
Seamless UML Support for Service-based
Software Architectures?

Matthias Tichy and Holger Giese

Software Engineering Group, Department of Computer Science
University of Paderborn, Germany

[mtt|hg]@uni-paderborn.de

Abstract. The UML has become the de facto standard for the analysis
and design of complex software. Tool support today includes the gener-
ation of code realizing the structural model described by class diagrams
as well as code realizing the reactive behavior of the dynamic model de-
scribed by statecharts. However, the CASE tool support for service-based
architectures and especially later process phases addressed with compo-
nent and deployment diagrams is rather limited. In this paper a seamless
support of the whole service life cycle of service-based software architec-
tures by means of UML is presented. We present the employed concepts
to support the design of services (including full code generation), to com-
pose applications out of services at design time, and to deploy services
at run-time. Additionally, we describe our realization of these concepts
in form of a CASE tool extension and a run-time framework.

Keywords: development methodologies for UML, service-based archi-
tectures, design of distributed Java applications.

1 Introduction

Open service-oriented software architectures [1–3] have received considerable at-
tention as approach to overcome the maintainability problems of large monolithic
software. UML [4] CASE tool support for the mentioned approaches for service-
based architectures is, however, usually rather restricted. As these service-based
approaches traditionally have focused on language mappings to C++ or Java
rather than design notations such as UML, currently support for them is most
often found in programming environments. Therefore, generic UML CASE tools
are used for the analysis and design and thus no support for service composition
or deployment in dynamic service-based architectures is provided.

Those UML CASE tools can generate source code based on the design results
for the structural model described by class diagrams to improve maintainability.
Some more elaborated tools can also generate code for the reactive behavior
of the dynamic model described by statecharts. Unfortunately, the generated
? This work was developed in the course of the Special Research Initiative 614 - Self-

optimizing Concepts and Structures in Mechanical Engineering - University of Pader-
born, and was published on its behalf and funded by the Deutsche Forschungsge-
meinschaft.



source code must be manually adapted by the developer to comply with the
special requirements of service-based architectures.

Therefore, the manually realized implementation usually differs from the
original design in many aspects. Since the design documents are not changed
accordingly when implementing the system the maintainability of such systems
becomes deteriorated. The current design is not correctly documented any more
and the lost traceability information must be re-engineered by looking into the
source code when a re-design is required. Build-in support for roundtrip engineer-
ing by some tools tries to overcome the traceability problem for direct changes
of the implementation. However, this approach is restricted to high level model
information which is still contained in the implementation.

The sketched maintainability problems of service-based software result from
software adjustments usually done in the later phases (composition and deploy-
ment) to comply with the requirements of service-based architectures. Thus,
only the seamless support of the whole software life cycle for service-based sys-
tems and especially the later phases can prevent the described deterioration of
maintainability.

In this paper we present an approach for a seamless UML support for the com-
plete life cycle of service-based systems. UML diagrams are used for all phases
in the life cycle. The seamless support manifests itself in specific extensions of
the used UML diagram types for service-based architectures, since all specific
information due to the nature of service-based architectures must be included in
the models. Additionally, the results of prior phases are used as inputs to later
phases. Based on the respective UML diagrams, full source code for the service
implementation and description files for their composition and deployment are
generated by our realization of this approach in form of a CASE tool extension of
the Fujaba Tool Suite1. Additionally a framework is provided which executes the
specified services in a fault-tolerant manner. Jini [1] is used as a representative
for a service-based architecture. Due to space restrictions we mainly focus in this
paper on the later life cycle activities (Service Realization, Service Composition,
and Service Deployment Planning). Nevertheless, we briefly address the System
Design activity to highlight the seamless integration with the later activities.

In the following Section 2, we present our approach for service-based archi-
tectures. Afterwards, we review in Section 3 the existing body of work and how
the presented approach differs. The paper is closed with some final conclusions
and an outlook on future work.

