
Worst-Case Execution Time Optimization of Story Patterns
for Hard Real-Time Systems ∗

Sven Burmester†, Holger Giese, Andreas Seibel, and Matthias Tichy
Software Engineering Group, University of Paderborn, Warburger Str. 100, Paderborn, Germany

[burmi|hg|aseibel|mtt]@uni-paderborn.de

ABSTRACT
In the future, technical systems are expected to operate
more intelligent than today by taking their local context
explored by means of sensors and network communication
into account. To realize this vision, the systems must be
able to represent and query as well as interact with a large
number of possible situations not known a priori. There-
fore, flexible means to store, query, and manipulate such
context information are required. Known flexible and pow-
erful representations are class diagrams or other graph-like
notations. However, such dynamic data structures which
are sources for unpredictable run-time timing behavior are
traditionally not recommended for the development of hard
real-time systems. In this paper, we describe our efforts to
employ story patterns, which are used for the specification
of query and update operations on dynamic data structures,
in hard real-time systems.

Keywords
Real-Time, Story-Pattern, Worst-Case Execution Time Op-
timization

1. INTRODUCTION
Advanced technical systems of the future such as self-adap-
tive [18, 13, 14] or self-optimizing [3] technical systems will
operate smarter than today’s systems by adjusting their op-
eration to the experienced context. Besides the information
provided by sensors, the communication with other entities
near by via wireless networks will increase the available in-
formation and its complexity.

The software of these systems must thus be able to repre-
sent and query a large number of possible not a priori known
context situations. The means to store, query and manipu-
late such context situations must support model-based de-
velopment and should not be restricted to fixed-sized arrays.
UML and in particular class diagrams became the standard
to describe the structure of the complex information. Story
diagrams [19, 12] are an advanced technique to manipulate
this information. However, class diagrams describe proper-
ties of dynamic data structures which result in unpredictable

†Supported by the International Graduate School of Dy-
namic Intelligent Systems. University of Paderborn.
∗This work was developed in the course of the Special Re-
search Initiative 614 – Self-optimizing Concepts and Struc-
tures in Mechanical Engineering – University of Paderborn,
and was published on its behalf and funded by the Deutsche
Forschungsgemeinschaft.

run-time timing behavior and are thus traditionally not con-
sidered as an option for the development of hard real-time
systems.

In real-time systems, the provision of a service (e.g. reac-
tion to an incoming message, a computation, . . .) is associ-
ated with a certain deadline. If the deadline expires before
the service is provided, the results in embedded systems are
typically catastrophic due to damages to humans in case of
automotive or railway systems. Those systems are named
hard real-time systems.

In order to guarantee to meet the required deadlines, the
worst-case execution times (WCETs) of methods or other im-
plementation artifacts must be known. In addition, worst-
case execution times are required for a schedulability anal-
ysis [5] which is used to check whether concurrent processes
are executable on a given processor meeting the required
deadlines.

Standard dynamic data structures are unbounded, i.e. they
have no predetermined maximal amount of stored elements.
Thus, no worst-case execution time can be given for oper-
ations on these data structures, since the execution time
typically is dependant on the contained number of stored
elements. Therefore, in order to determine a worst-case ex-
ecution time, the maximal number of elements in those data
structures must be fixed beforehand. Then, the worst-case
execution time can be determined.

Additionally, algorithms in standard applications are op-
timized for the average case (e.g. the quicksort algorithm).
Since the average case is only of low relevance in hard real-
time systems, algorithms on those dynamic data structures
should have an optimal (read: minimal) worst-case execu-
tion time. Therefore, we require (1) a model that allows the
determination of WCETs of the generated code and (2) we
should generate code so that the WCETs are optimized.

Current WCET analysis techniques are restricted to im-
perative programming languages. Dynamic, object-oriented
programming languages are not addressed at all. Buttazzo
even demands to avoid dynamic data structures in real-time
systems [5].

The standard approach in WCET analysis is to analyze
the longest executable path, to map each instruction of this
path to elementary operations, and to determine the WCETs
of these elementary operations. The elementary operations
can be for example assembler instructions as in the [6] or
Java Byte Code instructions as in [1].

In [6], the WCET of a fragment of generated C code is
determined by summing up the number of processor cy-
cles each C instruction’s corresponding assembler instruc-

tions require. For loops, the worst-case number of iterations
(WCNIs) is derived from a statechart model to obtain the
maximum number of executions of the loop-bodies.

