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ABSTRACT
Software plays an increasingly important part in todays em-
bedded systems. Development efforts for embedded soft-
ware must consider the trade-off between fast development,
maintainable code, correct as well as high-performance soft-
ware. Graphical object-oriented languages can help in cre-
ating more maintainable code, while also providing better
means to ensure correctness. Predictable real-time behavior
w.r.t. the execution time of operations is additionally of par-
ticularly importance in the embedded domain. We present
in this paper a graphical language employing graph transfor-
mations as a formal foundation. The language is especially
geared for event-driven transformations of data structures.
Additionally, we present our approach for worst case exe-
cution times estimation to predict software behavior in the
time domain. We evaluate our approach using an example
from the railway domain.

1. INTRODUCTION
Software plays an increasingly important part in todays

embedded systems. As many embedded systems are used in
a safety-critical context (e.g. cars, medical systems, trains),
they must adhere to strict quality requirements. The soft-
ware must not only work correctly, but also be predictable
w.r.t. the execution time of operations. Additionally, prod-
uct cycles are becoming shorter. Thus, software develop-
ment has to finish in even shorter time frames.

Many approaches try to tackle the aforementioned prob-
lems. Block diagrams are employed for a graphical specifi-
cation of control algorithms in tools like Matlab/Simulink.
Object-oriented and graphical languages are used to specify
event-driven software with complex object structures. They
can in principal address the aforementioned problems but
are seldom used in embedded software development. This
stems partly from problems in ensuring worst case execution
times (WCET) which is essential for correctness w.r.t. real-
time specifications.

Graph transformations are used in many variants as a
language for expressing structural transformations [17, 18,
7, 21]. Several approaches exist [16, 1] for ensuring the func-
tional correctness of graph transformations. As mentioned
above, WCET computation is required for ensuring correct-
ness w.r.t. real-time specifications but current approaches
for WCET estimation like [20, 5] are not applicable for soft-
ware which executes arbitrary data structure changes.

In previous works, we have shown (1) how to estimate and
optimize WCET for a graph transformation variant called
Story Pattern [4], and (2) how to formally verify inductive

invariants on sets of Story Patterns [1]. Both approaches
help to develop software which satisfies strict quality re-
quirements. In this paper, we draw on these previous works
and present a graphical language for event-driven structural
transformations whose usage is feasible in embedded and
safety critical software development.

In the next section, we present the railcab research
project1 and the running example of this paper which stems
partly from the railcab project. We describe the different
parts of our language in Section 3. In Section 4 we intro-
duce our approach for WCET estimation of programs which
are specified in our language. Section 5 employs an eval-
uation which compares our estimated WCET with actually
measured worst case execution times. In Section 6, we re-
view some related approaches. We conclude the paper in
Section 7 and present research directions for future work.

2. EXAMPLE
A new transport system called Railcab is developed in

Paderborn. The transport system utilizes autonomous vehi-
cles which drive on a nearly standard railway system. Com-
munication is required between the shuttles for coordination
purposes, for example for building convoys to reduce the air
resistance and thus the general power consumption.

In previous works [9, 4], we addressed a situation as shown
in Figure 1 when two shuttles move towards the same join-
ing switch. The shuttles need to coordinate how to pass
the switch in order to avoid a possible collision. Obviously,
this has to be finished before they reach the switch. Thus,
this coordination problem is subject to hard real-time re-
quirements. This simple scenario considers only two shuttles
approaching a single switch.

Train stations typically employ several switches and nu-
merous shuttles which concurrently drive in the station area.
Consequently, we need to consider a scenario with multiple
switches and multiple shuttles. Additionally, shuttles have
to communicate and coordinate not only with shuttles which
they meet at the next switch but also with shuttles which
they may meet at later switches. Figure 2 shows the ex-
tended scenario based on the above stated requirements.

The embedded software searches an internal data model
for shuttles which it may meet two tracks ahead in order
to initiate a communication and coordination between the
shuttles. The communication, required to keep this data
model up to date, is out of the scope of this paper. Details
can be found in [9, 10].

1www.railcab.de/en



Figure 1: A possible collision of two shuttles at a
switch

Figure 2: Extended scenario

In the following section, we present the language which
can be used to specify the structure and behavior of the
software for this task.