2 Seamless Support

Figure 1 shows the activities of the life cycle for service-based systems, which
diagram types support the different activities, and the artifacts an activity gen-
erates or uses. The different activities of Figure 1 correspond to the subsections
of this section.
1 www.fujaba.de



use generate backward step

Diagrams, Statecharts
Class Diagrams, Activity

(enriched by graph
rewriting rules)

Description
Service Deployment

Description
Service Composition

Service Package

Description
Service

System Description
Component Diagrams

Component Diagrams

Deployment Diagrams

Deployment DiagramsSystem Execution

Planning

Service Deployment

Service Composition

or Reuse
Service Realization

System Design

Activity Artifact Supported by

Fig. 1. Activities during the service life cycle

In Section 2.1 the first life cycle activity is described. The topic of this ac-
tivity is the analysis and design of the system, which should be realized as a
service-based architecture. Here, we show how a system (our running example)
can be partitioned into several services. This decomposition is described by a
UML component diagram. As a result the required services, their interfaces,
and connections, which are specified within the component diagram, result in a
System Description and multiple Service Descriptions.

We proceed with a description of how one service is realized in Section 2.2.
In our approach we use UML class diagrams for the modeling of the structure.
For the modeling of behavior we use activity diagrams and statecharts enriched
by graph rewriting rules. Based on these design diagrams the implementation
resp. the full source code for the service is automatically generated and packed
into a Service Package, which is later executed by the run-time environment.

In Section 2.3, service composition is described. We use UML component
diagrams to specify the required restrictions for the composition of services and
store them in a specific Service Composition Description. The composition of
services at run-time by the run-time environment respects the specified interface
types and additional attribute restrictions.

The planning of service deployment using UML deployment diagrams is then
presented in Section 2.4. For the usage in service-oriented architectures, we have
added requirements of node characteristics to deployment diagrams. The planned
configuration is then stored in a Service Deployment Description.

In Section 2.5 we present the execution of the specified services by a Jini-
based run-time environment. The information provided by the earlier activities
(Service Packages, Service Composition Description, and Service Deployment De-
scription) is used for the correct deployment and online-binding. Using the plan-
ning deployment diagrams the current situation of a running system is visualized
online to support administration.



2.1 Service Design

During the System Design activity the different services which form the service-
based system must be determined. During the identification of services UML
component diagrams are used. The approach proposed in [5] can be used for the
identification of the different services. After the initial set of services are identified
their connecting (provided and used) interfaces must be defined. The definition of
interfaces includes the declaration of their operations. After the interfaces have
been defined the different services are connected via their provided and used
interfaces to complete the specification. Thus in the resulting initial component
diagram the identified services, their interfaces, and their connections are shown.

Based on the resulting component diagram a System Description is generated
which contains information about all services and their connections. For each
service contained in the component diagram a Service Description is generated
which contains the specification of the service and its interfaces.

Throughout this and all following sections we show the application of our
approach using the service-based version and configuration system DSD (Dis-
tributed Software Development) [6] as running example. For the sake of a clearer
presentation we show only a subset of DSD containing some basic services.

Update

Diff Log

Database XMLParser

Checkin

DatabaseInterface XMLParserInterface

Fig. 2. DSD example

After the initial analysis step several services have been identified (see Figure
2). A Database service and an XML parser service are two of the main services
in DSD. Both services are used by the services which provide the version and
configuration functionality. In the considered subset of DSD all services use the
Database service in order to gather information about the user and its roles
in the different development projects. The Checkin service additionally uses the
XML parser to read some intermediate file which is generated during the commit
process. The information stored in this intermediate file is then written into the
database via the database service for long-term storage.

After the identification of the different services and the definition of their
interfaces, the realization resp. reuse of services follows.

2.2 Service Realization or Reuse

The above mentioned Service Descriptions contain the services and their inter-
faces. It is possible that there are already some standard services available which
can be used in place for some specific services in the system. For example the



XML parser and the database service are likely already available and can be
simply reused. If no standard service is available, the service must be realized.
For this service the name and the defined interfaces are extracted from its Service
Description. Based on this information an initial class diagram for that service
is generated.