[15] describes multiple existing approaches that use differ-
ent annotations to specify the WCNIs and thus the longest
executable path. All described approaches are restricted to
imperative programming languages, that do not provide or
use dynamic data structures. Further, the authors explain
that an execution time analysis on the hardware level, which
considers techniques like caching or pipelining, is required to
avoid a too pessimistic estimation.

We present in this paper how code generation from UML
class diagrams can be improved such that the resulting source
code can be employed in hard real-time systems as represen-
tation for complex content. We propose to specify query and
update tasks on this content as story patterns [7, 19]. There-
fore, we present how source code with a minimal worst-case
execution time can be synthesized from story patterns. We
generate code for C++. We assume that worst-case execu-
tion times are known for all calls to external functions. In
conformance to standard approaches for real-time systems,
we assume that all memory is allocated at the start of exe-
cution.

In the next section, we present the example which is used
in the remainder of the paper. Section 3 contains foun-
dations which are required for predictable real-time behav-
ior. Based on this foundations, we present in Section 4 how
worst-case execution times are determined. In Section 5, the
approach for computation of optimal worst-case execution
times is presented. We conclude in Section 6 and present
possible future work.

2. EXAMPLE
In the new transport system developed in Paderborn1 au-
tonomous vehicles drive on a railway system. Communica-
tion is required between the shuttles for coordination pur-
poses, for example for building convoys to reduce the air
resistance and thus the general power consumption.

The railway system is divided into multiple sections, each
coordinated by a so-called Registry. Before entering a track
section, a shuttle has to register at the corresponding reg-
istry. The registry collects information about the shuttle’s
current position and velocity and broadcasts this informa-
tion to the other shuttles via wireless communication.

In this paper, we regard a situation as shown in Figure
1 when two shuttles move towards the same joining switch.
The shuttles need to coordinate how to pass the switch in
order to avoid a possible collision. Obviously, this has to be
finished before they reach the switch. Thus, this coordina-
tion problem is subject to hard real-time requirements.

In order to recognize and to handle such situations, we use
an ontology based topology for every shuttle to store envi-
ronmental information in a discretized manner. On the one
hand, each shuttle recognizes changes in its environment by
sensors, on the other hand, it periodically receives updates
of this environmental information from the registry as de-
scribed in [10]. Figure 2 shows the UML class diagram of a
shuttle’s topology.

Every shuttle knows a registry that is liable for the set of
tracks on which the shuttle is located. A CommunicationRule
is like an instruction to handle a certain problem. Therefore,

1http://www-nbp.upb.de/en

Figure 1: A possible collision of two shuttles at a
switch

0..n

0..1

0..n0..n

knows

0..1 0..1

is on
0..n 0..1

knows

0..1

0..1
0..1

prev1

Switch

0..n

0..1

Track

prev

NormalTrack

Boolean :) (cDetection

Shuttle

partner

has

next

Integer : communicationType

CommunicatonRule

Registry

Figure 2: UML class diagram for the shuttle ontol-
ogy

it has a partner association that describes which shuttles are
involved in the respective problem. It also provides a type
to classify the required coordination and thus the problem.
Every shuttle provides a cDetection method that must be ini-
tiated if a shuttle is heading towards a switch. This method
checks whether a situation might occur that causes a col-
lision as illustrated in Figure 1. If a possible collision is
detected, a CommunicationRule for avoiding the collision is
created. This rule describes which shuttle has to slow down
to avoid the collision. Of course, the shuttles may initiate
a coordination, e.g. to buy or sell respectively the right of
way. Figure 3 shows a story diagram that consists of one
story pattern and specifies the method cDetection.

The behavior, specified by the story pattern of the story
diagram, consists of two parts: First, an object matching
searches for the situation that might cause a collision. This
situation occurs when two shuttles are located on the tracks,
that lead to a joining switch. If such an instance situation
is matched, the second part of the behavior creates a Com-
municationRule object with type = RIGHT OF WAY where
RIGHT OF WAY is a constant for right of way. It also creates
two links between the involved shuttles. When a matching
is found and the CommunicationRule is created, the story

]failure[]success[

falsetrue

knows

knows

prev1

prev is on

«create»
partner

is on

knows NormalTrack:t1 Registry:reg

NormalTrack:t2

knows
Switch:sw

Shuttle:s2

knows

«create»

RIGHT_OF_WAY:=communicationType

CommunicatonRule:rule

this

«create» has

Shuttle::cDetection (): Boolean

Figure 3: Story Diagram for collision recognition

diagram returns a true value, false otherwise. Both shuttles
execute complementing story pattern which guarantee that
one shuttle has right of way and the other one has to wait.

