 2001, LNCS 2034, pages
275–290. Springer Verlag, 2001.

[16] T. Hestermeyer, P. Schlautmann, and C. Ettingshausen.
Active suspension system for railway vehicles-system design
and kinematics. InProc. of the 2nd IFAC - Confecence on
mechatronic systems, Berkeley, California, USA,
9-11December 2002.

[17] Y. Kesten and A. Pnueli. Timed and hybrid statecharts and
their textual representation. InProc. Formal Techniques in
Real-Time and Fault-Tolerant Systems, 2nd International
Symposium, LNCS 571. Springer-Verlag, 1992.

[18] L. Lamport. Hybrid Systems in TLA+. Springer-Verlag,
1993.

[19] G. Lüttgen, M. von der Beeck, and R. Cleaveland. A
compositional approach to statecharts semantics. In
Proceedings of the eighth international symposium on

Foundations of software engineering for twenty-first century
applications November 6 - 10, 2000, San Diego, CA USA,
pages 120–129, 2000.

[20] N. Lynch, R. Segala, and F. Vaandrager. Hybrid I/O
Automata Revisited. InProceedings of the 4th International
Workshop on Hybrid Systems: Computation and Control
(HSCC 2001), Rome, Italy, March 28-30, 2001, LNCS 2034,
pages 403–417. Springer Verlag, 2001.

[21] E. Münch, O. Oberschelp, T. Hestermeyer, P. Scheideler, and
A. Schmidt. Distributed Optimization of Reference
Trajectories for Active Suspension with Multi-Agent
Systems. In18th European Simulation Multiconference
(ESM), Magdeburg, Germany, 2004.

[22] Object Management Group.UML for System Engineering
Request for Proposal, ad/03-03-41, March 2003.

[23] Object Management Group. UML Superstructure
Submission V2.0. OMG Document ad/03-04-01, April 2003.
URL: http://www.omg.org/cgi-bin/doc?ad/2003-04-01.

[24] K. Ogata.Modern Control Engineering. Prentice Hall, 2002.
[25] J. Richert. Integration of Mechatronic Design Tools with

CAMeL, Exemplified by Vehicle Convoy Control Design. In
Proc. of the IEEE International Symposium on Computer
Aided Control System Design, Dearborn, Michigan, USA,
1996.

[26] T. Stauner.Systematic Development of Hybrid Systems. PhD
thesis, Technical University Munich, 2001.

[27] T. Stauner, A. Pretschner, and I. Péter. Approaching a
Discrete-Continuous UML: Tool Support and Formalization.
In Proc. UML’2001 workshop on Practical UML-Based
Rigorous Development Methods – Countering or Integrating
the eXtremists, pages 242–257, Toronto, Canada, October
2001.

[28] R. Wieting. Hybrid high-level nets. InProceedings of the
1996 Winter Simulation Conference, pages 848–855,
Coronado, CA, USA, 1996.

APPENDIX

A. ADDITIONAL FORMAL DEFINITIONS
In the appendix we complete the omitted formal prerequisites. We useR
to denote the set of the real numbers,N0 to denote the natural numbers
including 0, [a, b] with a, b ∈ A anda ≤ b to denote the interval of all
elementsc ∈ A with a ≤ c ≤ b, ℘(A) to denote the power set ofA, and
[A → B] and [A ⇀ B] to denote the set of total resp. partial functions
from A to B. EQ(Vl, Vr) denotes the set of all equations of the form
vl = f i(v1

r , ..., vn
r) with operationsf i of arity n and left- and right-hand

side variables of the equationvl ∈ Vl, v1
r , ..., vn

r ∈ Vr . COND(V)
denotes the set of all conditions over variables ofV . The set of possible
operations and constants is namedOP .

As a special case we assume a set of operations{⊥i} which do not ex-
plicitly define for an equationvl = ⊥i(v

1
r , ..., vn

r) any specific restrictions
on the relation between the input and output trajectories. The set of all
these operations is denoted byOP⊥. The set of only fully deterministic
input/output operations are denoted byOP det.

Other than the vector equations usually employed by control engineers,
we employ a set of variablesV to denote each single value and describe the
mapping by a function[V → R]. All values of a vector of the lengthn can
be represented in a similar fashion as[[0, n] → R].

f⊗g further denotes the composition of the two functionsf : A1 → B1

andg : A2 → B2 with disjoint definition setsA1 ∩ A2 = ∅ defined
by (f ⊗ g)(x) equalsf(x) for x ∈ A1 and g(x) for x ∈ A2. The
combination of two updatesa1⊕a2 further denotes the composition of the
two functionalsa1 : [A1 → B1] → [A′

1 → B′
1] anda2 : [A2 → B2] →

[A′
2 → B′

2] with disjoint setsA1 ∩A2 = ∅ andA′
1 ∩A′

2 = ∅ defined by
(a1 ⊕ a2)(x⊗ y) := a1(x)⊗ a2(y).