This initial class diagram contains a main class and the different interfaces
the service provides or uses. The different interfaces are marked by stereo-
types �ProvidedInterface� resp. �UsedInterface�. These stereotypes are
later used for the generation of the Service Description contained in the Service
Package to differentiate between these two kinds of interfaces. Since the service
will be executed by a run-time environment, an initial draft of a helper class is
generated, too. This helper class provides some service specific support to the
run-time environment.

databaseConnectionID
0..1

0..1 < connection

0..1

db

n 0..1backend >

CheckConnectionThread
Collapsed

«reference»
«interface»
Runnable

DatabaseConnection
Collapsed

«interface»
«ProvidedInterface»

DatabaseProxyInterface
Collapsed

DatabaseProxy
Collapsed

«reference»
Remote

«interface»
DatabaseBackendInterface

Collapsed

Database
Collapsed

Fig. 3. Simplified class diagram of the database service

The initial class diagram provides a starting point for the developer. For
the structural part the initial class diagram must be extended by the developer.
Figure 3 shows a simplified class diagram of the database service which has been
extended by the developer. Note the �ProvidedInterface� stereotype attached
to the DatabaseProxyInterface interface.

For the behavioral part of the implementation the Fujaba Tool Suite provides
additions to basic activity diagrams and statecharts in form of graph rewriting
rules [7, 8]. Graph rewriting rules are a powerful design notion for the spec-
ification of changes on the object structure. The Fujaba Tool Suite provides
code generation for class diagrams, activity diagrams, statecharts, and the graph
rewriting rules additions [7, 8]. By the use of these diagrams, their well-defined
semantics [9] and the provided code generation the separation between design
and implementation is lifted. Thus, the complete behavioral specification of a
service is designed using UML and the full source code implementing the design
is generated. Therefore, the maintainability of the resulting services is greatly im-



proved compared to manually written or after code generation manually adapted
services.

After the realization of the service is finished, the source code is generated
and compiled. The resulting service class files and its generated Service Descrip-
tion, which includes information about the service, its interfaces and the helper
class, are packaged into a Service Package. When all needed services have been
developed and Service Packages have been created, the composition to a service-
based system using component diagrams follows.

2.3 Service Composition

To provide seamless support the initial component diagram developed at the be-
ginning (see Section 2.1) is the starting point for the service composition. Now
this initial component diagram is refined to reflect the logical structure of the
service-based design of the system and to include the implemented services. Our
approach targets service-based architectures in which services are not assem-
bled in monolithic applications but form a loosely coupled system of services.
These services have no hardwired connections but connect themselves dynami-
cally by the use of online binding. The connection is based on their interfaces.
Due to the dynamic nature of service-based architecture we explicitly support
dangling used interfaces during the service composition activity. Those dangling
used interfaces are connected to provided interfaces of other independently de-
ployed services during run-time. In dynamic service-based architectures richer
semantic information about the provided and used interfaces is required. Thus,
we have added support for the setting of attributes to provided interfaces and
adding of attribute restrictions to used interfaces. Our approach is extensible
w.r.t. concepts for specifying and matching the behavioral meaning of interfaces
(e.g. [10])

DSD

{isValidating == true}

Checkin

XMLParserInterface

DatabaseInterface
Database

CheckinInterfaceCheckinInterface

Fig. 4. Service composition

Figure 4 shows a part of the DSD system which describes the composition of
the Checkin, Database, and XML parser service. Since the Checkin service should
connect to an already available XML parser service during run-time, the XML
parser service itself is not part of the component diagram.

In our example the checkin service must be connected only to XML parsers
which have the ability to validate the XML file’s conformance to an XML schema.
Therefore we add a corresponding restriction isValidating==true to the used
interface. The run-time environment respects these additions to the interfaces



and only connects services where the following conditions are met: 1) the pro-
vided interface is the same or derived from the used interface, 2) the attribute
restriction expression of the used interface evaluates to true based on the at-
tributes of the provided interface. In our example the database service offers its
service via its interface only inside of the compound DSD service. For this en-
capsulation we use service groups provided by Jini. The specification defined in
the component diagram is written to the Service Composition Description which
will be used in the Service Deployment Planning activity and for the execution
by the run-time environment.

