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ABSTRACT
Software is increasingly used in systems which have to sup-
port self* properties like self-adaptation, -management or -
optimization. The key enabler for a consistent model-based
development approach is refinement. Refinement facilitates
to preserve properties of abstract models in more concrete
models. Note, that abstract models are of paramount im-
portance to formal verification in complex safety critical sys-
tems. Despite the increased significance of self* properties
in the last years, surprisingly there is a lack in support of re-
finement techniques being integrated in a model-based devel-
opment approach. We present a modeling approach, called
Timed Story Charts, which supports a flexible specification
of properties like self-adaptation, and furthermore, we will
present an integrated refinement check.

1. INTRODUCTION
Advanced software systems, like mechatronic systems, in-
creasingly exhibit self* properties like self-adaptation, -
management or -optimization. That implies software recon-
figuration at runtime which increases the complexity of the
software additionally. As these systems are often used in a
safety critical environment, formal verification on abstract
models is required to ensure a proper functioning of the soft-
ware. Despite the increased significance of self* properties
in the last years, surprisingly there is a lack in support of re-
finement techniques being integrated in a model-based devel-
opment approach. There are some approaches for modeling
the structural aspects of reconfiguration or the behavioral
aspects but none of them take into account both aspects
[BCDW04].

Based on our approach Mechatronic UML [GHH+08], we
present a modeling approach, called Timed Story Driven
Modeling, an extension of Story Driven Modeling [Zün01],
supporting a flexible specification of reconfiguration. Fur-
ther on, we will present an integrated refinement check.

Mechatronic UML is based on a methodical decomposi-
tion of the embedded software and its constituent compo-
nents. This supports compositional verification. Because
of the dynamics in the behavior as well as the dynamics in
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the number of participating components, there is a need for
modeling support for dynamic structures. This is also an ex-
isting problem of UML-components and -parts as e. g. cre-
ation and deletion of a part and its (delegated) port is not
supported in UML. Similarly, UML does not address the
question whether an embedded component (part) is a cor-
rect refinement of the protocol behavior of the surrounding
component.

The presented Timed Story Driven Modeling approach sup-
ports the specification of complex dependencies of evolv-
ing behavior and it supports the specification of timing
constraints for hard real-time systems like timed automata
[AD94]. So, it combines the power of story driven model-
ing as well as timed automata, the quasi standard for the
specification of real-time behavior. Hence, a consistent for-
malism is defined which is required by the analysis of timed
behavior with complex dynamic changes at runtime. In con-
trast to former work [HHG08], we have a well defined con-
sistent formalism and did not have to reason about differ-
ent formalisms (which is difficult and could be error prone).
Therefore, we only have to reason about analysis techniques
for one formalism and not for different ones (e. g. state-
charts and graph transformation systems). In this paper, we
present only an overview of the Timed Story formalism and
refinement checking. For more details, we refer to [Hei09].

In the following section, we present our Timed Story Driven
Modeling approach. In Section 3, we present a refinement
check for the Timed Story Driven approach. Related work
is discussed in Section 4. We conclude with a summary and
future work in Section 5.

2. TIMED STORY DRIVEN MODELING
To specify a system being able to dynamically change
the structure (and therefore also the behavior) at run-
time, we specify the structure of the system with UML
2.0-components and a many to many association between
components (using so-called multi ports) and / or an to
many association to its embedded components (called multi
parts, see Section 2.1). The reconfiguration of the architec-
tural parts like components, parts or ports are specified by
(Timed) Story Diagrams and (Timed) Story Pattern (see
Section 2.2 and Section 2.3). It seems, that in some cases
we can specify the timing constraints of a reconfiguration
by the behavior which triggers the reconfiguration (in form
of timing constraints for the trigger). Hence, the timed ver-



sion of Story Pattern and Story Diagrams are in some cases
optional. The behavior of the system, which also triggers
the reconfiguration, is specified by Timed Story Charts (see
Section 2.4).

2.1 System architecture
The system architecture is specified by UML 2.0-components
and -parts. For each component diagram, a class diagram
is automatically synthesized. The class diagram includes
classes for each component and its ports, for each embedded
part, and for all delegations and assemblies. The structure
of the class diagram is based on the meta model of the com-
ponent diagram (see Figure 1). An example class diagram
is shown in Figure 2.
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Figure 1: Component and parts meta model
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Figure 2: Example class diagram

2.2 Timed Story Pattern
In this section, we extend Story Pattern by time. Similar to
the approach described in [Hir08], which extends the groove
syntax and semantics by time, the timing concept of Timed

Story Pattern is based on the semantics of Timed Automata
[AD94]. We therefore support the specification of clocks,
clock resets, time guards, and invariants.