3. LANGUAGE PRESENTATION
We present the language constructs for structural specifi-

cation as well as behavioral specification for real-time sys-
tems. We start with the specification of the structure in
Section 3.1. Then we continue describing the behavioral
parts of the language in Section 3.2.

3.1 Structural Specification
We employ UML class diagrams [14] as a standard no-

tation for the specification of structures. Because our ap-
proach must be applicable in the embedded system domain,
we have to deal with restricted computation capabilities, es-
pecially less memory.

Consequently, we refine UML class diagrams in order to
employ them in this embedded domain. In embedded sys-
tems, it is required to know the exact amount of required
memory beforehand to avoid unsuccessful memory alloca-
tion. The number of class instances and the multiplicities of
associations are the sources for unknown memory require-

ments in UML class diagrams.
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Figure 3: Extended class diagram of the depot sys-
tem

It is obvious that we need to require the specification of
an upper bound for the number of class instances. In the
generated code, this upper bound is enforced by an imple-
mentation of the factory design pattern [8]. During initial-
ization of a factory of a specific class, all instances of the
specific class are allocated. This avoids the allocation of
heap memory at runtime. The factory is then employed to
create new class instances and reuse deleted class instances.

Figure 3 shows the UML class diagram refinements con-
sidering our shuttle system case study. Note that the defined
maximal number of instances can also be described by OCL
2.0 [15] constraints. The following OCL 2.0 constraint spec-
ifies the maximal number of instances for the class Track.

context Track inv:

Track.allInstances().size() <= 1000

Secondly, unbounded association multiplicities lead to un-
known memory requirements for the data structures which
implement the association. Thus, we prohibited the speci-
fication of unbounded association multiplicities and require
fixed ones. In addition, the generated code for the associ-
ation uses the upper bound to provide a static size of the
data structure at the code level.

3.2 Behavioral Specification
Based on the structural model, we use the Story Diagram

[7, 22] formalism for the specification of structural transfor-
mations and the control flow between the transformations.
Story Diagrams are an extension of UML activity diagrams.
In addition to standard UML activity diagrams, activities in
Story Diagrams can be Story Patterns which specify struc-
tural transformations. Story Patterns are based on the
graph transformation formalism [17]. The class diagrams
presented above resemble a type graph. Story Patterns are
the formalism which are used to transform instances of this
type graph.

3.2.1 Real-Time Story Diagrams
We have shown how Story Patterns can be used in a real-

time environment in [4]. In the following, we present a num-
ber of extensions in order to use Story Diagrams in a real-
time context.

3.2.1.1 Transformation Feasibility Check.
The basic requirements of Real-Time Story Patterns are

fixed maximum multiplicities for association roles and class
instances in the class diagram. These requirements are



needed for both guaranteeing a fixed WCET and ensuring
memory requirements.

Creations of links and objects are specified in the right
hand side of a Story Pattern. We want to support the
standard way of specifying instance and link creations in
Story Patterns but must cope with creation failures when
the above mentioned constraints would be violated. A cre-
ation failure leads to the situation where the left hand side
has been successfully matched but the matched subgraph is
not or only partly transformed to the right hand side.

We propose a syntax element which is used for the specifi-
cation of checks whether an object or an link can indeed be
created. This check is done during matching the left hand
side. Only if all creation checks succeed in addition to the
normal binding, the left hand side of the Story Pattern is
considered to be matched. Thus, it is guaranteed that a
subsequent creation of an appropriate object or link will be
successful.

We add a new transition type Creation Failure to Story Di-
agrams to give the developer the possibility to react on a
failed creation check. That transition is only taken when
the left hand side has been matched, but at least one cre-
ation check has failed (see Figure 4).

:ComunicationRulethis

<<check create>>

this
garbageCollect()

c:ComunicationRulethis

<<create>>

<<success>><<creation failure>>

Figure 4: Creation Check Extension

Another solution is to implicitly execute the creation
check before each object or link creation. We decided against
that solution in order to give the developer explicit control
about the situation. We are currently evaluating whether we
need different transitions for different failed link and object
creations. Then, the developer can specify different behav-
ior for each possible creation check failure. We are currently
in the process of adding the proposed syntax element into
Story Diagrams and its accompanying code generation as
well as integration into the worst case estimation.