The mentioned coordination can be specified by another
story diagram or by a Real-Time Statechart [4, 9, 2] that
uses the return value of the cDetection method as transition
trigger. Further aspects of real-time systems, like for exam-
ple the communication, is out of the scope of story patterns
and is handled for example in [11].

3. PREDICTABLE REAL-TIME BEHAVIOR
As indicated in the introduction, unbounded data structures
lead to unpredictable real-time behavior. As class diagrams
describe unbounded data structures and thus unbounded
data structures are used to implement class diagrams, like
the one from Figure 2, story patterns that operate on these
data structures do not show predictable real-time behavior.
Therefore, a WCET of a story pattern cannot be derived
automatically from the model.

0..20

0..1

0..600..2

knows

0..1 0..1

is on
0..100 0..1

knows

0..1

0..1
0..1

prev1

Switch

0..50

0..1

Track

prev

NormalTrack

Boolean :) (cDetection

Shuttle

partner

has

next

Integer : communicationType

CommunicatonRule

Registry

Figure 4: Class diagram with fixed maximum mul-
tiplicities

To overcome this limitation, we define so-called fixed max-
imum multiplicities in a class diagram, as shown in Figure
4. Note that the multiplicities, labeled with n in Figure
2, are replaced by concrete values in Figure 4. This en-
ables an implementation using data structures with upper
bounds. These upper bounds determine a worst-case num-
ber of iterations (WCNIs) when searching in these data struc-
tures which leads to predictable real-time behavior. This
model-based development approach, combined with auto-
matic code-generation leads to a well-structured implemen-
tation with analyzable nested loops and loops with fixed
termination conditions.

Further, we make use of the factory pattern [8] to avoid
dynamic resource allocation and deallocation after initial-
ization time. As we know the implementation scheme of the
access methods of the factory pattern and the implementa-
tion scheme of the code fragments that realize the story pat-
tern, we derive their WCETs simply by adding the WCETs
of the corresponding elementary operations.

There are several elementary operations on dynamic data
structures in order to execute a story pattern. Elemen-
tary operations are creation and deletion of objects, adding
and removing objects from different data structures, writing
and reading attributes, and comparing objects. For each of
these elementary operations, we use a runtime measurement
tool executing a worst-case scenario running on the selected
hardware platform. From this runtime measurement tool,
we get the required WCETs. As different types of data struc-
tures are used (e.g. TreeSet, HashSet, LinkedList, . . .), we
compute the WCETs for the different data structures using
different worst-case scenarios. The data structures used in
the worst-case scenario have the maximum size as specified
by the maximum multiplicities in the class diagram. As
we know the code of the data structures, we also know the
worst-case path when operating on them. In the future, the
worst-case scenarios will be extended to capture degenerated
data structures for a more precise WCET estimation.

The WCET of a story pattern does not only depend on
the WCETs of its single code fragments and on the WCNIs
when searching in data structures. The problem of WCET
determination for story patterns is more complicated, be-
cause the order in which the elements of a story pattern are
matched has significant impact on the resulting WCET as
(partly) nested iterations can occur:

Multiple different matching sequences that lead to differ-
ent WCETs exist because story patterns can contain bidi-
rectional cycles. In the example story pattern of Figure 3,
there exist several uni- and bidirectional cycles. For exam-
ple, if the only bound object is this, this → t1 → reg → this
is a bidirectional cycle because we also have the possibility
to choose this → reg → t1 → this to match this part of the
story pattern. For example, a unidirectional cycle is reg →
sw → t1 → reg because the association between Switch and
NormalTrack (which is a Track) is unidirectional.