Clocks are described by clock instances (see Figure 3). That
means, clocks are represented by objects. Clocks are defined
by a clock instance and its links to the objects of a graph. A
definition of a clock instance for an edge is indirectly speci-
fied by the related objects of the edge.

 : RailCab

 : Convoy

member

c : ClockInstance
id := „c“
value := 0

 : ClockReset

reset
<<++>>

<<++>>

<<++>>
<<++>>

has

<<++>>
has

Figure 3: Defining a clock c

Clock resets are also modeled by objects which have a link
reset to a clock instance. A clock reset object is instanti-
ated at the same time as the associated clock instance. A
time guard is implemented by a ”standard” Story Pattern
condition by referring to clock values. A precondition for
specifying a time guard is, that the referred clock instance
has to be bound in the Story Pattern. Invariants are spec-
ified by a special Story Pattern having no right hand side
and the referred clock instance has to be bounded.

2.3 Timed Story Diagrams
The difference between a Timed Story Diagram and a Story
Diagram is that a pattern of a Timed Story Diagram is a
Timed Story Pattern. The semantics is the same as for Story
Diagrams.

2.4 Timed Story Charts
The Timed Story Chart formalism supports abstract states,
time constraints, and integrates dynamic adaptation by trig-
gering a reconfiguration specified by (Timed) Story Pattern
or (Timed) Story Diagrams.

Figure 4 shows the meta model of Timed Story Charts to
support the specification of states and timing by objects.
Transitions are implicitly implemented by rules1. In contrast
to [Zün01], we did not use a framework for the execution se-
mantics of the Story Chart as a reachability analysis would
be difficult due to the single method executing the transi-
tions. Hence, a transition would not be (easily) identifiable.
Instead, we specify a story diagram which describes the exe-
cution semantics. In more detail, we explain in the following
an overview of the syntax of some elements of Timed Story
Charts and its execution semantics. We focus on the im-
plementation of some specific statechart constructs. Clocks,
guards, time invariants, time guards, clocks resets are imple-
mented in Timed Story Pattern (see Section 2.2). Deadlines
are implemented by the use of invariants and time guards
and therefore are not discussed anymore.

States are represented by an extra object of type State. The
name of the state is implemented by an attribute. AND

1An explicit transition object would lead to extra computa-
tions by the analysis
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Figure 4: Meta model for the mapping of real-time
statecharts to story diagrams

States are implemented by the class ComplexState. Com-
plexState can embed a set of statecharts. The Active State is
implemented by an ActiveState object having an association
to the active state. To differ between different instances of
a Statechart (e.g. instances of a parameterized Statechart),
we add an attribute parameter to the ActiveState object. If
a statechart is instantiated more than once, an ActiveState
object for each statechart is instantiated with a specific pa-
rameter. With this technique it is possible to manage the
statechart instances of multi-parts and multi-port (see Fig-
ure 5).

rtsc : AB_Statechart, Instanz 1

A B

s1 : State
name = „A“

s2 : State
name = „B“

sc : AB_Statechart

as1 : ActiveState
parameter = 1

as2 : ActiveState
parameter = 2

active active

rtsc : AB_Statechart, Instanz 2

A B

Figure 5: Example of a mapping of a statechart to
a graph

An event is implemented by the Event type. The name of the
event is implemented by an attribute of Event. Parameter-
ized events are implemented by an ordered set of parameters
by the type Parameter. The value of the parameter is speci-
fied by an association to a corresponding object. An event-
queue is associated to each statechart (instance). An exam-
ple of a trigger event a is shown in Figure 6. A raised event
is implemented by an event object with modifier << ++ >>.
Raised events have to be added to the event queue of the
receiving statechart (instance) which is not shown in the
figure. Further more, Figure 6 shows the implementation of
transition by a Story Diagram. The syntax of a story is that
of a Timed Story Pattern (see Section 2.2).