3.2.1.2 Loops.
UML activity diagrams allow the specification of loops

in the control flow. As Story Diagrams share the control
flow concepts of UML activity diagrams, loops can also be
specified in Story Diagrams. It is often required that one or a
set of graph transformations should be applied to all possible
bindings of a left hand side of a graph transformation. For
this special case, the special loop concept for-each has been
introduced in Story Diagrams. The for-each loop is executed
for all possible bindings of the left hand side (see Figure 5).

Loops impose a challenge for WCET estimation as the
WCET of a Story Diagram obviously depends on the maximal
number of loop iterations. In the general case, the maximal
number of iterations need to be obtained from the loop code.
Fortunately, the for-each-loop construct allows us to compute
the maximal number of iterations as this corresponds to the

this prevTrack:Track
has [each time]

[end]

Figure 5: Example of a for-each-loop

maximal number of bindings for the left hand side of the
for-each Story Pattern. The maximal number of bindings
is computable from the specified maximal multiplicities of
associations and classes which we already required due to
memory constraints (see Section 3.1). Considering Figure 5,
we compute that at most two bindings can exist for the left
hand side based on the association’s multiplicity specified
in the class diagram. Consequently, the activities which are
reached via the each time transition can only be executed two
times.

In [22], a fresh matches semantics is employed for for-each

loops. The fresh matches semantics means that if during ex-
ecution of the for-each loop new bindings are created, those
bindings are additionally matched in the loop condition.
Thus, the number of loop iterations cannot be deduced from
the class diagram and the loop may even not terminate at
all. This behavior is obviously not suitable in the context of
real-time systems. Thus, we currently prohibit that the ac-
tivities inside the for each loop do create additional bindings.
Additionally, we propose to employ the pre-select semantics
[22] to avoid the inherent problems of the fresh matches se-
mantics which are presented in detail in [19].

We allow other loops in the control flow, but we rely then
on input from the developer about the maximal number of
iterations.

3.2.1.3 Example.
The Story Diagram specifies how to find possible haz-

ardous situations which have to be avoided. Possible col-
lisions of two shuttles are hazardous situations. A situation
needs to be detected where still enough time is left to ini-
tiate avoidance mechanisms. We simplify this by declaring
that enough time is left, if two shuttles may meet at one of
the next two switches.

To avoid a possible collision, we require that a shuttle
which is detecting the possible hazardous situation, creates
a communication rule. This communication rule guarantees,
that no collision happens. The complete collision avoidance
is not part of this paper, but details can be found in [11].

3.2.2 Real-Time Story Charts
Story Charts [13, 22] are a formalism which blends the

specification of event-based behavior (e.g. Statecharts [12],
UML state machines [14]) with the specification of struc-
tural transformations based on graph transformations. The
structural transformations are executed in order to react to
incoming events.

In previous works, we refined UML state machines for
the specification of event based behavior in the hard real-
time domain [2, 3] into the Real-Time Statechart formalism.
In order to blend Real-Time Statecharts with graph trans-
formations similar to Story Charts, we can simply use the
above described Story Diagrams as side effects of transitions
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Figure 6: Story Diagram for collision avoidance

as well as entry and exit actions.
The Real-Time Statechart formalism requires that for

each side effect the WCET is known. If this requirement
is fulfilled, schedulability of the specified behavior can be
checked and code can be subsequently generated. In the fol-
lowing, we present how WCET’s can be estimated from Story

Diagrams.

3.2.2.1 Example.

inStationArea

do: initiateCommunication() wcet=23; p=[100;300]

approachedStation leftStation

Figure 7: Part of the Real-Time Story Chart Dia-
gram for the shuttle behavior

Figure 7 shows an extract of the event-driven behavior of
a shuttle. The state inStation is via an incoming approached-

Station event. This event stems from another component of
the shuttle. The initiateCommunication story diagram of Fig-
ure 6 is executed periodically (every 100 to 300 ms) as long
as this state is the current state. The state is left after the
leftStation message is received.