2.4 Service Deployment Planning

After specifying the composition of the services in the next step the deploy-
ment (physical mapping) of the services contained in the Service Composition
Description has to be planned. In this planning stage the required properties of
computation nodes to execute the services are specified using UML deployment
diagrams.

Deployment diagrams show the relation between services and nodes. Accord-
ing to the current UML specification [4] this relation means that the service will
be executed on that node. Especially for service-based architectures it is rather
useful to describe the characteristics a node must have to be able to execute
a service. Thus, the deployment plan includes more degrees of freedom which
can be utilized by the run-time environment. In our realization the set of nodes,
which have the needed characteristics, is defined by boolean expressions on node
attributes. The list of node’s attributes includes but is not limited to: hostname,
jdk version, operating system, memory, ip address.

name == "uther"

Checkin

osname == "linux"
(name != "uther") AND

<<deploy>>
<<deploy>>

<<deploy>>

ip != 131.234.22.30

(osname == "irix"))
((osname == "windows") OR

Fig. 5. Deployment planning diagram

For the sake of a clearer presentation of the set of nodes, on which a service
can be executed, the service is allowed to be connected with more than one node
via a deploy-edge in the deployment diagram. If a service has multiple deploy-
edges, a disjunction is used to build the final expression out of the boolean
expressions defined for each node. As you can see in Figure 5, two types of
specifying a set of nodes are possible. The first type uses a conjunction of a set of
attribute restrictions. In the diagram they are displayed vertically as in the right
node. Since in some situations this is not convenient a second type is possible,



where an arbitrary boolean expression based on the attribute restrictions can be
specified as in the middle node. A Service Deployment Description results from
the Service Deployment Planning activity. The actual deployment of the services
by the run-time environment is based on this description.

2.5 System Execution

After the planning has been finished, the administrator uses the run-time envi-
ronment to execute the system of services, modeled by UML diagrams in the pre-
vious steps (cf. Figure 1), in a fault-tolerant manner. For each service contained
in the component diagram specified during the service composition step (stored
in the Service Composition Description), the run-time environment looks for a
computational node which satisfies the constraints specified in the deployment
diagram (stored in the Service Deployment Description). Then, the run-time envi-
ronment loads the compiled source code of the service, which has been generated
from the structural and behavioral design diagrams, from the Service Package
and executes the service on that node. After that, the run-time environment con-
nects the interfaces of the different services according to the constraints specified
in the component diagram in the service composition step. Finally, it supervises
the execution of all started services and ensures the availability of the services
in case of failures. A more detailed description of this run-time environment can
be found in [11].

Fig. 6. Deployment visualization diagram

The executed system of services is visualized using the deployment planning
diagrams. In this context all nodes which are in the system are displayed includ-
ing their actual characteristics as well as all services which are executed in the



system. Here the services have connections only to the nodes they are currently
executed on. See Figure 6 for a screenshot of the Fujaba Tool Suite displaying
the current deployment situation (Note, that the deployment edges now have
�deployed� stereotypes).

3 Related Work

The presented goal of full life cycle support with the UML is very much in
line with the model driven architecture (MDA) initiative [12] of the OMG. The
MDA claims that full platform-independence is possible by model compilers for
the design models. In contrast to this ambitious concept, the presented work
focuses on the question how complete UML based life cycle tool support for the
specific case of service-based architectures can be achieved.

Cheesman and Daniels in [5] only cover the component specification process,
whereas we also cover the later phases (implementation support and especially
composition and deployment issues for service-based architectures) and provide
tool support. Additionally, they do not take the inherent dynamics (spontaneous
networking and online binding) of service-based architectures into account.

Baresi et al. in [13] also use graph rewriting rules in their process for service-
based architectures. They focus mainly on the collaboration part of the system
and verify that the different collaborations at run-time can indeed be reached by
the application of the graph rewriting rules. Our application of graph rewriting
rules is targeted at the service implementation not their interconnection. We re-
strict ourselves to basic composition constraints (type and attribute-conditions)
in order to connect the service instances during run-time automatically.

For Jini [1] a reasonable approach for life cycle support of services has been
developed in the RIO project [14]. The specification of the service composition
via interfaces is done only by an XML file. No UML support and no code genera-
tion are provided. The RIO framework itself provides a tool for the visualization
of the deployment situation which uses a proprietary graphical representation of
service instances. Therefore, support for the life cycle is restricted to composition
and deployment, only.