A B

State
name = „A“

ActiveState

AB_Statechart::Trans_A_B()

this

State
name = „B“

a / b

eq : EventQueue

e1 : Event
name = „a“

head

e2 : Event
name := „b“

<<++>>

1: dequeue()
2: enqueue(e2)

<<-->> <<++>>
active active

Figure 6: Events

Synchronization is implemented by an extra Synchonisation
object. By a name attribute the name of the synchroniza-
tion is implemented and the parameter attribute refers to a
specific statechart instance. As the transitions which have
to be synchronized have to fire simultaneous a joint story
diagram is specified including both transitions. An example
is shown in Figure 7.

ComplexA

as3 : ActiveState

AB_Statechart::Sync_Trans_A_B_C_D()

sy:Synchronisation

sc1 : Port1SC_Statechart

as1 : ActiveState this

sc2 : Sync_Statechart

c1:ComplexState
name = „ComplexA“

s1 : State
name = „A“

A B
synck?

C D
synck!

Port1SC

Sync

s2 : State
name = „B“

s1 : State
name = „C“

s2 : State
name = „D“

as2 : ActiveState

sendSrcrecvSrc

{as2.parameter = sy.parameter     sy.parameter = as3.parameter}∧

has

active

<<-->> <<++>>
activeactive

<<-->><<++>>
active active

Figure 7: Synchronization

The syntactical mappings of (Real-Time) Statechart con-
structs defined above are now combined to a sequence of
transformations (see Figure 8) defining the execution seman-
tics of Timed Story Charts. Note, we discuss only a view
relevant constructs in this paper. A complete definition of
Timed Story Charts is presented in [Hei09]. A transition
of a Real-Time Statechart is mapped to a modular Timed
Story Chart with a set of stories. Hence, the exchange of the
semantics is easy. As an example, we take into account the
semantics of a transition without deadline. Figure 8 shows
a schematic Timed Story Chart. The activities are stories.
The first story analyzes whether the precondition is fulfilled.
This includes binding the source state, the event trigger, and
synchronization channels. Furthermore, all (time) guards



are considered. If all bindings and (time) guards are ful-
filled, the transition can fire (1. story). The 2. story takes
the relevant events from the queue. The 3. story eliminates
all synchronization objects from the source state. In story
4. the exitAction is executed. The side effect is executed in
story 5. and the trigger events are eliminated. Next, in story
7. , raised events are created and clocks are reseted. Finally,
in story 8. the synchronization channels of the target state
are instantiated and, in story 9., the target state is entered.
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Figure 8: Execution semantics

3. REFINEMENT
Basically, we have two requirements for the refinement: 1)
the external visible real-time behavior has to be fulfilled by
the refined behavior and 2) the (formal) compositional veri-
fication results of the abstract behavior have to be preserved
by the refinement (cf. Figure 9).

Abstract Timed
Story Chart

Refined Timed
Story Chart

Preservation of (safety-) properties

Preservation of the protocol

Figure 9: Requirements to the refinement

For supporting requirement 1), we require that each exter-
nal visible trace consisting of events (in- and out-going) and
its timing, is implemented by the refined behavior. That
means each event supported by the abstract behavior has
to be supported by the refined behavior2 as well and the
refined behavior has to react in the same time interval as
the abstract one. In contrast to other definitions, we allow
the refined behavior to have a more relaxed receive interval.
For requirement 2), we require that each trace of the re-
finement is related to (simulated by) a trace of the abstract
behavior. That means the abstract behavior simulates the
refined and therefore compositional verification results are
preserved [CGP00]. In [Hei09] a detailed definition is pre-
sented.

In the following we present the refinement check by first
computing a reachability graph of the abstract and the re-
fined Timed Story Chart (see Section 3.1). In principle the
reachable graph could be infinite. As we take into account
hard real-time systems, the reachable graph is finite as de-
pendent behavior (statecharts) has an upper hard timing

2It is allowed that the refined behavior supports more events
than the abstract behavior

constraints or the behavior are independent and therefore
only one possible instance of the behavior has to be consid-
ered. In [Hei09] we discuss an alternative approach which
could also take into account an infinite system. Based on the
reachable graphs, we illustrate an algorithm for checking the
refinement in Section 3.2.