4. WORST-CASE EXECUTION TIMES ES-
TIMATION

The WCET estimation of Story Diagrams is composed into
two parts. First, the WCET of every Story Pattern is esti-
mated. In previous work [4], we have presented the analy-
sis steps which are required to estimate a WCET for Story
Pattern. This approach is based on a platform specific pro-
file which contains WCET’s for a set of basic operations like
checking whether an object is contained in a linked list or
not. Our profile tool does a fully automated measurement
for creating this profile before analyzation – at the moment
it supports C++ and the phyCORE-MPC555 board. Another
possibility to obtain these WCET’s is to use a special tool like
the aiT Worst-Case Execution Time Analyzer [20]. It may also
be gathered from several tests on the target platform under
certain circumstances. The WCET of the complete Story Di-
agram can then be computed based on the individual Story
Pattern’s WCET’s.

But the WCET of every Story Pattern only, is not suffi-
cient. We need the worst case number of possible bindings of
loop condition Story Pattern in order to compute the num-
ber of iterations of the for-each loop. The worst case number
of possible bindings is identical to the worst case number of
iterations (WCNI) described in [4]. For other loops, the max-
imal number of loop iterations specified by the developer is
used (see Section 3.2.1.2).

Figure 8 visualizes the entire WCET estimation process.

4.1 WCET Estimation for Story Diagrams
After the first step of estimating the WCET and the WCNI

of every Story Pattern, the analysis can proceed estimating
the WCET of the Story Diagram. Our static approach for
estimating the WCET of Story Diagrams is path based on
the control flow of the Story Diagrams. Story Diagrams are
an extension of UML activity diagrams. As UML activity
diagrams, every Story Diagram consists of exactly one start
activity and several stop activities. Between these activities
there are story activities, which could be Story Patterns or
branches (NOP Activities), connected by transitions which
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describe a control flow (see Figure 6). Other approaches
using low level path based analysis have to extract a control
flow graph (CFG) from the executable assembler code, for
example [20]. Our model already implies a CFG with all
necessary informations for WCET estimation.

To estimate the WCET of every stop activity, we use a re-
cursive algorithm which estimates the WCET’s for the longest
path from the start activity to each stop activity by sum-
ming the WCET of every Story Pattern on any path. The
path with the maximum WCET then determines the WCET

which is associated with the stop activity.
Loops are recognized by the algorithm. We use the num-

ber of possible bindings of the loop condition Story Pattern
(the for-each Story Pattern ) in order to determine the num-
ber of loop iterations. This information is given by the WCNI

of a for-each Story Pattern which is the initiator of a loop.
A for-each Story Pattern has two outgoing transitions: (1)
every time a binding has been found for the for-each Story
Pattern, the each-time transition is taken, (2) if all bindings
have been processed, the end transition is taken.

For a non-nested loop the WCET of the for-each Story Pat-
tern and all contained Story Patterns is simply multiplied
by the number of loop iterations.

Loops can be nested. Thus, we additionally need to recur-
sively increase the WCNI of the inner loop by multiplication
with the WCNI of the outer loop. This principle is called
for-each compensation and is depicted in Figure 9.
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P3
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1
1

1
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A = Activity

[each time]

[each time]

[end]

[end]

Figure 9: Example of the for-each compensation process

This figure shows a simplified version of the Story Dia-
gram of Figure 6. The activities are numbered from the top
to the bottom with A1 to A16. The for-each compensation pro-
cess maps the WCNI’s of the for-each initiator Story Patterns
to the transitions of the according for-each flows. Initially,
every transition has a WCNI of 1. The for-each compensation

multiplies the WCNI of the for-each Story Pattern with every

transition on the for-each flow except three situations. First,
the end-transition is ignored. Second, transitions which lead
back to the initiating for-each Story Pattern are ignored. At
last, transitions that go out of another for-each Story Pat-
tern are ignored. The WCNI is multiplied with the WCET of
a story activity which is part of the for-each loop.