The reason why different matching sequences usually lead
to different WCETs is because different matching sequences
can have different WCNIs. When, for example, a link be-
tween a Registry and a Shuttle instance is specified, starting
at the Registry object and binding the Shuttle object requires
a search in a data structure with 60 as upper bound. Bind-
ing the Registry object from the Shuttle object requires just a
search in a data structure consisting maximal of 2 instances.
In this case the algorithm, which determines the matching

]failure[]success[

falsetrue

knows

knows

prev1

prev is on

«create»
partner

is on

knows NormalTrack:t1 Registry:reg

NormalTrack:t2
knows

Switch:sw

Shuttle:s2

knows

«create»

RIGHT_OF_WAY:=communicationType

CommunicatonRule:rule

this

«create» has

Shuttle::cDetection (): Boolean

1
3

2 4

567

8

9

Figure 5: Story diagram and any matching sequence

sequence, has two possibilities that lead to the same instance
matching but use different sequences.

Another reason why different matching sequences usually
lead to different WCETs is that the matching process ex-
plores in the worst-case a path for each existing instance
when binding an instance that is connected to a bound in-
stance via a to-many association. To obtain an optimal
WCET, the number of such paths has to be minimized. This
is achieved by first respecting the path via associations with
low multiplicities.

In Figures 5 and 6, the arrows with associated numbers
represent different matching sequences for the shown story
pattern. The two different strategies to perform the match-
ing lead to different WCETs due to the different maximal
sizes of the data structures as described two paragraphs be-
fore. As there exist multiple possible strategies to perform
the matching, we should choose a strategy, that leads to an
optimal WCET, i.e. a WCET that is as small as possible.

As we specified fixed maximum multiplicities and thus
know the upper bounds of the corresponding data struc-
tures, we can determine a matching sequence so that the
matching will use a minimum of comparisons when search-
ing data structures and thus leads to the optimal WCET. In
the next section is described how to determine the WCET
for a matching sequence of a story diagram. Section 5 de-
scribes how to find the optimal matching sequence.

4. WCET DETERMINATION
In order to calculate and optimize the WCET of a story
pattern, we introduce the so-called story graph [17]. This
graph consists of different types of edges respecting that
there are different kinds of checks to be performed during
matching: For example, starting at the this object binding
object t1 (step 1 in Figure 6) and then binding binding reg
(step 2) is simple as the corresponding associations are to-

]failure[]success[

falsetrue

knows

knows

prev1

prev is on

«create»
partner

is on

knows NormalTrack:t1 Registry:reg

NormalTrack:t2
knows

Switch:sw

Shuttle:s2

knows

«create»

RIGHT_OF_WAY:=communicationType

CommunicatonRule:rule

this

«create» has

Shuttle::cDetection (): Boolean

1
3

2 8

794

6

5

Figure 6: Story diagram with a better matching se-
quence (optimal)

one associations. For step 3, it is just a simple check for
existence of a link is required, as the source and the target
objects are already bound. Binding sw from reg in step 4
requires the search in a data structure, as it is not a to-one
but a to-many association.

Before explaining further details like story graph creation,
edge selection mechanism, timing constraints and WCET
calculation with a story graph, a formal definition of the
story graph is given in Definition 1.

Definition 1 Let G = (V, E) be a story graph with V the
nodes, E ⊆ (V × V × IN3 × IN × Es × T) the edges and let
Gs = (Vs, Es) be a story pattern. Each node vs ∈ Vs is
mapped to a node v ∈ V and each edge es ∈ Es is mapped
to one or multiple edges e ∈ E (see below). Thus, it holds
|V | = |Vs| and |E| ≥ |Es|. An edge e = (s, t, w, c, Le, te) ∈ E
consists of the following elements: s ∈ V is the source
node of the edge e. t ∈ V is the target node of the edge
e. w = Att = (wf , wd, ca) is defined as AnalysedTypeTime
which includes all timing information required to compute
the WCET when choosing the edge e. c ∈ IN is the maximum
number of iterations that is required for binding the edge e.
Le = {es1, ..., esn} ⊆ Es is a set of Link/MultiLink-references
of the story pattern Gs associated with the story graph edge
e. te ∈ T = { BindNormal, BindOptional, CheckIsomor-
phism, CheckLink, CheckAttribute, CheckConstraint, Check-
NegativeLink, CheckNegativeNode } is the type of the edge
e ∈ E.