3.1 Reachability Analysis
The timed reachability analysis is based on the computa-
tion of reachability graphs as introduced in [Zün09]. Ba-
sically, the timed story patterns used to execute the timed
story charts are transformed such that the matching and the
rewrite step are separated into two operations. Then, the
matching operation is embedded into a for each construct,
searching for all possible matches of a given timed story pat-
tern in the current graph. For each match, we use a library
operation introduced in [Zün09] in order to create a copy of
the current graph and then, the rewrite operation is applied
to that graph copy. We do this for all story patterns that
are enabled for the current graph. Thus, for a given start
graph the expansion step described above computes the set
of all possible successor graphs reachable with the available
story patterns. We apply this expansion step to all reach-
able graphs as long as possible. During the expansion, we
use a library provide isomorphism check [Zün09], to compare
each new graph with all other derived graphs. Thereby, we
identify and merge graphs that may be reached by different
sequences of story pattern applications. During the appli-
cation of timed story patterns, the timing constraints are
maintained using a dedicated clock zone ([CGP00, p. 280]),
cf. [Hei09]. Accordingly, handling of the clock zones is in-
corporated in the graph copy operation and especially in the
graph isomorphism check. Thus, two timed graphs are con-
sidered isomorphic, if the graph structure is isomorphic and
if the clock zones are equivalent.

Note, in general the computation of a reachability graph may
not terminate. In our case, we model the execution of finite
timed story charts and the timing constraints result in an-
other restriction concerning the length of execution pathes.

3.2 Refinement Check
The refinement check is realized by a depth-first search (see
algorithm 1). The algorithm checks for each event of the
refined behavior if a corresponding event in the abstract
behavior exist. First the algorithm starts with a (timed)
reachability analysis as described in the last section. Then
it is checked if for the starting states a structural refinement
exist. If nodes exist which are not expanded a successor is
checked (row 8) and expanded (row 9). For each successor it
is checked if the successor is already known. If a successor is
not known it is checked if an event is triggered or raised and,
if so, it is checked if a corresponding trace exist. If a node is
already known it could be the case that a circle is closed or
two traces are joined. In both cases, if an event is triggered
or raised it is checked if a corresponding trace exist. In cases
of a circle, we check if the circle is well-formed. That means,
we check if the circle has a corresponding trace.

4. RELATED WORK
In [Gie07] a refinement is defined for hybrid graph trans-
formation systems which preserves verification results of the



abstract behavior. The focus is not, as in our case, to define
a more relaxed refinement which enables a more flexible in-
tegration of possible refined behavior and it is not required
that the external visible real-time behavior is still preserved
by the refined behavior. [HT04] considers graph transfor-
mation systems for the specification of service oriented ar-
chitectures. The presented refinement should preserve the
external visible services. The approach did not take into
account time and the ability to preserve verification results.
[GRPS02] examine refinement for graph transformation sys-
tems based on an algebra but they did not take into account
time.

Algorithm 1 Refinement check

1: function checkCorrectRefine-
ment(TimedStoryChart abs, TimedStoryChart ref)

2: absReach = startReachabilityAnalysis(abs)
3: refReach = startReachabilityAnalysis(ref)
4: success := checkStructureRefinement (ab-

sReach.initial, refReach.initial)
5: OPEN.push(refReach.initial)
6: while OPEN 6= ∅ ∧ success do
7: n := OPEN.pop( )
8: success := refReach.hasSuccessor(n)
9: for all n′ ∈ refReach.expand(n) do

10: if n′ is not known then . Case 1: new node
11: OPEN.push(n′)
12: if (n, n′) has event e then
13: success := checkPath((n, n′))
14: end if
15: else . Case 2: node is known
16: if (n, n′) closed cycle then . a) Edge

closes an circle
17: if (n, n′) has event e then
18: success := checkPath((n, n′))
19: end if
20: success := isWellFormedCycle(n′)
21: else . b) Joining of two traces
22: if (n, n′) has event e then . The

same as case 1
23: success := checkPath((n, n′))
24: end if
25: end if
26: end if
27: end for
28: end while
29: if success then
30: success := checkCoverage(absReach)
31: end if
32: return success
33: end function

5. CONCLUSION AND FUTURE WORK
We presented in this paper the Timed Story Driven approach
and a refinement check for Timed Story Charts, the behav-
ioral specification language of the Timed Story Driven ap-
proach. We gave in more detail an overview of the syntax
and semantics of Timed Story Charts. The presented re-
finement check, which preserves compositional verification
results and the external visible real-time behavior, is based
on a reachability analysis.

The expand of the reachability analysis is a manual task. Es-

pecially for timed systems, this could be error prone. Hence,
a future task is to develop an automatic expand.
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