Because in some cases the user does not want to iterate
over all matched instances on the left hand side of a for-

each Story Pattern, the user may define an object as already
bound as done in our example in Story Pattern A5 and A12

with currentTrack and nextTrack. This has, for example, the
effect that the matchable objects for nextTrack contain an
object that is equal to the currentTrack in Story Pattern A5.
Due to the isomorphic binding of Story Patterns, this object
will not considered in further matchings of the Story Pat-
tern again. This reduces the possible number of matchable
objects which implies a reduction of the number of iterations
of the Story Pattern. Our analysis recognizes such patterns
and corrects the WCNI of the affected Story Pattern auto-
matically.

5. EVALUATION
Because we do not consider the issues of multi-threading,

process scheduling and processor caching in our approach,
we needed an appropriate hardware and software platform.
Consequently, we used a phyCORE-MPC555 with integrated
40MHz 32-Bit PowerPC micro-controller from Motorola and the
embedded operating system DREAMS2[6] for the runtime
measurements of our example of Section 2. We use the Story
Diagram of Figure 6 as the scenario for our evaluation.

5.1 Worst-Case Instance Situation
To show the quality of our WCET estimation of Story Di-

agrams, a worst-case instance scenario has to be created in
order to measure the WCET of the executed example appli-
cation. Therefore, an initial instance situation has to be
created in a way that every Story Pattern of the Story Dia-
gram of Figure 6 executes as most as possible operations. It
is not enough that the left hand side is successfully matched
and the right hand side successfully executed. Also, the
employed data structures have to be initialized in a way
that searching an element results in the data structure op-
eration’s WCET. Figure 10 shows a snapshot of the initial
instance situation of our generated example application.

t1:Track t2:Track t6:Track

t3:Track

t4:Track

t5:Track

t7:Trackt8:Track

t9:Track

s1:GoodsShuttle s2:GoodsShuttle

s6:GoodsShuttles3:GoodsShuttle

s4:GoodsShuttles5:GoodsShuttle

s8:GoodsShuttle

s9:GoodsShuttle

s7:GoodsShuttle

Figure 10: Initial worst-case instance situation
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For a clearer presentation, Figure 10 does not include ob-
jects of the type CommunicationRule. GoodsShuttle s1 is the
initiator of 92 other CommunicationRule objects. This leads
to the WCET for the creation of a link between s1 and an-
other CommunicationRule object since link creation implies
searching for a possible duplicate in the data structure. We
cannot initially create 100 CommunicationRule objects because
the Story Diagram is going to add 8 more CommunicationRule

objects to the associated data structure of the initiator asso-
ciation of s1 during successful execution.

Normally, we should leave 14 slots free of the initiator’s as-
sociated data structure in s1, but we use the optimization
concerning isomorphic checks (see Section 4.1). The Story
Pattern A5 and A12 use isomorphic checks to prevent fur-
ther infeasible matches like currentTrack in Story Pattern A5

which is already bound in Story Pattern A2 and checked for
a possible collision in Story Pattern A4. Therefore, nextTrack

would be matched in Story Pattern A5 and then checked for
a possible collision in Story Pattern A6 again. The for-each

loops initiated by Story Pattern A5 and A12 therefore only
match one object of the type Track instead of two possible
matches. The analysis recognize the isomorphic matches
and reduce the for-each iteration number by the number of
isomorphic situations in the initiator for-each Story Pattern.
Thus, only 8 CommunicationRule objects can be created and
added to the initiator associated data structure of s1 during
execution of the Story Diagram.

Also every GoodsShuttle object except s1 is a participant
of 99 other CommunicationRule objects. Those Communica-

tionRule objects are not connected by an initiator link with
s1. This results in the WCET for creating a participant link
between a GoodsShuttle object and a CommunicationRule ob-
ject and creating a link between this CommunicationRule ob-
ject and s1. Additionally, this implies the worst case for
the negative application condition (NAC) check between a
GoodsShuttle and the existingRule object of the type Communi-

cationRule.
The Story Patterns A4, A6, A8, A11, A13 and A15 of Figure

6 require a situation where another GoodsShuttle object on
a neighboring Track object is located which has a participant

link to another CommunicationRule object. Thus, most of the
code of the NAC is being executed, but not finished with true.
This means that the left hand side can be matched with
most of the checks being executed. Thus, every GoodsShuttle

object except s1 is a participant of another CommunicationRule

object.