Vs and Es define the nodes and edges of a story pattern.
See [19] for a detailed formalization of story patterns. An
AnalysedTypeTime w = Att = (wf , wd, ca) contains runtime
information. wf is a fixed execution time that occurs due
to a code fragment before starting a possible loop. wd is
the execution time for a single loop iteration. The number

of iterations is stored in ca that results from the defined
multiplicity of the related association in the related class di-
agram introduced in section 3. ca should not be confound
with c. In most cases they are equal, but there is an ex-
ception when these values differ. If there is an edge ei ∈ E
with ti = {CheckNegativeNode} and the AnalysedTypeTime
wi then ci = 1, but cai is the number of iterations that is
derived from the defined exact multiplicity of the related as-
sociation. The generated code that is necessary for checking
negative nodes never starts a further nested loop, but for
WCET computation of the code fragment for the negative
node check, the fixed multiplicity is necessary and stored in
cai. c is only used when calculating the WCET K(L) of a
matching sequence L (cf. Definition 2).

Every story graph edge e ∈ E can optionally have one or
more associated Link/MultiLink-references Le ⊆ Es. Le does
not influence WCET computation, but provides information
required for implementation issues.

te ∈ T describes the classification of a story graph edge e ∈
E. As defined in Definition 1 the set T includes eight clas-
sification types. These classification types describe groups of
link types of a story pattern. For example, te = {BindNormal}
defines a link which describes a normal matching of an in-
stance (except the links with optional condition). Every
classification type describes indirectly a pre selection crite-
rion and a post selection effect used while finding an optimal
matching sequences described in the next section. The pre
selection criterion describes which story graph edge e ∈ E is
available for selection. In every computation step, the al-
gorithm for optimization has to choose a story graph edge
e ∈ E which was not considered before. The selection of a
story graph edge e ∈ E affects the story graph in a way that
is implicitly encoded in the classification type te ∈ T of the
selected edge e ∈ E (e.g. after binding a node via a link, this
link does not need to be checked any more) what is called
the post selection effect.

this:Shuttle rule:Communication
Rule

t1:Normal
Track reg:Registry

t2:Normal
Track

Legend:

CheckIsomorphism
CheckLink
BindNormal

CreateLink
CheckAttribute

Figure 7: Cut-out of the resulting story graph from
the story pattern example

The story graph, resulting from our example story pattern
inside the story diagram introduced in Figure 3, consists of
7 nodes and 39 edges. Due to lack of space, we present just
a cut-out of the story graph consisting of 5 nodes and 20
edges illustrated in Figure 7. This is adequate to explain
the importance of the story graph.

Note that the story graph edges e ∈ E are not inevitably
related to story pattern edges es ∈ Es. For example, there is
no Link/MultiLink-reference es ∈ Es for attribute checks and
assignments, but the story graph contains an edge ei ∈ E
with ti = { CheckAttribute } with the rule node as source and
as target. For every story pattern Link/MultiLink-reference
es ∈ Es, several story graph edges e ∈ E are created. For
example, for every ei ∈ E and ti = { BindNormal } a corre-
sponding story graph edge ej ∈ E with tj = { CheckLink }
exists also. As mentionend above, either the BindNormal or
the CheckLink link is taken for the matching sequence. The
story graph edges ei ∈ E and ti = { CheckIsomorphism } ex-
ists between all objects which have the same class diagram
type.

The WCET for a story pattern and a specific matching
sequence is determined as described in Definition 2.

Definition 2 Let K(L) be the WCET for a solution L of a
story graph G = (V, E) with L = (e1, ..., en), ei = (si, ti,
wi, ci, Lei, tei) ∈ E, wi = (wfi, wdi, cai) and c0 = 1. Then

K(L) =
∑n

i=1

[
(wfi + wdi · cai) ·

(∏i−1
j=0 cj

)]
+ pC(G, L).

A solution L is an n-tuple of story graph edges e ∈ E. This
n-tuple defines the matching sequence described in Section
3. As this matching sequence should be used for code gen-
eration of a story pattern, it can be translated into a regu-
lar matching sequence for the story pattern (the translation
needs the Link/MultiLink-references stored in Lei of every
story graph edge ei ∈ E). The function pC(G, L) returns a
runtime that is caused by code fragments that do not affect
the runtime of the related matching sequence related to L.
These code fragments are executed before or after a story
pattern is matched successfully. For example, object and
Link/MultiLink-reference deletion take place after successful
matching. For i = 1..n the execution time of the story graph
edge ei is multiplied with the number of how many times it
will be checked in worst-case (WCNI).2 This is described by
the product inside K(L) which is the number of iterations
of the considered story graph edge ei. By building the sum
of these execution times and adding pC(G, L), we get the
WCET of the considered matching sequence L.