4 Conclusions and Future Work

In this paper we proposed an approach which supports the complete life cycle of
service-based architectures by the use of UML. It offers a higher level of main-
tainability of the resulting service-based system due to the seamless use of UML,
the direct generation of full source code, and the direct usage of the UML com-
ponent and deployment diagrams by the run-time environment to execute the
service-based system. Our approach takes the special characteristics of service-
based architectures into account. Especially in the later activities our approach
offers added value to the developer compared to other approaches.

We are currently further developing our approach to support the UML 2.0
superstructure final adopted specification [15]. In this specification the addition



of ROOM [16] elements like capsules, protocol state machines etc. is proposed.
We plan to use protocol state machines, describing the dynamic characteristics of
interfaces, in addition to the proposed attribute restrictions to check at run-time,
whether the connection of two services via their interfaces is correct.

Acknowledgments
The authors wish to thank Sven Burmester, Matthias Meyer, and Daniela Schilling for

comments on earlier versions of the paper.

References

1. Arnold, K., Osullivan, B., Scheifler, R.W., Waldo, J., Wollrath, A., O’Sullivan, B.:
The Jini(TM) Specification. Addison-Wesley (1999)

2. Microsoft: Microsoft .NET: Realizing the Next Generation Internet. Technical
report, Microsoft (2000) White Paper.

3. Sun Microsystems: Sun[tm] Open Net Environment (Sun ONE) Software Archi-
tecture. (2001)

4. OMG: Unified Modeling Language Specification Version 1.5. Object Management
Group, 250 First Avenue, Needham, MA 02494, USA. (2002)

5. Cheesman, J., Daniels, J.: UML Components, A simple process for specifying
component-based software. Addison-Wesley (2000)

6. Gehrke, M., Giese, H., Tichy, M.: A Jini-supported Distributed Version and Con-
figuration Management System. In: Proc. of the International Symposium on Con-
vergence of IT and communications (ITCom2001), Denver, USA. (2001)

7. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story Diagrams: A new Graph
Rewrite Language based on the Unified Modeling Language. In Engels, G., Rozen-
berg, G., eds.: Proc. of the 6th International Workshop on Theory and Application
of Graph Transformation (TAGT), Paderborn, Germany. LNCS 1764, Springer
Verlag (1998)

8. Köhler, H., Nickel, U., Niere, J., Zündorf, A.: Integrating UML Diagrams for
Production Control Systems. In: Proc. of the 22nd International Conference on
Software Engineering (ICSE), Limerick, Irland, ACM Press (2000) 241–251

9. Zündorf, A.: Rigorous Object Oriented Software Development. Habilitation thesis,
University of Paderborn (2001)

10. Giese, H., Wirtz, G.: The OCoN Approach for Object-Oriented Distributed Soft-
ware Systems Modeling. Computer Systems Science & Engineering 16 (2001)
157–172

11. Tichy, M., Giese, H.: An Architecture for Configurable Dependability of Applica-
tion Services. In: Proc. of the Workshop on Software Architectures for Dependable
Systems (WADS), Portland, USA (ICSE 2003 Workshop 7). (2003)

12. Gokhale, A., Schmidt, D.C., Natarajan, B., Wang, N.: Applying model-integrated
computing to component middleware and enterprise applications. Communications
of the ACM 45 (2002) 65–70

13. Baresi, L., Heckel, R., Thöne, S., Varro, D.: Modeling and Validation of Service-
Oriented Architectures: Application vs. Style. In: Proceedings of the ESEC/FSE
03, September 1 5, 2003, Helsinki, Finland, ACM Press (2003)

14. Sun Microsystems: RIO - Architecture Overview. (2001) 2001/03/15.
15. OMG: UML 2.0 Superstructure final adopted specification. Technical Report

ptc/03-08-02 (2003)
16. Selic, B., Gullekson, G., Ward, P.: Real-Time Object-Oriented Modeling. John

Wiley & Sons, Inc. (1994)