5.2 Analysis and Measurement
The evaluation has to show the quality of our WCET esti-

mation from our analysis in direct comparison to the mea-
sured WCET of the example application. We present three
of our experiments with the Story Diagram of Figure 6.

In the first experiment, we looked at the WCET of both
the left hand side and the right hand side (LHS + RHS). The
second experiment does only consider the left hand side of
the Story Diagram without the transformation concerned
by the right hand side (LHS). The difference between these
experiments is the WCET of the right hand side only (RHS).

Every experiment has been executed 10 times. In every
step, we increased the multiplicity’s of the associations par-

ticipant and initiator at the CommunicationRule side by 10. We
started with multiplicity 1 and finished with the multiplic-
ity 100. The experiments with multiplicity 1 must be distin-

guished from the ones with multiplicity > 1, because one-to-
one associations and different matching sequences as well as
other operations are used inside the NAC’s binding objects
and during the execution of the right hand side (cf. [4]).

We only increase the multiplicity’s of the association ini-

tiator and participant. This has the effect that the WCET is
increasing linear with increasing multiplicity, because we do
not increase the number of nested loop iterations. Thus, we
can interpolate the analyzed and measured data as linear
functions of the form f(x) = a ·x+ b with x ∈ N\{0, 1}. We
introduce three linear functions which describe the WCET of
our analysis. a(x) = 0.2321 · x + 0.5035 which is the anal-
ysis of the complete example, al(x) = 0.2045 · x + 0.2577
describes the analysis of the left hand side only and ar(x) =
0.0276 · x + 0.2458 describes the right hand side only.

Also the measurement data of every experiment can be
interpolated. Thus, we present the experimental results as
a linear function. m(x) = 0.1968 · x + 0.4447 which is the
WCET of the complete example, ml(x) = 0.1695 ·x+0, 2355
is the WCET of the left hand side only, and mr(x) = 0.0273 ·
x + 0.2092 is the WCET of the right hand side only.

Figure 11 plots these functions in a cartesian coordinate
system. The x-axis is the multiplicity of both associations
initiator and participant. The y-axis is the WCET in ms.
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Figure 11: Evaluation chart

To get a better overview about the cornerstones of the
analyzed and measured data, Figure 12 shows the WCET of
every experiment at the first- and last step only.

5.3 Evaluation Conclusion
The difference between the experiments with x = 1 and

x > 1 is a result of different operations which are used for
matching and transformation as described in Section 5.2.
For the x = 1 case we see a remarkable smaller relative
difference between the measured and analyzed RHS exper-



Measurement Analysis Difference (A-M)

LHS + RHS (x = 1) 0.643 ms 0.686 ms 0,043 ms (6.6%)

LHS (x = 1) 0.323 ms 0.324 ms 0.001 ms (0.03%)

RHS (x = 1) 0.320 ms 0.362 ms 0.042 ms (13.1%)

LHS + RHS (x = 100) 20.124 ms 22.788 ms 2.664 ms (13.2%)

LHS (x = 100) 17.171 ms 19.772 ms 2.601 ms (15.1%)

RHS (x = 100) 2.953 ms 3.016 ms 0.063 ms (2.1 %)

Figure 12: Evaluation table

iment as the x > 1 case shows. This may occur because
at the moment we do not have optimized every code frag-
ment of the profile measurement. We lose 5.25 µs per Story
Pattern which contains a right hand side. This overesti-
mation is caused by three operations: one object creation
and two link creations. The object creation operation is al-
ready optimized in the profile tool, so that the overestima-
tion per create link operation should be 2.625 µ. The LHS

experiment of the x = 1 case does only contain optimized
operations. The x > 1 case does contain more unoptimized
operations than the x = 1 case. Several code fragments con-
tain too much measured code, at the moment. This could
be a reason for the overestimation of the LHS experiment in
the x > 1 case. Different to the RHS of the x = 1 case, the
x > 1 case does only use optimized code fragments which
should be the reason for a lower aberration between mea-
surement and analytical results. The existing aberration for
every experiment of the x > 1 case could be the time which
is caused by the instance situation not being the worst-case
(cf. Section 5.1).