5. WCET OPTIMIZATION
At the end of Section 3, we stated that story patterns could
have many valid matching sequences. This means that there
exists at least one matching sequence in the set of all possible
matching sequences that will take a minimum of runtime
during its execution in the worst-case. So, for an optimal
WCET, the determination of a solution L is required that
minimizes K(L).

In order to determine min(K(L)), we use a brute force
back tracking search method, as listed in Figure 8. This al-
gorithm determining the optimum requires exponential run-
time in relation to the number of Link/MultiLink-references
of a story pattern and the existing bidirectional cycles. It
uses recursion to compute valid solutions L. A solution L is
only valid when its WCET is less than the WCET of the best
solution the algorithm found up to this point. Further, the
solution has to contain all necessary story graph edges e ∈ E

2Due to a technical issue in the product function, we initially
start with c0 = 1.

1: s← Defined WCET of the engineer
2: AL← ApproximatedSolution(G)
3: k ← K(AL) ∨ defined upper bound of the engineer
4: minimum← Ø
5: L← Ø ∧ L.valid = true
6: function OptimalSolution(G, L)
7: Sort all edges from i = 1...n ascending by wfi +(wdi ·

cai)
8: if (Not all edges ei ∈ E in G marked) ∧ (Edges still

reachable) ∧ (L.valid = true) then
9: for All reachable edges ei ∈ E in G do

10: G′ = (V ′, E′)← G = (V, E)
11: L′ ← L ◦ ei

12: Process all necessary markings e′i ∈ E′ of G′

13: if K(L′) < k then
14: OptimalSolution(G′, L′)
15: else
16: L′.valid← false
17: end if
18: end for
19: if still edges ei available then
20: L.valid← false
21: end if
22: end if
23: if L.valid = true then
24: minimum← L
25: k ← K(minimum)
26: end if
27: if k ≤ s then
28: Terminate
29: end if
30: end function

Figure 8: Algorithm for min(K(L)) determination

to become valid. Thus, after termination of the algorithm,
the invariant minimum = min(K(L)) is true.

As a method with exponential time might lead to prob-
lems in practice, we improved the algorithm as shown in
Figure 8: We use a heuristics (line 2), we ensure a mono-
tonic decreasing of the upper WCET bound (line 3, 13, 25),
and we introduce a lower WCET bound (line 1, 27).

First of all, a heuristics [17] is applied that leads to ac-
ceptable values for the WCET in the average case shown in
Figure 9. The function OptimalSolution uses this function
ApproximatedSolution to determine a solution L so that its
WCET = K(L) can be used as first upper bound. This cuts
down the search space of possible solutions L at the begin-
ning of OptimalSolution. OptimalSolution will recognize so-
lutions as infeasible as soon as the execution time is greater
or equal the heuristics WCET. This way of using a first up-
per bound and then decreasing the upper bound monotonic
reduces the computation time significantly.

Usually, it is just required to obtain an implementation
with a WCET that fits in a specific timing interval or just
a given WCET from a requirement specification needs to be
fulfilled. Thus, the engineer may define a target value for
the WCET (s in Figure 8). The algorithm terminates when
it determined a matching sequence that leads to a WCET
that is below this target value. Obviously, this WCET can
be larger than the optimal WCET.

1: function ApproximatedSolution(G)
2: L← Ø
3: Sort all edges from i = 1...n ascending by wfi +(wdi ·

cai)
4: for Not all edges ei in G are marked do
5: for Unmarked edges reachable do
6: Choose possible edge ei from S(G) with small-

est wfi + (wdi · cai)
7: L← L ◦ ei

8: end for
9: end for

10: return(L)
11: end function

Figure 9: Algorithm to determine a first matching
sequence

Tests showed that due to the improvements, a solution for
a common story pattern can be found in acceptable time.
Figure 10 illustrates the distribution of the different WCETs
of the example shown in Figure 3. The figure shows the
WCET values and the number of matching sequences with
the respective WCET. The WCETs unit is milliseconds and
is listed logarithmic.

0

100

200

300

400

500

600

700

800

900

1000

0,001 0,01 0,1 1 10 100 1000

wcet (ms)

#
 m

a
tc

h
in

g
 s

e
q

u
e
n

c
e
s

Figure 10: Frequency distribution chart of matching
sequences and their WCETs

We see that most solutions have a WCET in the mid-
dle of minimum and maximum. Without the described im-
provements of the algorithm, the computation of the optimal
matching sequence took about eight minutes on a 900 MHz
PowerPC 750fx processor. Using the heuristics and mono-
tonic decreasing of the upper bound it took about three
seconds and only three possible matching sequences were
found till optimum. Figure 11 shows the improvement of
the example’s WCET in relation to the time needed for op-
timization. Note that the x-axis is increasing exponentially.

The black line shows the temporal development of the
best solution during the computation process. The grey
line shows the optimal WCET that could be possible. This
points out that using monotonic decrease of the upper bound
is heavily decreasing the number of possible matching se-
quences.

For the evaluation shown in Figure 12, an abstract story
pattern with twelve Link/MultiLink-references is used. The
figure shows the improvement of the WCET in relation to

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,168 0,734 0,736 2,265

computation time (s)

w
c
e
t

(
m

s
)

Figure 11: Improving the WCETs with the restricted
algorithm

0

1

2

3

4

5

6

7

8

0,341 0,438 0,524 0,632 0,643 3,677 8,663 79,866 117,816 126,63

computation time (s)

w
c
e
t

(
m

s
)

Figure 12: Improving the WCETs with the restricted
OptimalSolution but with an abstract story pattern

the runtime of the optimization algorithm. Figure 13 shows
a chart that results from computation time measurements
of story diagrams with one abstract story pattern with a
high number of bidirectional cycles. The x-axis describes
the number of Link/MultiLink-references of the story pattern
and the y-axis the OptimalSolution computation time in sec-
onds. The diagrams show that story patterns with more
then twelve Link/MultiLink-references require long computa-
tion times. Note that the computation time does not only
depend on the number of Link/Multilink-references, but also
on the number of bidirectional cycles which also increase the
number of possible matching sequences.

6. CONCLUSIONS & FUTURE WORK
Graph like structures are required for storing context and
local knowledge in future complex intelligent and adaptive
technical systems. Story patterns are an appropriate mod-
eling language for modifying graph like structures. In order
to satisfy safety and hard real-time requirements, worst-case
execution times for the execution of story patterns are re-
quired. We presented in this paper an approach which (1)
determines these worst-case execution times on a given hard-
ware and (2) computes an optimal worst-case execution time
based on an optimal search order of the story pattern ele-

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12

link/multilink-references in story pattern

c
o

m
p

u
ta

ti
o

n
 t

im
e
 (

s
)

Figure 13: Computation times in relation to the
number of Link/MultiLink-references of a abstract
story pattern

ments. The computation of the optimal order consists of
two steps. In the first step, a heuristics is used in order to
find an optimal search order for the average case. There-
after, in step two, a brute force algorithm is employed to
find a better solution than provided by the heuristics.

To improve our WCET optimization algorithm, we plan
to respect knowledge about the minimal remaining costs in
the algorithm in a branch-and-bound manner. Further, we
plan to support the WCET determination of story diagrams,
consisting of multiple story patterns as well. Therefore, we
plan to integrate our approach with the MAXT approach
[16] that requires the specification of the WCNIs for every
activity in the story diagram and their WCETs. We will use
our algorithm for single story patterns to determine the sin-
gle activities’ WCETs. In [16], the WCET for the cyclic flow
graph is then computed with integer linear programming
(ILP).

Story charts [12] are an extension of standard UML state
machines by story pattern. The states are enriched by story
patterns as do methods. Story charts lack appropriate no-
tions for time. Real-Time Statecharts [4, 9, 2] are an appro-
priate state based modeling notation for the specification
of real-time behavior. The presented WCET determination
and optimization approach will be used in order to integrate
story patterns into Real-Time Statecharts. In addition to
the usage of story patterns in story charts, we will not only
support story patterns as behavior specification for do meth-
ods, but for all kind of actions (entry and exit methods as
well as transition actions).

REFERENCES
[1] G. Bernat, A. Burns, and A. Wellings. Portable

Worst-Case Execution Time Analysis Using Java Byte
Code. In Proceedings of the 12th Euromicro
Conference on Real-Time Systems (Euromicro-RTS
2000), 2000.