In general, it has to be said that the clock of the system is
not as precise as needed. A tick with has a execution time
of 800 ns. Some code fragments oscillate between one and
two ticks which cause roundoff errors. The code fragment
WCET estimation optimization is reducing this error by ex-
ecuting the code δ times. With increasing δ, we are able to
get a refined timing with decreasing roundoff errors. Our
evaluation used δ = 100 for the code fragments.

6. RELATED WORK
Several approaches and tools for WCET estimation, like

aiT from AbsInt3, already exist. Most of them handle low-
level analysis to estimate the WCET of executable code [20].
These approaches have to obtain flow-graph analysis from
the executable code in order to appropriate cycles and re-
cursions in the code flow. The user can obtain upper bounds
for determined cycles. Also the code language is often re-
stricted to procedural languages like C in aiT, for example.
Using executable code offers a finer granularity in WCET es-
timation because parts of the flow-graph can be described
more detailed. Our approach obtains the WCET for whole
code fragments which is a well defined sequence of code.
The main aspect of our approach is to obtain an high-level
analysis to appropriate WCET’s. Therefore obtaining basic
WCET’s from the code fragments is satisfying our necessities.
The input of our analysis is the model which is an equiva-
lent to the flow-graph and a target profile containing the code

3http://www.absint.com/ait

fragments WCET’s.
Curatelli and Mangeruca present in [5] a method to com-

pute the number of iterations in data dependent loops. They
present a formal model for the loop condition as well as the
loop body. The formal model of the loop body is very expres-
sive due to a set of loop index counters and transformations
of the loop index counters which include other loop index
counters on the right side of the assignment.

The body of the loops of Story Diagrams as well as the
generated loop bodies for binding the left hand side of Story
Pattern can be mapped to this formal model. For example,
the binding-loops of Story Pattern can be mapped to a set
of loop index counters for each to-many association. In the
loop body this index counters are then increased. Unfortu-
nately, the formal model of the loop condition is not expres-
sive enough for our task as the loop condition does not allow
to set individual maximum values for each index counter but
only a linear constraint containing all index counters.

7. CONCLUSIONS
Embedded software must satisfy strict quality require-

ments. i.e the software must work correctly w.r.t. functional
requirements as well as real-time requirements. Many dif-
ferent textual and graphical approaches exist to help in de-
veloping those software. We presented an approach for the
special case of graph transformations in embedded real-time
systems.

Our approach contains means for structural specification
in form of refined UML class diagrams. Structural trans-
formations are specified using Story Diagrams. Addition-
ally, we propose a syntactic extension which allows to check
whether creation of elements is indeed possible despite tight
memory constrains.

We present how to estimate worst case execution times
for Story Diagrams in order to ensure temporal correct-
ness. The WCET estimation of Story Patterns is based on
[4]. The WCET of a Story Diagram is then computed based
on the Story Pattern’s WCET’s. Loops in Story Diagrams
are specifically treated based on known maximum number
of iterations of the loop. Thus, Story Diagrams can be used
as side effect in Real-Time Statecharts.

The provided evaluation shows that our approach is a safe
(pessimistic) approximation of the WCET’s of the presented
example scenario.

The presented approach is part of the Fujaba Real-Time
Tool Suite. We are currently implementing the mentioned
language extension concerning the checking of create oper-
ations. We offer a C++ code generation which was used to
generate the code for our example scenario.

7.1 Future Work
We are currently looking into reducing the difference be-

tween the measured execution time and the estimated one.
One aspect is the refinement of the profile which is used to
compute the WCET of a Story Pattern.

The estimation can be improved by an improved analysis
of the behavior of the Story Pattern. For example, if an
object is created in the Story Pattern, there are two cases
to consider: (1) if the object creation of a class A succeeds,
only maxInstances-1 instances of A can be matched in the
left hand side and (2) if the object creation fails, the right
hand side would not be executed at all. Another example is
a series of object creations in different Story Patterns of a



Story Diagram. It remains to be seen whether an improved
analysis scales for bigger Story Diagrams.

The used data structures (linked lists) could be replaced
by sophisticated ones which have a better execution time in
the worst case. Additionally, we will continue to evaluate the
approach in other scenarios in order to improve the quality
of the estimation.
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