[2] S. Burmester and H. Giese. The Fujaba Real-Time
Statechart PlugIn. In H. Giese and A. Zündorf,
editors, Proc. of the first International Fujaba Days
2003, Kassel, Germany, volume tr-ri-04-247 of
Technical Report, pages 1–8. University of Paderborn,
2003.

[3] S. Burmester, H. Giese, and O. Oberschelp. Hybrid
UML Components for the Design of Complex
Self-optimizing Mechatronic Systems. In Informatics
in Control, Automation and Robotics. Kluwer
Academic Publishers, 2005. to appear.

[4] S. Burmester, H. Giese, and W. Schäfer. Model-driven
architecture for hard real-time systems: From
platform independent models to code. In Proc. of the
European Conference on Model Driven Architecture -
Foundations and Applications (ECMDA-FA’05),
Nürnberg, Germany, pages 1–15, November 2005.

[5] G. C. Buttazzo. Hard Real Time Computing Systems:
Predictable Scheduling Algorithms and Applications.
Kluwer international series in engineering and
computer science : Real-time systems. 1997.

[6] E. Erpenbach. Compilation, Worst-Case Execution
Times and Scheduability Analysis of Statechart
Models. Ph.D.-thesis, University of Paderborn,
Department of Mathematics and Computer Science,
2000.

[7] T. Fischer, J. Niere, L. Torunski, and A. Zündorf.
Story Diagrams: A new Graph Rewrite Language
based on the Unified Modeling Language. LNCS 1764,
pages 296–309, November 1998.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable Object
Oriented Software. Reading, MA, 1995.

[9] H. Giese and S. Burmester. Real-Time Statechart
Semantics. Technical report, 2003.

[10] H. Giese, S. Burmester, F. Klein, D. Schilling, and
M. Tichy. Multi-Agent System Design for
Safety-Critical Self-Optimizing Mechatronic Systems
with UML. In B. Henderson-Sellers and J. Debenham,
editors, OOPSLA 2003 - Second International
Workshop on Agent-Oriented Methodologies, pages
21–32, Anaheim, CA, USA, Center for Object
Technology Applications and Research (COTAR),
University of Technology, Sydney, Australia, Oct.
2003.

[11] H. Giese, M. Tichy, S. Burmester, W. Schäfer, and
S. Flake. Towards the compositional verification of
real-time uml designs. In Proc. of the European
Software Engineering Conference (ESEC), Helsinki,
Finland, pages 38–47. ACM Press, September 2003.

[12] H. J. Köhler, U. A. Nickel, J. Niere, and A. Zündorf.
Integrating UML Diagrams for Production Control
Systems. pages 241–251. ACM Press, 2000.

[13] D. J. Musliner, R. P. Goldman, M. J. Pelican, and
K. D. Krebsbach. Self-Adaptive Software for Hard
Real-Time Environments. IEEE Inteligent Systems,
14(4), July/Aug. 1999.

[14] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner,
G. Johnson, N. Medvidovic, A. Quilici, D. S.
Rosenblum, and A. L. Wolf. An Architecture-Based
Approach to Self-Adaptive Software. IEEE Intelligent
Systems, 14(3):54–62, May/June 1999.

[15] P. P. Puschner and A. Burns. Guest Editorial: A
Review of Worst-Case Execution-Time Analysis.
Real-Time Systems, 18(2/3):115–128, May 2000.

[16] P. P. Puschner and A. V. Schedl. Computing
Maximum Task Execution Times - A Graph-Based
Approach. In Real Time Systems, 13, Technical
Report, pages 67–91. Springer Link, Kluwer Academic
Publishers, July 1997.

[17] A. Seibel. Story Diagramme für Eingebettete
Echtzeitsysteme. Bachelor Thesis at University of
Paderborn, Department of Computer Science,
Paderborn, Germany, February 2005.

[18] J. Sztipanovits, G. Karsai, and T. Bapty. Self-adaptive
software for signal processing. Commun. ACM,
41(5):66–73, 1998.

[19] A. Zündorf. Rigorous Object Oriented Software
Development. Habilitation Thesis at University of
Paderborn, Department of Computer Science,
Paderborn, Germany, 2001.

